Motivation:
If we can not replace the internal used Set of the Selector there is no need to create an SelectedSelectionKeySet instance.
Modification:
Only create SelectedSelectionKeySet if we will replace the internal set.
Result:
Less object creation in some cases and cleaner code.
Motivation:
We should allow to schedule tasks with a delay up to Long.MAX_VALUE as we did pre 4.1.25.Final.
Modifications:
Just ensure we not overflow and put the correct max limits in place when schedule a timer. At worse we will get a wakeup to early and then schedule a new timeout.
Result:
Fixes https://github.com/netty/netty/issues/7970.
Motivation:
A long time ago we deprecated AUTO_CLOSE but it turned out this feature is still useful because if a write error is detected there still maybe data to read, and if we close the channel automatically we will lose data
Modifications:
- Remove `@Deprecated` tag for AUTO_CLOSE, setAutoClose(...) and isAutoClose(...)
- Fix javadocs on ChannelConfig to correctly tell the default value of AUTO_CLOSE.
Result:
Less warnings.
Motivation:
We need to ensure we only return from close() after all work is done as otherwise we may close the EventExecutor before we dispatched everything.
Modifications:
Correctly wait on operations to complete before return.
Result:
Fixes https://github.com/netty/netty/issues/7901.
Motivation:
We added some code to guard against thread.interrupt() in NioEventLoop but did not added a test.
Modifications:
Add testcase.
Result:
Verify that we correctly handle interrupt().
Motivation:
Closed `FixedChannelPool` fails acquire and release operations with
`IllegalStateException`s. These exceptions had message
"FixedChannelPooled was closed". Here "FixedChannelPooled" looks like
a typo and should probably be "FixedChannelPool".
Modifications:
Changed exception message to "FixedChannelPool was closed".
Result:
A tiny bit cleaner exception message.
Motivation:
ChannelReadHandler is used in tests added via f4d7e8de140048047299808bb7e707c15342b826. In the handler we verify the number of messages we receive per read() call but missed to sometimes reset the counter which resulted in exceptions.
Modifications:
Correctly reset read counter in all cases.
Result:
No more unexpected exceptions when running LocalChannel tests.
Motivation:
LocalChannel / LocalServerChannel did not respect read limits and just always read all of the messages.
Modifications:
- Correct respect MAX_MESSAGES_PER_READ settings
- Add unit tests
Result:
Fixes https://github.com/netty/netty/issues/7880.
Motivation:
Using a very huge delay when calling schedule(...) may cause an Selector error when calling select(...) later on. We should gaurd against such a big value.
Modifications:
- Add guard against a very huge value.
- Added tests.
Result:
Fixes [#7365]
Motivation:
We need to ensure we only reset readInProgress if the outboundBuffer is not empty as otherwise we may miss to call fireChannelRead(...) later on when using the LocalChannel.
Modifications:
Also check if the outboundBuffer is not empty before setting readInProgress to false again
Result:
Fixes https://github.com/netty/netty/issues/7855
Motivation:
Some `if` statements contains common parts that can be extracted.
Modifications:
Extract common parts from `if` statements.
Result:
Less code and bytecode. The code is simpler and more clear.
Motivation:
AbstractNioByteChannel will detect that the remote end of the socket has
been closed and propagate a user event through the pipeline. However if
the user has auto read on, or calls read again, we may propagate the
same user events again. If the underlying transport continuously
notifies us that there is read activity this will happen in a spin loop
which consumes unnecessary CPU.
Modifications:
- AbstractNioByteChannel's unsafe read() should check if the input side
of the socket has been shutdown before processing the event. This is
consistent with EPOLL and KQUEUE transports.
- add unit test with @normanmaurer's help, and make transports consistent with respect to user events
Result:
No more read spin loop in NIO when the channel is half closed.
Motivation:
Sometimes it is very convenient to remove the handler from pipeline without throwing the exception in case those handler doesn't exist in the pipeline.
Modification:
Added 3 overloaded methods to DefaultChannelPipeline, but not added to ChannelHandler due to back compatibility.
Result:
Fixes#7662
Motivation:
Our code was not correct in AbstractNioMessageChannel.closeOnReadError(....) which lead to the situation that we always tried to continue reading no matter what exception was thrown when using the NioServerSocketChannel. Also even on an IOException we should check if the Channel itself is still active or not and if not stop reading.
Modifications:
Fix closeOnReadError impl and added test.
Result:
Correctly stop reading on NioServerSocketChannel when error happens during read.
Motivation:
DefaultChannelGroup.contains(...) did one more instanceof check then needed.
Modifications:
Simplify contains(...) and remove one instanceof check.
Result:
Simplier and cheaper implementation.
Motivation:
Right now PendingWriteQueue.removeAndWriteAll collects all promises to
PromiseCombiner instance which sets listener to each given promise throwing
IllegalStateException on VoidChannelPromise which breaks while loop
and "reports" operation as failed (when in fact part of writes might be
actually written).
Modifications:
Check if the promise is not void before adding it to the PromiseCombiner
instance.
Result:
PendingWriteQueue.removeAndWriteAll succesfully writes all pendings
even in case void promise was used.
Motivation:
The flush task is currently using flush() which will have the affect of have the flush traverse the whole ChannelPipeline and also flush messages that were written since we gave up flushing. This is not really correct as we should only continue to flush messages that were flushed at the point in time when the flush task was submitted for execution if the user not explicit call flush() by him/herself.
Modification:
Call *Unsafe.flush0() via the flush task which will only continue flushing messages that were marked as flushed before.
Result:
More correct behaviour when the flush task is used.
Motivation:
b215794de31f28355e4469fcc04782f55076c80c recently introduced a change in behavior where writeSpinCount provided a limit for how many write operations were attempted per flush operation. However when the write quantum was meet the selector write flag was not cleared, and the channel unsafe flush0 method has an optimization which prematurely exits if the write flag is set. This may lead to no write progress being made under the following scenario:
- flush is called, but the socket can't accept all data, we set the write flag
- the selector wakes us up because the socket is writable, we write data and use the writeSpinCount quantum
- we then schedule a flush() on the EventLoop to execute later, however it the flush0 optimization prematurely exits because the write flag is still set
In this scenario the socket is still writable so the EventLoop may never notify us that the socket is writable, and therefore we may never attempt to flush data to the OS.
Modifications:
- When the writeSpinCount quantum is exceeded we should clear the selector write flag
Result:
Fixes https://github.com/netty/netty/issues/7729
Motivation:
NioDatagramChannel attempts to unpack a AddressedEnvelope and unconditionally uses internalNioBuffer. However if the ByteBuf is a CompositeByteBuf with more than 1 components, the write will fail and throw an exception.
Modifications:
- NioDatagramChannel should check the nioBufferCount before attempting
to use internalNioBuffer
Result:
No more failure to write UDP packets on NIO when a CompositeByteBuf is
used.
Motivation:
Reflective setAccessible(true) will produce scary warnings on the console when using java9+, while netty still works. That said users may feel uncomfortable with these warnings, we should not try to do it by default when using java9+.
Modifications:
Add io.netty.tryReflectionSetAccessible system property which controls if setAccessible(...) will be used. By default it will bet set to false when using java9+.
Result:
Fixes [#7254].
Motivation:
The methods implement io.netty.util.concurrent.Future#cancel(boolean mayInterruptIfRunning) which actually ignored the param mayInterruptIfRunning.We need to add comments for the `mayInterruptIfRunning` param.
Modifications:
Add comments for the `mayInterruptIfRunning` param.
Result:
People who call the `cancel` method will be more clear about the effect of `mayInterruptIfRunning` param.
Motivation:
When VoidChannelPromise.unvoid() was called we created a new ChannelFutureListener everytime. This is not needed as its stateless.
Modifications:
Reuse the ChannelFutureListener.
Result:
Less object allocations
Motiviation:
DefaultChannelPipeline and AbstractChannelHandlerContext maintain state
which indicates if a ChannelHandler should be invoked or not. However
the state is updated to allow the handler to be invoked only after the
handlerAdded method completes. If the handlerAdded method generates
events which may result in other methods being invoked on that handler
they will be missed.
Modifications:
- DefaultChannelPipeline should set the state before calling
handlerAdded
Result:
DefaultChannelPipeline will allow events to be processed during the
handlerAdded process.
Motivation:
We should fail fast when DefaultChannelPromise is constructed with null as Channel as otherwise it will fail with a NPE once we call setSuccess / setFailure.
Modifications:
Add null check and test.
Result:
Fail fast.
Motivation:
Will allow easy removal of deprecated methods in future.
Modification:
Replaced ctx.attr(), ctx.hasAttr() with ctx.channel().attr(), ctx.channel().hasAttr().
Result:
No deprecated ctx.attr(), ctx.hasAttr() methods usage.
Motivation:
As shown in issues it is sometimes hard to understand why a leak was reported when the user just calles EmbeddedChannel.readInbound() / EmbeddedChannel.readOutbound() and drop the message on the floor.
Modifications:
Add a hint before handover the message to the user and transfer the ownership.
Result:
Easier debugging of leaks caused by EmbeddedChannel.read*().
Motivation :
Avoid unnecessary array allocation when using the function with varargs in the DefaultChannelPipeline class.
Modifications :
Added addLast and addFirst overloaded methods with 1 handler instead of varargs.
Result :
No array allocation when using simple construction like pipeline.addLast(new Handler());
Motivation
There is currently no way to enforce the position of a handler in a ChannelPipeline and assume you wanted to write something like a custom Channel type that acts as a proxy between two other Channels.
ProxyChannel(Channel client, Channel server) {
client calls write(msg) -> server.write(msg)
client calls flush() -> server.flush()
server calls fireChannelRead(msg) -> client.write(msg)
server calls fireChannelReadComplete() -> client.flush()
}
In order to make it work reliably one needs to be able to scoop up the various events at the head and tail of the pipeline. The head side of the pipeline is covered by Unsafe and it's also relatively safe to count on the user to not use the addFirst() method to manipulate the pipeline. The tail side is always at a risk of getting broken because addLast() is the goto method to add handlers.
Modifications
Adding a few extra methods to DefaultChannelPipeline that expose some of the events that reach the pipeline's TailContext.
Result
Fixes#7484
* FIX: force a read operation for peer instead of self
Motivation:
When A is in `writeInProgress` and call self close, A should
`finishPeerRead` for B(A' peer).
Modifications:
Call `finishPeerRead` with peer in `LocalChannel#doClose`
Result:
Clear confuse of code logic
* FIX: preserves order of close after write in same event loop
Motivation:
If client and server(client's peer channel) are in same event loop, client writes data to
server in `ChannelActive`. Server receives the data and write it
back. The client's read can't be triggered becasue client's
`ChannelActive` is not finished at this point and its `readInProgress`
is false. Then server closes itself, it will also close the client's
channel. And client has no chance to receive the data.
Modifications:
1. Add a test case to demonstrate the problem
2. When `doClose` peer, we always call
`peer.eventLoop().execute()` and `registerInProgress` is not needed.
3. Remove test case
`testClosePeerInWritePromiseCompleteSameEventLoopPreservesOrder`. This
test case can't pass becasue of this commit. IMHO, I think it is OK,
becasue it is reasonable that the client flushes the data to socket,
then server close the channel without received the data.
4. For mismatch test in SniClientTest, the client should receive server's alert before closed(caused by server's close)
Result:
The problem is gone.
Motivation:
The writeSpinCount currently loops over the same buffer, gathering
write, file write, or other write operation multiple times but will
continue writing until there is nothing left or the OS doesn't accept
any data for that specific write. However if the OS keeps accepting
writes there is no way to limit how much time we spend on a specific
socket. This can lead to unfair consumption of resources dedicated to a
single socket.
We currently don't limit the amount of bytes we attempt to write per
gathering write. If there are many more bytes pending relative to the
SO_SNDBUF size we will end up building iov arrays with more elements
than can be written, which results in extra iteration, conditionals,
and book keeping.
Modifications:
- writeSpinCount should limit the number of system calls we make to
write data, instead of applying to individual write operations
- IovArray should support a maximum number of bytes
- IovArray should support composite buffers of greater than size 1024
- We should auto-scale the amount of data that we attempt to write per
gathering write operation relative to SO_SNDBUF and how much data is
successfully written
- The non-unsafe path should also support a maximum number of bytes,
and respect the IOV_MAX limit
Result:
Write resource consumption can be bounded and gathering writes have
a limit relative to the amount of data which can actually be accepted
by the socket.
Motivation:
If large amounts of data is being transferred it is difficult to correlate the amount we attempt to read vs the maximum amount that the OS will actually buffer and deliver to the application. For exmaple some OSes may dynicamlly update the SO_RCVBUF size or otherwise dynamically adjust how much data is delieved to the application. In these circumstances it can reduce latency to just call read() on the socket another time to see if there is really any data remaining instead of giving up the maxMessagesPerRead quantum and going back to the selector to read later.
Motifications:
- Add DefaultMaxMessagesRecvByteBufAllocator#respectMaybeMoreData which provides a way to ignore the maybeMoreData function which may not account for the current data pending, and if it does this maybe racy.
Result:
Option to always use the full maxMessagesPerRead quantum before going back to the selector.
Motivation:
SslHandler will do aggregation of writes by default in an attempt to improve goodput and reduce the number of discrete buffers which must be accumulated. However if aggregation is not possible then a CompositeByteBuf is used to accumulate multiple buffers. Using a CompositeByteBuf doesn't provide any of the benefits of better goodput and in the case of small + large writes (e.g. http/2 frame header + data) this can reduce the amount of data that can be passed to writev by about half. This has the impact of increasing latency as well as reducing goodput.
Modifications:
- SslHandler should prefer copying instead of using a CompositeByteBuf
Result:
Better goodput (and potentially improved latency) at the cost of copy operations.
Motivation:
AdaptiveRecvByteBufAllocator currently adjusts the ByteBuf allocation size guess when readComplete is called. However the default configuration for number of reads before readComplete is called is 16. This means that there will be 16 reads done before any adjustment is done. If there is a large amount of data pending AdaptiveRecvByteBufAllocator will be slow to adjust the allocation size guess. In addition to being slow the result of only updating the guess in readComplete means that we must go back to the selector and wait to be woken up again when data is ready to read. Going back to the selector is an expensive operations and can add significant latency if there is large amount of data pending to read.
Modifications:
- AdaptiveRecvByteBufAllocator should check on each read if a step up is necessary. The step down process is left unchanged and can be more gradual at the cost of potentially over allocating.
Result:
AdaptiveRecvByteBufAllocator increases the guess size during the read loop to reduce latency when large amounts of data is being read.
Motivation:
`FixedChannelPool` allows users to configure `acquireTimeoutMillis`
and expects given value to be greater or equal to zero when timeout
action is supplied. However, validation error message said that
value is expected to be greater or equal to one. Code performs
check against zero.
Modifications:
Changed error message to say that value greater or equal to
zero is expected. Added test to check that zero is an acceptable
value.
Result:
Exception with right error message is thrown.
Motivation:
AbstractCoalescingBufferQueue#add accounts for void promises, but AbstractCoalescingBufferQueue#addFirst does not. These methods should be consistent.
Modifications:
- AbstractCoalescingBufferQueue#addFirst should account for void promises and share code with AbstractCoalescingBufferQueue#add
Result:
More correct void promise handling in AbstractCoalescingBufferQueue.
complete
Motivation:
SslHandler removes a Buffer/Promise pair from
AbstractCoalescingBufferQueue when wrapping data. However it is possible
the SSLEngine will not consume the entire buffer. In this case
SslHandler adds the Buffer back to the queue, but doesn't add the
Promise back to the queue. This may result in the promise completing
immediately in finishFlush, and generally not correlating to the
completion of writing the corresponding Buffer
Modifications:
- AbstractCoalescingBufferQueue#addFirst should also support adding the
ChannelPromise
- In the event of a handshake timeout we should immediately fail pending
writes immediately to get a more accurate exception
Result:
Fixes https://github.com/netty/netty/issues/7378.
Motivation:
We need to set readPending to false when we detect a EOF while issue a read as otherwise we may not unregister from the Selector / Epoll / KQueue and so keep on receving wakeups.
The important bit is that we may even get a wakeup for a read event but will still will only be able to read 0 bytes from the socket, so we need to be very careful when we clear the readPending. This can happen because we generally using edge-triggered mode for our native transports and because of the nature of edge-triggered we may schedule an read event just to find out there is nothing left to read atm (because we completely drained the socket on the previous read).
Modifications:
Set readPending to false when EOF is detected.
Result:
Fixes [#7255].
Motivation:
HTTP/2 allows writes of 0 length data frames. However in some cases EMPTY_BUFFER is used instead of the actual buffer that was written. This may mask writes of released buffers or otherwise invalid buffer objects. It is also possible that if the buffer is invalid AbstractCoalescingBufferQueue will not release the aggregated buffer nor fail the associated promise.
Modifications:
- DefaultHttp2FrameCodec should take care to fail the promise, even if releasing the data throws
- AbstractCoalescingBufferQueue should release any aggregated data and fail the associated promise if something goes wrong during aggregation
Result:
More correct handling of invalid buffers in HTTP/2 code.
This reverts commit 413c7c2cd82e09dac481ea52ba2cb88ffcd58624 as it introduced an regression when edge-triggered mode is used which is true for our native transports by default. With 413c7c2cd82e09dac481ea52ba2cb88ffcd58624 included it was possible that we set readPending to false by mistake even if we would be interested in read more.
Motivation:
readPending is currently only set to false if data is delivered to the application, however this may result in duplicate events being received from the selector in the event that the socket was closed.
Modifications:
- We should set readPending to false before each read attempt for all
transports besides NIO.
- Based upon the Javadocs it is possible that NIO may have spurious
wakeups [1]. In this case we should be more cautious and only set
readPending to false if data was actually read.
[1] https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectionKey.html
That a selection key's ready set indicates that its channel is ready for some operation category is a hint, but not a guarantee, that an operation in such a category may be performed by a thread without causing the thread to block.
Result:
Notification from the selector (or simulated events from kqueue/epoll ET) in the event of socket closure.
Fixes https://github.com/netty/netty/issues/7255
Motivation:
A regression was introduced in 86e653e which had the effect that the writability was not updated for a Channel while queueing data in the SslHandler.
Modifications:
- Factor out code that will increment / decrement pending bytes and use it in AbstractCoalescingBufferQueue and PendingWriteQueue
- Add test-case
Result:
Channel writability changes are triggered again.
Motivation:
Without a 'serialVersionUID' field, any change to a class will make
previously serialized versions unreadable.
Modifications:
Add missed 'serialVersionUID' field for all Serializable
classes.
Result:
Proper deserialization of previously serialized objects.
Motivation:
There are many @SuppressWarnings("unchecked") in the code for the same purpose that we want to do this return:
@SuppressWarnings("unchecked")
public B someMethod() {
......
return (B) this;
}
Modification:
Add a method self() and reuse in all these return lines:
@SuppressWarnings("unchecked")
private B self() {
return (B) this;
}
Result:
Then only one @SuppressWarnings("unchecked") left in the code.
Motivation:
When SO_LINGER is used we run doClose() on the GlobalEventExecutor by default so we need to ensure we schedule all code that needs to be run on the EventLoop on the EventLoop in doClose. Beside this there are also threading issues when calling shutdownOutput(...)
Modifications:
- Schedule removal from EventLoop to the EventLoop
- Correctly handle shutdownOutput and shutdown in respect with threading-model
- Add unit tests
Result:
Fixes [#7159].
Motivation:
A `DefaultChannelId` has final `hashCode` field calculated in the constructor. We can use it in `equals` to the fast return for different objects.
Modifications:
Use `hashCode` field in `DefaultChannelId.equals()`.
Result:
Fast `equals` on negative scenarios.
Motivation:
We should not log by default if the promise is a VoidChannelPromise as its try* methods will always return false.
Modifications:
Do an instanceof check to determine if we should log or not by default
Result:
No more noise in the logs when using a VoidChannelPromise.
Motivation:
If AutoClose is false and there is a IoException then AbstractChannel will not close the channel but instead just fail flushed element in the ChannelOutboundBuffer. AbstractChannel also notifies of writability changes, which may lead to an infinite loop if the peer has closed its read side of the socket because we will keep accepting more data but continuously fail because the peer isn't accepting writes.
Modifications:
- If the transport throws on a write we should acknowledge that the output side of the channel has been shutdown and cleanup. If the channel can't accept more data because it is full, and still healthy it is not expected to throw. However if the channel is not healthy it will throw and is not expected to accept any more writes. In this case we should shutdown the output for Channels that support this feature and otherwise just close.
- Connection-less protocols like UDP can remain the same because the channel may disconnected temporarily.
- Make sure AbstractUnsafe#shutdownOutput is called because the shutdown on the socket may throw an exception.
Result:
More correct handling of write failure when AutoClose is false.
Motivation:
ShutdownOutput now fails all pending writes in the ChannelOutboundBuffer and sets it to null. However the Close code path uses the ChannelOutboundBuffer as an indication that the close operation is in progress and exits early and will not call doClose. This will lead to the Channel not actually being fully closed.
Bug introduced by 237a4da1b76ef7f303eca8f6ec8539efc9fe4d26
Modifications:
- AbstractChannel#close shouldn't exit early just because outboundBuffer is null, and instead should use additional state closeInitiated to avoid duplicate close operations
Result:
AbstractChannel#close(..) after AbstractChannel#shutdownOutbound() will still invoke doClose and cleanup Channel state.