Motivation:
We should delay the firing of the Http2ConnectionPrefaceAndSettingsFrameWrittenEvent by one EventLoop tick when using the Http2FrameCodec to ensure all handlers are added to the pipeline before the event is passed through it.
This is needed to workaround a race that could happen when the preface is send in handlerAdded(...) but a later handler wants to act on the event.
Modifications:
Offload firing of the event to the EventExecutor.
Result:
Fixes https://github.com/netty/netty/issues/9432.
Motivation:
306299323cd47fed6d15767291a3d52e48d16786 introduced some code change to move the responsibility of creating the stream for the upgrade to Http2FrameCodec. Unfortunaly this lead to the situation of having newStream().setStreamAndProperty(...) be called twice. Because of this we only ever saw the channelActive(...) on Http2StreamChannel but no other events as the mapping was replaced on the second newStream().setStreamAndProperty(...) call.
Beside this we also did not use the correct handler for the upgrade stream in some cases
Modifications:
- Just remove the Http2FrameCodec.onHttpClientUpgrade() method and so let the base class handle all of it. The stream is created correctly as part of the ConnectionListener implementation of Http2FrameCodec already.
- Consolidate logic of creating stream channels
- Adjust unit test to capture the bug
Result:
Fixes https://github.com/netty/netty/issues/9395
Motivation:
When using the HTTP/2 multiplex implementation we need to ensure we correctly drain the buffered inbound data even if the RecvByteBufallocator.Handle tells us to stop reading in between.
Modifications:
Correctly loop through the buffered inbound data until the user does stop to request from it.
Result:
Fixes https://github.com/netty/netty/issues/9387.
Co-authored-by: Bryce Anderson <banderson@twitter.com>
Motivation:
We can easily reuse the Http2FrameStreamEvent instances and so reduce GC pressure as there may be multiple events per streams over the life-time.
Modifications:
Reuse instances
Result:
Less allocations
Motivation:
At the moment we lookup the ChannelHandlerContext used in Http2StreamChannelBootstrap each time the open(...) method is invoked. This is not needed and we can just cache it for later usage.
Modifications:
Cache ChannelHandlerContext in volatile field.
Result:
Speed up open(...) method implementation when called multiple times
Motivation:
If a read triggers a AbstractHttp2StreamChannel to close we can
get an NPE in the read loop.
Modifications:
Make sure that the inboundBuffer isn't null before attempting to
continue the loop.
Result:
No NPE.
Fixes#9337
Motivation:
The Http2FrameCodec should be responsible to create the upgrade stream.
Modifications:
Move code to create stream to Http2FrameCodec
Result:
More correct responsibility
Motivation:
Mark Http2StreamChannelBootstrap.open0(...) as deprecated as the user should not use it. It was marked as public by mistake.
Modifications:
Add deprecation warning.
Result:
User will be aware the method should not be used directly.
Motivation:
There are situations where the user may want to be more flexible when to send the PING acks for various reasons or be able to attach a listener to the future that is used for the ping ack. To be able to do so we should allow to manage the acks manually.
Modifications:
- Add constructor to DefaultHttp2ConnectionDecoder that allows to disable the automatically sending of ping acks (default is to send automatically to not break users)
- Add methods to AbstractHttp2ConnectionHandlerBuilder (and sub-classes) to either enable ot disable auto acks for pings
- Make DefaultHttp2PingFrame constructor public that allows to write acks.
- Add unit test
Result:
More flexible way of handling acks.
Motivation:
Netty homepage(netty.io) serves both "http" and "https".
It's recommended to use https than http.
Modification:
I changed from "http://netty.io" to "https://netty.io"
Result:
No effects.
Motivation:
Http2ConnectionHandler (and sub-classes) allow to configure a graceful shutdown timeout but only apply it if there is at least one active stream. We should always apply the timeout. This is also true when we try to send a GO_AWAY and close the connection because of an connection error.
Modifications:
- Always apply the timeout if one is configured
- Add unit test
Result:
Always respect gracefulShutdownTimeoutMillis
Motivation:
b3dba317d797e21cc253bb6ad6776307297f612e introduced the concept of Http2SettingsReceivedConsumer but did not correctly inplement DecoratingHttp2ConnectionEncoder.consumeRemoteSettings(...).
Modifications:
- Add missing `else` around the throws
- Add unit tests
Result:
Correctly implement DecoratingHttp2ConnectionEncoder.consumeRemoteSettings(...)
Motivation
The nice change made by @carl-mastrangelo in #9307 for lookup-table
based HPACK Huffman decoding can be simplified a little to remove the
separate flags field and eliminate some intermediate operations.
Modification
Simplify HpackHuffmanDecoder::decode logic including de-dup of the
per-nibble part.
Result
Less code, possibly better performance though not noticeable in a quick
benchmark.
Motivation:
We don't need the extra ChannelPromise when writing headers anymore in Http2FrameCodec. This also means we cal re-use a ChannelFutureListener and so not need to create new instances all the time.
Modifications:
- Just pass the original ChannelPromise when writing headers
- Reuse the ChannelFutureListener
Result:
Two less objects created when writing headers for an not-yet created stream.
Motivation:
ff0045e3e10684425a26f5b6cb02223fb0444141 changed HpackHuffmanDecoder to use a lookup-table which greatly improved performance. We can squeeze out another 3% win by using an ByteProcessor which will reduce the number of bound-checks / reference-count-checks needed by processing byte-by-byte.
Modifications:
Implement logic with ByteProcessor
Result:
Another ~3% perf improvement which shows up when using h2load to simulate load.
`h2load -c 100 -m 100 --duration 60 --warm-up-time 10 http://127.0.0.1:8080`
Before:
```
finished in 70.02s, 620051.67 req/s, 20.70MB/s
requests: 37203100 total, 37203100 started, 37203100 done, 37203100 succeeded, 0 failed, 0 errored, 0 timeout
status codes: 37203100 2xx, 0 3xx, 0 4xx, 0 5xx
traffic: 1.21GB (1302108500) total, 41.84MB (43872600) headers (space savings 90.00%), 460.24MB (482598600) data
min max mean sd +/- sd
time for request: 404us 24.52ms 15.93ms 1.45ms 87.90%
time for connect: 0us 0us 0us 0us 0.00%
time to 1st byte: 0us 0us 0us 0us 0.00%
req/s : 6186.64 6211.60 6199.00 5.18 65.00%
```
With this change:
```
finished in 70.02s, 642103.33 req/s, 21.43MB/s
requests: 38526200 total, 38526200 started, 38526200 done, 38526200 succeeded, 0 failed, 0 errored, 0 timeout
status codes: 38526200 2xx, 0 3xx, 0 4xx, 0 5xx
traffic: 1.26GB (1348417000) total, 42.39MB (44444900) headers (space savings 90.00%), 466.25MB (488893900) data
min max mean sd +/- sd
time for request: 370us 24.89ms 15.52ms 1.35ms 88.02%
time for connect: 0us 0us 0us 0us 0.00%
time to 1st byte: 0us 0us 0us 0us 0.00%
req/s : 6407.06 6435.19 6419.74 5.62 67.00%
```
Motivation:
In the latest release we introduced Http2MultiplexHandler as a replacement of Http2MultiplexCodec. This did split the frame parsing from the multiplexing to allow a more flexible way to handle frames and to make the code cleaner. Unfortunally we did miss to special handle this in Http2ServerUpgradeCodec and so did not correctly add Http2MultiplexHandler to the pipeline before calling Http2FrameCodec.onHttpServerUpgrade(...). This did lead to the situation that we did not correctly receive the event on the Http2MultiplexHandler and so did not correctly created the Http2StreamChannel for the upgrade stream. Because of this we ended up with an NPE if a frame was dispatched to the upgrade stream later on.
Modifications:
- Correctly add Http2MultiplexHandler to the pipeline before calling Http2FrameCodec.onHttpServerUpgrade(...)
- Add unit test
Result:
Fixes https://github.com/netty/netty/issues/9314.
Motivation:
b3dba317d797e21cc253bb6ad6776307297f612e added AbstractHttp2ConnectionBuilder.autoAckSettingsFrame(...) as protected method and made it public for Http2MultiplexCodecBuilder. Unfortunally it did miss to also make it public in Http2FrameCodecBuilder
Modifications:
Correctly override autoAckSettingsFrame in Http2FrameCodecBuilder and so make it usable when building Http2FrameCodec.
Result:
Be able to also configure autoAckSettingsFrame when Http2FrameCodec is used.
Motivation:
There is some manual coping of elements of Collections which can be replaced by Collections.addAll(...) and also some unnecessary semicolons.
Modifications:
- Simplify branches
- Use Collections.addAll
- Code cleanup
Result:
Code cleanup
Motivation:
We should not propage Http2WindowUpdateFrames to the child channels at all as these are not really use-ful and should not be flow-controlled via `read()` anyway. In the other hand Http2ResetFrame is very useful but should be propagated via an user event so the user is aware of it directly even if the user stops reading.
Modifications:
- Dont propagate Http2WindowUpdateFrames when using Http2MultiplexHandler
- Use user event for Http2ResetFrame when using Http2MultiplexHandler
- Adjust javadoc of Http2MultiplexHandler
- Add unit tests
Result:
Fixes https://github.com/netty/netty/pull/8889 and https://github.com/netty/netty/pull/7635
Motivation:
Http2MultiplexCodec and Http2MultiplexHandler had a very strong coupling with Http2FrameCodec which we can reduce easily. The end-goal should be to have no coupling at all.
Modifications:
- Reduce coupling by move some common logic to Http2CodecUtil
- Move logic to check if a stream may have existed before to Http2FrameCodec
- Use ArrayDeque as replacement for custom double-linked-list which makes the code a lot more readable
- Use WindowUpdateFrame to signal consume bytes (just as users do when they use Http2FrameCodec directly)
Result:
Less coupling and cleaner code.
Motivation:
In the past we had the following class hierarchy:
Http2ConnectionHandler --- Http2FrameCodec -- Http2MultiplexCodec
This hierarchy makes it impossible to plug in any code that would like to act on Http2Frame and Http2StreamFrame which can be quite useful for various situations (like metrics, logging etc). Beside this it also made the implementtion very hacky. To allow easier maintainance and also allow more flexible costumizations we should split Http2MultiplexCodec and Http2FrameCode.
Modifications:
- Introduce Http2MultiplexHandler (which is a replacement for Http2MultiplexCodec when used together with Http2FrameCodec)
- Mark Http2MultiplexCodecBuilder and Http2MultiplexCodec as deprecated. People should use Http2FrameCodecBuilder / Http2FrameCodec together with Http2MultiplexHandlder in the future
- Adjust / Add tests
- Adjust examples
Result:
More flexible usage possible and less hacky / coupled implementation for http2 multiplexing
Motivation:
For HTTP/2 messages with multiple cookies HttpConversionUtil.addHttp2ToHttpHeaders spends a good portion of time creating throwaway StringBuilders.
Modification:
Handle cookies lazily by using a ThreadLocal StringBuilder and then converting it to the H1 header at the end.
Result:
Less allocations.
Motivation:
f945a071db4d499d21142d3aa321ce8070616665 decoupled the writability state from the flow controller but could lead to the situation of a lot of writability updates events were propagated to the child channels. This change ensure we only take into account if the parent channel becomes writable again before we try to set the child channels to writable.
Modifications:
Only listen for channel writability changes for if the parent channel becomes writable again.
Result:
Less writability updates.
Motivation:
We should decouple the writability state of the http2 child channels from the flow-controller and just tie it to its own pending bytes counter that is decremented by the parent Channel once the bytes were written.
Modifications:
- Decouple writability state of child channels from flow-contoller
- Update tests
Result:
Less coupling and more correct behavior. Fixes https://github.com/netty/netty/issues/8148.
Motivation:
b4e3c12b8e8e984ba65330dd6dc34a4b3d07a25a introduced code to avoid coupling
close() to graceful close. It also added some code which attempted to infer when
a graceful close was being done in writing of a GOAWAY to preserve the
"connection is closed when all streams are closed behavior" for the child
channel API. However the implementation was too overzealous and may preemptively
close the connection if there are not currently any open streams (and close if
there are any frames which create streams in flight).
Modifications:
- Decouple writing a GOAWAY from trying to infer if a graceful close is being
done and closing the connection. Even if we could enhance this logic (e.g.
wait to close until the second GOAWAY with no error) it is possible the user
doesn't want the connection to be closed yet. We can add a means for the codec
to orchestrate the graceful close in the future (e.g. write some special "close
the connection when all streams are closed") but for now we can just let the
application handle this.
Result:
Fixes https://github.com/netty/netty/issues/9207
Motivation:
The first final version of GraalVM was released which deprecated some flags. We should use the new ones.
Modifications:
Removes the use of deprecated GraalVM native-image flags
Adds a flag to initialize netty at build time.
Result:
Do not use deprecated flags
Motivation:
OOME is occurred by increasing suppressedExceptions because other libraries call Throwable#addSuppressed. As we have no control over what other libraries do we need to ensure this can not lead to OOME.
Modifications:
Only use static instances of the Exceptions if we can either dissable addSuppressed or we run on java6.
Result:
Not possible to OOME because of addSuppressed. Fixes https://github.com/netty/netty/issues/9151.
Motivation:
Http2MultiplexCodec.DefaultHttp2StreamChannel currently only act on ClosedChannelException exceptions when checking for isAutoClose(). We should widen the scope here to IOException to be more consistent with AbstractChannel.
Modifications:
Replace instanceof ClosedChannelException with instanceof IOException
Result:
More consistent handling of isAutoClose()
Motivation:
GraalVM native images are a new way to deliver java applications. Netty is one of the most popular libraries however there are a few limitations that make it impossible to use with native images out of the box. Adding a few metadata (in specific modules will allow the compilation to success and produce working binaries)
Modification:
Added properties files in `META-INF` and substitutions classes (under `internal.svm`) will solve the compilation issues. The substitutions classes are not visible and do not have a public constructor so they are not visible to end users.
Result:
Fixes#8959
This fix is very conservative as it applies the minimum config required to build:
* pure netty servers
* vert.x applications
* grpc applications
The build is having trouble due to checkstyle which does not seem to be able to find the copyright notice on property files.
Motivation:
Http2ConnectionHandler#close(..) always runs the GOAWAY and graceful close
logic. This coupling means that a user would have to override
Http2ConnectionHandler#close(..) to modify the behavior, and the
Http2FrameCodec and Http2MultiplexCodec are not extendable so you cannot
override at this layer. Ideally we can totally decouple the close(..) of the
transport and the GOAWAY graceful closure process completely, but to preserve
backwards compatibility we can add an opt-out option to decouple where the
application is responsible for sending a GOAWAY with error code equal to
NO_ERROR as described in https://tools.ietf.org/html/rfc7540#section-6.8 in
order to initiate graceful close.
Modifications:
- Http2ConnectionHandler supports an additional boolean constructor argument to
opt out of close(..) going through the graceful close path.
- Http2FrameCodecBuilder and Http2MultiplexCodec expose
gracefulShutdownTimeoutMillis but do not hook them up properly. Since these
are already exposed we should hook them up and make sure the timeout is applied
properly.
- Http2ConnectionHandler's goAway(..) method from Http2LifecycleManager should
initiate the graceful closure process after writing a GOAWAY frame if the error
code is NO_ERROR. This means that writing a Http2GoAwayFrame from
Http2FrameCodec will initiate graceful close.
Result:
Http2ConnectionHandler#close(..) can now be decoupled from the graceful close
process, and immediately close the underlying transport if desired.
Motivation:
Http2FrameCodec currently fails the write promise associated with creating a
stream with a Http2NoMoreStreamIdsException. However this means the user code
will have to listen to all write futures in order to catch this scenario which
is the same as receiving a GOAWAY frame. We can also simulate receiving a GOAWAY
frame from our remote peer and that allows users to consolidate graceful close
logic in the GOAWAY processing.
Modifications:
- Http2FrameCodec should simulate a DefaultHttp2GoAwayFrame when trying to
create a stream but the stream IDs have been exhausted.
Result:
Applications can rely upon GOAWAY for graceful close processing instead of also
processing write futures.
Motivaiton:
DefaultHttp2ConnectionEncoder uses SimpleChannelPromiseAggregator to combine two
operations into a single future status. However it directly uses the
SimpleChannelPromiseAggregator object instead of using the newPromise() method
in one case. This may result in premature completion of the aggregated future.
Modifications:
- DefaultHttp2ConnectionEncoder to use
SimpleChannelPromiseAggregator#newPromise() instead of directly using the
SimpleChannelPromiseAggregator instance when writing the settings ACK frame
Result:
More correct status for the SETTING ACK frame writing when auto settings ACK is
disabled.
Motivation:
The HTTP/2 codec will synchronously respond to a SETTINGS frame with a SETTINGS
ACK before the application sees the SETTINGS frame. The application may need to
adjust its state depending upon what is in the SETTINGS frame before applying
the remote settings and responding with an ACK (e.g. to adjust for max
concurrent streams). In order to accomplish this the HTTP/2 codec should allow
for the application to opt-in to sending the SETTINGS ACK.
Modifications:
- DefaultHttp2ConnectionDecoder should support a mode where SETTINGS frames can
be queued instead of immediately applying and ACKing.
- DefaultHttp2ConnectionEncoder should attempt to poll from the queue (if it
exists) to apply the earliest received but not yet ACKed SETTINGS frame.
- AbstractHttp2ConnectionHandlerBuilder (and sub classes) should support a new
option to enable the application to opt-in to managing SETTINGS ACK.
Result:
HTTP/2 allows for asynchronous SETTINGS ACK managed by the application.
Motivation:
com.puppycrawl.tools checkstyle < 8.18 was reported to contain a possible security flaw. We should upgrade.
Modifications:
- Upgrade netty-build and checkstyle.
- Fix checkstyle errors
Result:
Fixes https://github.com/netty/netty/issues/8968.
Motivation:
PromiseCombiner is not thread-safe and even assumes all added Futures are using the same EventExecutor. This is kind of fragile as we do not enforce this. We need to enforce this contract to ensure it's safe to use and easy to spot concurrency problems.
Modifications:
- Add new contructor to PromiseCombiner that takes an EventExecutor and deprecate the old non-arg constructor.
- Check if methods are called from within the EventExecutor thread and if not fail
- Correctly dispatch on the right EventExecutor if the Future uses a different EventExecutor to eliminate concurrency issues.
Result:
More safe use of PromiseCombiner + enforce correct usage / contract.
Motivation:
When more than one connection header is present in h2c upgrade request, upgrade fails. This is to fix that.
Modification:
In HttpServerUpgradeHandler's upgrade() method, check whether any of the connection header value is upgrade, not just the first header value which might return a different value other than upgrade.
Result:
Fixes#8846.
With this PR, now when multiple connection headers are sent with the upgrade request, upgrade will not fail.
Motivation:
We can replace some "hand-rolled" integer checks with our own static utility method to simplify the code.
Modifications:
Use methods provided by `ObjectUtil`.
Result:
Cleaner code and less duplication
Motivation:
We need to update to a new checkstyle plugin to allow the usage of lambdas.
Modifications:
- Update to new plugin version.
- Fix checkstyle problems.
Result:
Be able to use checkstyle plugin which supports new Java syntax.
Motivation:
When a write error happens during writing of flowcontrolled data frames we miss to correctly detect this in the write loop which may result in an infinite loop as we will never detect that the frame should be removed from the queue.
Modifications:
- When we fail a flowcontrolled data frame we ensure that the next frame.write(...) call will signal back that the whole frame was handled and so can be removed.
- Add unit test.
Result:
Fixes https://github.com/netty/netty/issues/8707.
Motivation:
In Http2FrameCodec we made the incorrect assumption that we can only have 1 buffered outboundstream as maximum. This is not correct and we need to account for multiple buffered streams.
Modifications:
- Use a map to allow buffer multiple streams
- Add unit test.
Result:
Fixes https://github.com/netty/netty/issues/8692.
Motiviation:
Http2FrameCodecTest and Http2MultiplexCodecTest were quite fragile and often not went through the whole pipeline which made testing sometimes hard and error-prone.
Modification:
- Refactor tests to have data flow through the whole pipeline and so made the test more robust (by testing the while implementation).
Result:
Easier to write tests for the codecs in the future and more robust testing in general.
Beside this it also fixes https://github.com/netty/netty/issues/6036.
Motivation:
We should always call ctx.read() even when AUTO_READ is false as flow-control is enforced by the HTTP/2 protocol.
See also https://tools.ietf.org/html/rfc7540#section-5.2.2.
We already did this before but not explicit and only did so because of some implementation details of ByteToMessageDecoder. It's better to be explicit here to not risk of breakage later on.
Modifications:
- Ensure we always call ctx.read() when AUTO_READ is false
- Add unit test.
Result:
No risk of staling the connection when HTTP/2 is used.
Motivation:
In windows if the project is in a path that contains whitespace,
resources cannot be accessed and tests fail.
Modifications:
Adds ResourcesUtil.java in netty-common. Tests use ResourcesUtil.java to access a resource.
Result:
Being able to build netty in a path containing whitespace
Motivation:
9f9aa1a did some changes related to fixing how we handle ctx.read() in child channel but did incorrectly change some assert.
Modifications:
Fix assert to be correct.
Result:
Code does not throw an AssertionError due incorrect assert check.
Motivation:
We did not correct respect ctx.read() calls while processing a read for a child Channel. This could lead to read stales when auto read is disabled and no other read was requested.
Modifications:
- Keep track of extra read() calls while processing reads
- Add unit tests that verify that read() is respected when triggered either in channelRead(...) or channelReadComplete(...)
Result:
Fixes https://github.com/netty/netty/issues/8209.
Motivation
DefaultHttp2FrameReader currently does a fair amount of "intermediate"
slicing which can be avoided.
Modifications
Avoid slicing the input buffer in DefaultHttp2FrameReader until
necessary. In one instance this also means retainedSlice can be used
instead (which may also avoid allocating).
Results
Less allocations when using http2.