Motivation:
Custom Netty ThreadLocalRandom and ThreadLocalRandomProvider classes are no longer needed and can be removed.
Modification:
Remove own ThreadLocalRandom
Result:
Less code to maintain
Motivation:
We can use the diamond operator these days.
Modification:
Use diamond operator whenever possible.
Result:
More modern code and less boiler-plate.
Motivation:
When the ECS source prefix length is not a mutiple of 8, the last byte the address inside the
ECS OPT record is not padded properly.
Modifications:
DefaultDnsRecordEncoder.padWithZeros(...) was modified to add padding from the least
significant bits.
Result:
ECS encoding bug fixed.
Motivation:
We have our own ThreadLocalRandom implementation to support older JDKs . That said we should prefer the JDK provided when running on JDK >= 7
Modification:
Using ThreadLocalRandom implementation of the JDK when possible.
Result:
Make use of JDK implementations when possible.
Motivation:
Currently Netty does not wrap socket connect, bind, or accept
operations in doPrivileged blocks. Nor does it wrap cases where a dns
lookup might happen.
This prevents an application utilizing the SecurityManager from
isolating SocketPermissions to Netty.
Modifications:
I have introduced a class (SocketUtils) that wraps operations
requiring SocketPermissions in doPrivileged blocks.
Result:
A user of Netty can grant SocketPermissions explicitly to the Netty
jar, without granting it to the rest of their application.
Motivation:
8cf90f0512 switch a duplicate opreration to a slice operation. Typically this would be fine but DNS supports a compression (https://www.ietf.org/rfc/rfc1035 4.1.4. Message compression) where the payload contains absolute indexes which refer back to previously referenced content. Using a slice will break the ability for the indexes in the payload to correctly self reference to the index of the originial payload, and thus decoding may fail.
Modifications:
- Use duplicate instead of slice so DNS message compression and index references are preserved.
Result:
Fixes DefaultDnsRecordDecoder regression
Motivation:
RFC7871 defines an extension which allows to request responses for a given subset.
Modifications:
- Add DnsOptPseudoRrRecord which can act as base class for extensions based on EDNS(0) as defined in RFC6891
- Add DnsOptEcsRecord to support the Client Subnet in DNS Queries extension
- Add tests
Result:
Client Subnet in DNS Queries extension is now supported.
Motivation:
We need to not change the original writerIndex when decode a DnsPtrRecord as otherwise we will not be able to decode other records that follow it.
Modifications:
Slice the data out and so not increase the writerIndex.
Result:
No more problems when decoding.
Motivation:
- The decoded name should always end with a dot (.), but we currently
strip it, which is incorrect.
- (O) 0 -> "."
- (X) 0 -> ""
- (O) 5 netty 2 io 0 -> "netty.io."
- (X) 5 netty 2 io 0 -> "netty.io"
- The encoded name should end with a null-label, which is a label whose
length is 0, but we currently append an extra NUL, causing FORMERR(1)
on a strict DNS server:
- (O) . -> 0
- (X) . -> 0 0
- (O) netty.io. -> 5 netty 2 io 0
- (X) netty.io. -> 5 netty 2 io 0 0
Modifications:
- Make sure to append '.' when decoding a name.
- Improve index checks so that the decoder can raise
CorruptFrameException instead of IIOBE
- Do not encode extra NUL
- Add more tests
Result:
Robustness and correctness
Motivation:
Zero-length names needs to be "prefixed" by the length as well when encoded into a ByteBuf. Also some servers not correctly prefix these so we should ensure we can workaround this and even decode in such case.
Modifications:
- Always encode the length of the name into the ByteBuf even if its zero-length.
- If there are no readable bytes for the name just asume its an empty name to workaround dns servers that not fully respect the RFC.
Result:
Correctly encode zero-length names and be able to decode empty names even when the rfc is not strictly followed.
Motivation:
We need to handle the trailing dot in the correct manner when creating DNS questions and responses.
Modifications:
- Add a trailing dot if not given to the hostname when construct a AbstractDnsRecord (this is the same as dig does).
Result:
Correctly handle trailing dots.
Motivation:
Domain name labels must be converted to ASCII and not be longer then 63 chars.
Modifications:
Correctly convert to ASCII which also will enforce the 63 chars length.
Result:
Correctly guard against invalid input.
Motiviation:
The current read loops don't fascilitate reading a maximum amount of bytes. This capability is useful to have more fine grain control over how much data is injested.
Modifications:
- Add a setMaxBytesPerRead(int) and getMaxBytesPerRead() to ChannelConfig
- Add a setMaxBytesPerIndividualRead(int) and getMaxBytesPerIndividualRead to ChannelConfig
- Add methods to RecvByteBufAllocator so that a pluggable scheme can be used to control the behavior of the read loop.
- Modify read loop for all transport types to respect the new RecvByteBufAllocator API
Result:
The ability to control how many bytes are read for each read operation/loop, and a more extensible read loop.
Motivation:
There are various known issues in netty-codec-dns:
- Message types are not interfaces, which can make it difficult for a
user to implement his/her own message implementation.
- Some class names and field names do not match with the terms in the
RFC.
- The support for decoding a DNS record was limited. A user had to
encode and decode by him/herself.
- The separation of DnsHeader from DnsMessage was unnecessary, although
it is fine conceptually.
- Buffer leak caused by DnsMessage was difficult to analyze, because the
leak detector tracks down the underlying ByteBuf rather than the
DnsMessage itself.
- DnsMessage assumes DNS-over-UDP.
- To send an EDNS message, a user have to create a new DNS record class
instance unnecessarily.
Modifications:
- Make all message types interfaces and add default implementations
- Rename some classes, properties, and constants to match the RFCs
- DnsResource -> DnsRecord
- DnsType -> DnsRecordType
- and many more
- Remove DnsClass and use an integer to support EDNS better
- Add DnsRecordEncoder/DnsRecordDecoder and their default
implementations
- DnsRecord does not require RDATA to be ByteBuf anymore.
- Add DnsRawRecord as the catch-all record type
- Merge DnsHeader into DnsMessage
- Make ResourceLeakDetector track AbstractDnsMessage
- Remove DnsMessage.sender/recipient properties
- Wrap DnsMessage with AddressedEnvelope
- Add DatagramDnsQuest and DatagramDnsResponse for ease of use
- Rename DnsQueryEncoder to DatagramDnsQueryEncoder
- Rename DnsResponseDecoder to DatagramDnsResponseDecoder
- Miscellaneous changes
- Add StringUtil.TAB
Result:
- Cleaner APi
- Can support DNS-over-TCP more easily in the future
- Reduced memory footprint in the default DnsQuery/Response
implementations
- Better leak tracking for DnsMessages
- Possibility to introduce new DnsRecord types in the future and provide
full record encoder/decoder implementation.
- No unnecessary instantiation for an EDNS pseudo resource record
Motivation:
There were two buffer leaks in the codec-dns.
Modifications:
- Fix buffer leak in DnsResponseTest.readResponseTest()
- Correctly release DnsResources on Exception
Result:
No more buffer leaks in the codec-dns module.
Related issue: #2688
- DnsClass and DnsType
- Make DnsClass and DnsType implement Comparable
- Optimize the message generation of IllegalArgumentException,
by pre-populating the list of the expected parameters
- Move the static methods up
- Relax the validation rule of DnsClass so that a user can define a
CLASS which is not listed in the RFC 1035
- valueOf(int) does not throw IllegalArgumentException anymore as long
as the specified value is an unsigned short.
- Rename create() and forName() to valueOf() so that they look like a
real enum
- Rename type() and clazz() to intValue() so that they conform to our
naming convention
- Add missing null checks in DnsEntry
Motivation:
DNS class and type were represented as integers rather than an enum or a
similar dedicated value type. This can be a potential source of a
parameter order bug which might be difficult to track down.
Modifications:
Add DnsClass and DnsType to replace integer parameters
Result:
Type safety and less error-proneness
Motivation:
When decoding the NAME field in a DNS Resource Record, DnsResponseDecoder
can raise a NullPointerException if the NAME field contains a loop.
Modification:
Instead of raising an NPE, raise CorruptedFrameException so that the
exception itself has meaning.
Result:
Less confusing when a malformed DNS RR is received
Motivation:
NullPointerException is raised when a DNS response conrains a resource
record whose NAME is empty, which is the case for the authority section.
Modification:
Allow an empty name for DnsEntry. Only disallow an empty name for
DnsQuestion.
Result:
Fixes#2686
Motivation:
DNS packets that contain pointers in a loop will cause
DnsResponseDecoder.readName() to infinite loop.
Modifications:
Fixed DnsResponseDecoder.readName() to detect when packets have loops
and return null instead.
Result:
It is no longer possible to cause Netty to infinite loop by sending it malformed
DNS packets with a loop.
Motivation:
As part of GSOC 2013 we had @mbakkar working on a DNS codec but did not integrate it yet as it needs some cleanup. This commit is based on @mbakkar's work and provide the codec for DNS.
Modifications:
Add DNS codec
Result:
Reusable DNS codec will be included in netty.
This PR also includes a AsynchronousDnsResolver which allows to resolve DNS entries in a non blocking way by make use
of the dns codec and netty transport itself.