Motiviation:
Linux provides the TCP_NOTSENT_LOWAT socket option. This can be used to control how much unsent data is queued in the tcp kernel buffers. This can be important when application level protocols (SPDY, HTTP/2) have their own priority mechanism and don't want data queued in the kernel.
Modifications:
- The epoll module will have an additional socket option TCP_NOTSENT_LOWAT
- There will be JNI methods to control the underlying linux socket option mechanism
Result:
Linux EPOLL module exposes the TCP_NOTSENT_LOWAT socket option.
Motivation:
Due a bug we not correctly handled connection refused errors and so failed the connect promise with the wrong exception.
Beside this we some times even triggered fireChannelActive() which is not correct.
Modifications:
- Add testcase
- correctly detect connect errors
Result:
Correct and consistent handling.
Motivation:
Linux supports splice(...) to transfer data from one filedescriptor to another without
pass data through the user-space. This allows to write high-performant proxy code or to stream
stuff from the socket directly the the filesystem.
Modification:
Add AbstractEpollStreamChannel.spliceTo(...) method to support splice(...) system call
Result:
Splice is now supported when using the native linux transport.
Conflicts:
transport-native-epoll/src/main/java/io/netty/channel/epoll/AbstractEpollStreamChannel.java
Motivation:
During 6b941e9bdb I introduced a regression that could cause an IllegalStateException.
A non-proper fix was commited as part of #3443. This commit add a proper fix.
Modifications:
Remove FileDescriptor.INVALID and add FileDescriptor.isOpen() as replacement. Once FileDescriptor.close() is called isOpen() will return false.
Result:
No more IllegalStateException caused by a close channel.
Motivation:
There is a small race in the native transport where an accept(...) may success but a later try to obtain the remote address from the fd may fail is the fd is already closed.
Modifications:
Let accept(...) directly set the remote address.
Result:
No more race possible.
Motivation:
As we plan to have other native transports soon (like a kqueue transport) we should move unix classes/interfaces out of the epoll package so we
introduce other implementations without breaking stuff before the next stable release.
Modifications:
Create a new io.netty.channel.unix package and move stuff over there.
Result:
Possible to introduce other native impls beside epoll.
Motivation:
Sometimes it's useful to be able to create a Epoll*Channel from an existing file descriptor. This is especially helpful if you integrade some c/jni code.
Modifications:
- Add extra constructor to Epoll*Channel implementations that take a FileDescriptor as an argument
- Make Rename EpollFileDescriptor to NativeFileDescriptor and make it public
- Also ensure we obtain the correct remote/local address when create a Channel from a FileDescriptor
Result:
It's now possible to create a FileDescriptor and instance a Epoll*Channel via it.
Motiviation:
When using domain sockets on linux it is supported to recv and send file descriptors. This can be used to pass around for example sockets.
Modifications:
- Add support for recv and send file descriptors when using EpollDomainSocketChannel.
- Allow to obtain the file descriptor for an Epoll*Channel so it can be send via domain sockets.
Result:
recv and send of file descriptors is supported now.
Motivation:
Using Unix Domain Sockets can be very useful when communication should take place on the same host and has less overhead then using loopback. We should support this with the native epoll transport.
Modifications:
- Add support for Unix Domain Sockets.
- Adjust testsuite to be able to reuse tests.
Result:
Unix Domain Sockets are now support when using native epoll transport.
Motivation:
On Linux, you can gather various metrics using getsockopt(..., TCP_INFO,
...).
Modifications:
Add EpollSocketChannel.tcpInfo() which returns EpollTcpInfo that exposes
all metrics exposed via getsockopt(..., TCP_INFO, ...)
Result:
TCP_INFO support implemented
Motivation:
Everytime a new connection is accepted via EpollSocketServerChannel it will create a new EpollSocketChannel that needs to get the remote and local addresses in the constructor. The current implementation uses new InetSocketAddress(String, int) to create these. This is quite slow due the implementation in oracle and openjdk.
Modifications:
Encode all needed informations into a byte array before return from jni layer and then use new InetSocketAddress(InetAddress, int) to create the socket addresses. This allows to create the InetAddress via a byte[] and so reduce the overhead, this is done either by using InetAddress.getByteAddress(byte[]) or by Inet6Address.getByteAddress(String, byte[], int).
Result:
Reduce performance overhead while accept new connections with native transport
Motivation:
So far, our TLS renegotiation test did not test changing cipher suite
during renegotiation explicitly.
Modifications:
- Switch the cipher suite during renegotiation
Result:
We are now sure the cipher suite change works.
Related: #3125
Motivation:
We did not expose a way to initiate TLS renegotiation and to get
notified when the renegotiation is done.
Modifications:
- Add SslHandler.renegotiate() so that a user can initiate TLS
renegotiation and get the future that's notified on completion
- Make SslHandler.handshakeFuture() return the future for the most
recent handshake so that a user can get the future of the last
renegotiation
- Add the test for renegotiation to SocketSslEchoTest
Result:
Both client-initiated and server-initiated renegotiations are now
supported properly.
Motivation:
So far, we relied on the domain name resolution mechanism provided by
JDK. It served its purpose very well, but had the following
shortcomings:
- Domain name resolution is performed in a blocking manner.
This becomes a problem when a user has to connect to thousands of
different hosts. e.g. web crawlers
- It is impossible to employ an alternative cache/retry policy.
e.g. lower/upper bound in TTL, round-robin
- It is impossible to employ an alternative name resolution mechanism.
e.g. Zookeeper-based name resolver
Modification:
- Add the resolver API in the new module: netty-resolver
- Implement the DNS-based resolver: netty-resolver-dns
.. which uses netty-codec-dns
- Make ChannelFactory reusable because it's now used by
io.netty.bootstrap, io.netty.resolver.dns, and potentially by other
modules in the future
- Move ChannelFactory from io.netty.bootstrap to io.netty.channel
- Deprecate the old ChannelFactory
- Add ReflectiveChannelFactory
Result:
It is trivial to resolve a large number of domain names asynchronously.
Motivation:
At the moment there is no simple way for a user to check if the native epoll transport can be used on the running platform. Thus the user can only try to instance it and catch any exception and fallback to nio transport.
Modification:
Add Epoll.isAvailable() which allows to check if epoll can be used.
Result:
User can easily check if epoll transport can be used or not
Motivation:
Some users already use an SSLEngine implementation in finagle-native. It
wraps OpenSSL to get higher SSL performance. However, to take advantage
of it, finagle-native must be compiled manually, and it means we cannot
pull it in as a dependency and thus we cannot test our SslHandler
against the OpenSSL-based SSLEngine. For an instance, we had #2216.
Because the construction procedures of JDK SSLEngine and OpenSslEngine
are very different from each other, we also need to provide a universal
way to enable SSL in a Netty application.
Modifications:
- Pull netty-tcnative in as an optional dependency.
http://netty.io/wiki/forked-tomcat-native.html
- Backport NativeLibraryLoader from 4.0
- Move OpenSSL-based SSLEngine implementation into our code base.
- Copied from finagle-native; originally written by @jpinner et al.
- Overall cleanup by @trustin.
- Run all SslHandler tests with both default SSLEngine and OpenSslEngine
- Add a unified API for creating an SSL context
- SslContext allows you to create a new SSLEngine or a new SslHandler
with your PKCS#8 key and X.509 certificate chain.
- Add JdkSslContext and its subclasses
- Add OpenSslServerContext
- Add ApplicationProtocolSelector to ensure the future support for NPN
(NextProtoNego) and ALPN (Application Layer Protocol Negotiation) on
the client-side.
- Add SimpleTrustManagerFactory to help a user write a
TrustManagerFactory easily, which should be useful for those who need
to write an alternative verification mechanism. For example, we can
use it to implement an unsafe TrustManagerFactory that accepts
self-signed certificates for testing purposes.
- Add InsecureTrustManagerFactory and FingerprintTrustManager for quick
and dirty testing
- Add SelfSignedCertificate class which generates a self-signed X.509
certificate very easily.
- Update all our examples to use SslContext.newClient/ServerContext()
- SslHandler now logs the chosen cipher suite when handshake is
finished.
Result:
- Cleaner unified API for configuring an SSL client and an SSL server
regardless of its internal implementation.
- When native libraries are available, OpenSSL-based SSLEngine
implementation is selected automatically to take advantage of its
performance benefit.
- Examples take advantage of this modification and thus are cleaner.
Motivation:
With SO_REUSEPORT it is possible to bind multiple sockets to the same port and so handle the processing of packets via multiple threads. This allows to handle DatagramPackets with more then one thread on the same port and so gives better performance.
Modifications:
Expose EpollDatagramChannelConfig.setReusePort(..) and isReusePort()
Result:
Allow to bind multiple times to the same local address and so archive better performance.
Motivation:
There is currently no epoll based DatagramChannel. We should add one to make the set of provided channels complete and also to be able to offer better performance compared to the NioDatagramChannel once SO_REUSEPORT is implemented.
Modifications:
Add implementation of DatagramChannel which uses epoll. This implementation does currently not support multicast yet which will me implemented later on. As most users will not use multicast anyway I think it is fair to just add the EpollDatagramChannel without the support for now. We shipped NioDatagramChannel without support earlier too ...
Result:
Be able to use EpollDatagramChannel for max. performance on linux
Motivation:
In linux kernel 3.9 a new featured named SO_REUSEPORT was introduced which allows to have multiple sockets bind to the same port and so handle the accept() of new connections with multiple threads. This can greatly improve the performance when you not to accept a lot of connections.
Modifications:
Implement SO_REUSEPORT via JNI
Result:
Be able to use the SO_REUSEPORT feature when using the EpollServerSocketChannel
Motivation:
The epoll testsuite tests the epoll transport only against itself (i.e. epoll x epoll only). We should test the epoll transport also against the well-tested NIO transport, too.
Modifications:
- Make SocketTestPermutation extensible and reusable so that the epoll testsuite can take advantage of it.
- Rename EpollTestUtils to EpollSocketTestPermutation and make it extend SocketTestPermutation.
- Overall clean-up of SocketTestPermutation
- Use Arrays.asList() for simplicity
- Add combo() method to remove code duplication
Result:
The epoll transport is now also tested against the NIO transport. SocketTestPermutation got cleaner.
Motivation:
Previous commit (2de65e25e9) introduced a regression that makes the epoll testsuite fail with an 'incompatible event loop' error.
Modifications:
Use the correct event loop type.
Result:
Build doesn't fail anymore.
Motivation:
We are seeing EpollSocketSslEchoTest does not finish itself while its I/O thread is busy. Jenkins should have terminated them when the global build timeout reaches, but Jenkins seems to fail to do so. What's more interesting is that Jenkins will start another job before the EpollSocketSslEchoTest is terminated, and Linux starts to oom-kill them, impacting the uptime of the CI service.
Modifications:
- Set timeout for all test cases in SocketSslEchoTest so that all SSL tests terminate themselves when they take too long.
- Fix a bug where the epoll testsuite uses non-daemon threads which can potentially prevent JVM from quitting.
- (Cleanup) Separate boss group and worker group just like we do for NIO/OIO transport testsuite.
Result:
Potentially more stable CI machine.
This transport use JNI (C) to directly make use of epoll in Edge-Triggered mode for maximal performance on Linux. Beside this it also support using TCP_CORK and produce less GC then the NIO transport using JDK NIO.
It only builds on linux and skip the build if linux is not used. The transport produce a jar which contains all needed .so files for 32bit and 64 bit. The user only need to include the jar as dependency as usually
to make use of it and use the correct classes.
This includes also some cleanup of @trustin