Commit Graph

8 Commits

Author SHA1 Message Date
Nikolay Fedorovskikh
df568c739e Use ByteBuf#writeShort/writeMedium instead of writeBytes
Motivation:

1. Some encoders used a `ByteBuf#writeBytes` to write short constant byte array (2-3 bytes). This can be replaced with more faster `ByteBuf#writeShort` or `ByteBuf#writeMedium` which do not access the memory.
2. Two chained calls of the `ByteBuf#setByte` with constants can be replaced with one `ByteBuf#setShort` to reduce index checks.
3. The signature of method `HttpHeadersEncoder#encoderHeader` has an unnecessary `throws`.

Modifications:

1. Use `ByteBuf#writeShort` or `ByteBuf#writeMedium` instead of `ByteBuf#writeBytes` for the constants.
2. Use `ByteBuf#setShort` instead of chained call of the `ByteBuf#setByte` with constants.
3. Remove an unnecessary `throws` from `HttpHeadersEncoder#encoderHeader`.

Result:

A bit faster writes constants into buffers.
2017-07-10 14:37:41 +02:00
Nikolay Fedorovskikh
ba3616da3e Apply appropriate methods for writing CharSequence into ByteBuf
Motivation:

1. `ByteBuf` contains methods to writing `CharSequence` which optimized for UTF-8 and ASCII encodings. We can also apply optimization for ISO-8859-1.
2. In many places appropriate methods are not used.

Modifications:

1. Apply optimization for ISO-8859-1 encoding in the `ByteBuf#setCharSequence` realizations.
2. Apply appropriate methods for writing `CharSequences` into buffers.

Result:

Reduce overhead from string-to-bytes conversion.
2017-06-27 07:58:39 +02:00
Anuraag Agrawal
ba5d1880bc Make HttpHeadersEncoder.encodeHeader package private to match class visibility. 2017-05-19 11:17:31 +02:00
Scott Mitchell
19658e9cd8 HTTP/2 Headers Type Updates
Motivation:
The HTTP/2 RFC (https://tools.ietf.org/html/rfc7540#section-8.1.2) indicates that header names consist of ASCII characters. We currently use ByteString to represent HTTP/2 header names. The HTTP/2 RFC (https://tools.ietf.org/html/rfc7540#section-10.3) also eludes to header values inheriting the same validity characteristics as HTTP/1.x. Using AsciiString for the value type of HTTP/2 headers would allow for re-use of predefined HTTP/1.x values, and make comparisons more intuitive. The Headers<T> interface could also be expanded to allow for easier use of header types which do not have the same Key and Value type.

Motivation:
- Change Headers<T> to Headers<K, V>
- Change Http2Headers<ByteString> to Http2Headers<CharSequence, CharSequence>
- Remove ByteString. Having AsciiString extend ByteString complicates equality comparisons when the hash code algorithm is no longer shared.

Result:
Http2Header types are more representative of the HTTP/2 RFC, and relationship between HTTP/2 header name/values more directly relates to HTTP/1.x header names/values.
2015-10-30 15:29:44 -07:00
Jakob Buchgraber
6fd0a0c55f Faster and more memory efficient headers for HTTP, HTTP/2, STOMP and SPYD. Fixes #3600
Motivation:

We noticed that the headers implementation in Netty for HTTP/2 uses quite a lot of memory
and that also at least the performance of randomly accessing a header is quite poor. The main
concern however was memory usage, as profiling has shown that a DefaultHttp2Headers
not only use a lot of memory it also wastes a lot due to the underlying hashmaps having
to be resized potentially several times as new headers are being inserted.

This is tracked as issue #3600.

Modifications:
We redesigned the DefaultHeaders to simply take a Map object in its constructor and
reimplemented the class using only the Map primitives. That way the implementation
is very concise and hopefully easy to understand and it allows each concrete headers
implementation to provide its own map or to even use a different headers implementation
for processing requests and writing responses i.e. incoming headers need to provide
fast random access while outgoing headers need fast insertion and fast iteration. The
new implementation can support this with hardly any code changes. It also comes
with the advantage that if the Netty project decides to add a third party collections library
as a dependency, one can simply plug in one of those very fast and memory efficient map
implementations and get faster and smaller headers for free.

For now, we are using the JDK's TreeMap for HTTP and HTTP/2 default headers.

Result:

- Significantly fewer lines of code in the implementation. While the total commit is still
  roughly 400 lines less, the actual implementation is a lot less. I just added some more
  tests and microbenchmarks.

- Overall performance is up. The current implementation should be significantly faster
  for insertion and retrieval. However, it is slower when it comes to iteration. There is simply
  no way a TreeMap can have the same iteration performance as a linked list (as used in the
  current headers implementation). That's totally fine though, because when looking at the
  benchmark results @ejona86 pointed out that the performance of the headers is completely
  dominated by insertion, that is insertion is so significantly faster in the new implementation
  that it does make up for several times the iteration speed. You can't iterate what you haven't
  inserted. I am demonstrating that in this spreadsheet [1]. (Actually, iteration performance is
  only down for HTTP, it's significantly improved for HTTP/2).

- Memory is down. The implementation with TreeMap uses on avg ~30% less memory. It also does not
  produce any garbage while being resized. In load tests for GRPC we have seen a memory reduction
  of up to 1.2KB per RPC. I summarized the memory improvements in this spreadsheet [1]. The data
  was generated by [2] using JOL.

- While it was my original intend to only improve the memory usage for HTTP/2, it should be similarly
  improved for HTTP, SPDY and STOMP as they all share a common implementation.

[1] https://docs.google.com/spreadsheets/d/1ck3RQklyzEcCLlyJoqDXPCWRGVUuS-ArZf0etSXLVDQ/edit#gid=0
[2] https://gist.github.com/buchgr/4458a8bdb51dd58c82b4
2015-08-04 17:12:24 -07:00
Scott Mitchell
9a7a85dbe5 ByteString introduced as AsciiString super class
Motivation:
The usage and code within AsciiString has exceeded the original design scope for this class. Its usage as a binary string is confusing and on the verge of violating interface assumptions in some spots.

Modifications:
- ByteString will be created as a base class to AsciiString. All of the generic byte handling processing will live in ByteString and all the special character encoding will live in AsciiString.

Results:
The AsciiString interface will be clarified. Users of AsciiString can now be clear of the limitations the class imposes while users of the ByteString class don't have to live with those limitations.
2015-04-14 16:35:17 -07:00
Scott Mitchell
50e06442c3 Backport header improvements from 5.0
Motivation:
The header class hierarchy and algorithm was improved on the master branch for versions 5.x. These improvments should be backported to the 4.1 baseline.

Modifications:
- cherry-pick the following commits from the master branch: 2374e17, 36b4157, 222d258

Result:
Header improvements in master branch are available in 4.1 branch.
2014-11-01 00:59:57 +09:00
Trustin Lee
681d460938 Introduce TextHeaders and AsciiString
Motivation:

We have quite a bit of code duplication between HTTP/1, HTTP/2, SPDY,
and STOMP codec, because they all have a notion of 'headers', which is a
multimap of string names and values.

Modifications:

- Add TextHeaders and its default implementation
- Add AsciiString to replace HttpHeaderEntity
  - Borrowed some portion from Apache Harmony's java.lang.String.
- Reimplement HttpHeaders, SpdyHeaders, and StompHeaders using
  TextHeaders
- Add AsciiHeadersEncoder to reuse the encoding a TextHeaders
  - Used a dedicated encoder for HTTP headers for better performance
    though
- Remove shortcut methods in SpdyHeaders
- Replace SpdyHeaders.getStatus() with HttpResponseStatus.parseLine()

Result:

- Removed quite a bit of code duplication in the header implementations.
- Slightly better performance thanks to improved header validation and
  hash code calculation
2014-06-14 15:36:19 +09:00