Motivation:
DefaultHttp2FrameWriter#writeData allocates a DataFrameHeader for each write operation. DataFrameHeader maintains internal state and allocates multiple slices of a buffer which is a maximum of 30 bytes. This 30 byte buffer may not always be necessary and the additional slice operations can utilize retainedSlice to take advantage of pooled objects. We can also save computation and object allocations if there is no padding which is a common case in practice.
Modifications:
- Remove DataFrameHeader
- Add a fast path for padding == 0
Result:
Less object allocation in DefaultHttp2FrameWriter
Motivation:
IPv4/6 validation methods use allocations, which can be avoided.
IPv4 parse method use StringTokenizer.
Modifications:
Rewriting IPv4/6 validation methods to avoid allocations.
Rewriting IPv4 parse method without use StringTokenizer.
Result:
IPv4/6 validation and IPv4 parsing faster up to 2-10x.
Motivation:
We currently don't have a native transport which supports kqueue https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2. This can be useful for BSD systems such as MacOS to take advantage of native features, and provide feature parity with the Linux native transport.
Modifications:
- Make a new transport-native-unix-common module with all the java classes and JNI code for generic unix items. This module will build a static library for each unix platform, and included in the dynamic libraries used for JNI (e.g. transport-native-epoll, and eventually kqueue).
- Make a new transport-native-unix-common-tests module where the tests for the transport-native-unix-common module will live. This is so each unix platform can inherit from these test and ensure they pass.
- Add a new transport-native-kqueue module which uses JNI to directly interact with kqueue
Result:
JNI support for kqueue.
Fixes https://github.com/netty/netty/issues/2448
Fixes https://github.com/netty/netty/issues/4231
Motivation:
As we provide our own SSLEngine implementation we should have benchmarks to compare it against JDK impl.
Modifications:
Add benchmarks for wrap / unwrap and handshake performance.
Result:
Benchmarks FTW.
Motivation:
It'd be usually good to use the latest library version.
Modification:
Bumped JMH to the latest version as of today.
Result:
Now we use JMH version 1.14.1 for our benchmark.
Motivation:
It is good to have used dependencies and plugins up-to-date to fix any undiscovered bug fixed by the authors.
Modification:
Scanned dependencies and plugins and carefully updated one by one.
Result:
Dependencies and plugins are up-to-date.
Motivation:
Before release 4.1.0.Final we should update all our dependencies.
Modifications:
Update dependencies.
Result:
Up-to-date dependencies used.
Motivation:
See https://github.com/netty/netty-build/issues/5
Modifications:
Add xml-maven-plugin to check indentation and fix violations
Result:
pom.xml will be checked in the PR build
Motivation:
The build fails on OSX, due to it trying to pull in an epoll specific OSX dependency. See #4409.
Modifications:
* move netty-transport-native-epoll to linux profile
* exclude Http2FrameWriterBenchmark from compiler
* include Http2FrameWriterBenchmark back only in linux profile (please check)
Result:
Build succeeds on OSX.
Motiviation:
Checking reference count on every access on a ByteBuf can have some big performance overhead depending on how the access pattern is. If the user is sure that there are no reference count errors on his side it should be possible to disable the check and so gain the max performance.
Modification:
- Add io.netty.buffer.bytebuf.checkAccessible system property which allows to disable the checks. Enabled by default.
- Add microbenchmark
Result:
Increased performance for operations on the ByteBuf.
Motivation:
The latest netty-tcnative fixes a bug in determining the version of the runtime openssl lib. It also publishes an artificact with the classifier linux-<arch>-fedora for fedora-based systems.
Modifications:
Modified the build files to use the "-fedora" classifier when appropriate for tcnative. Care is taken, however, to not change the classifier for the native epoll transport.
Result:
Netty is updated the the new shiny netty-tcnative.
Motivation:
Allows for running benchmarks from built jars which is useful in development environments that only take released artifacts.
Modifications:
Move benchmarks into 'main' from 'test'
Add @State annotations to benchmarks that are missing them
Fix timing issue grabbing context during channel initialization
Result:
Users can run benchmarks more easily.
Motivation:
The Http2FrameWriterBenchmark JMH harness class name was not updated for the JVM arguments. The number of forks is 0 which means the JHM will share a JVM with the benchmarks. Sharing the JVM may lead to less reliable benchmarking results and as doesn't allow for the command line arguments to be applied for each benchmark.
Modifications:
- Update the JMH version from 0.9 to 1.7.1. Benchmarks wouldn't run on old version.
- Increase the number of forks from 0 to 1.
- Remove allocation of environment from static and cleanup AfterClass to using the Setup and Teardown methods. The forked JVM would not shut down correctly otherwise (and wait for 30+ seconds before timeing out).
Result:
Benchmarks that run as intended.
Motivation:
A microbenchmark will be useful to get a baseline for performance.
Modifications:
- Introduce a new microbenchmark which tests the Http2DefaultFrameWriter.
- Allow benchmarks to run without thread context switching between JMH and Netty.
Result:
Microbenchmark exists to test performance.
Motivation:
When Netty runs in a managed environment such as web application server,
Netty needs to provide an explicit way to remove the thread-local
variables it created to prevent class loader leaks.
FastThreadLocal uses different execution paths for storing a
thread-local variable depending on the type of the current thread.
It increases the complexity of thread-local removal.
Modifications:
- Moved FastThreadLocal and FastThreadLocalThread out of the internal
package so that a user can use it.
- FastThreadLocal now keeps track of all thread local variables it has
initialized, and calling FastThreadLocal.removeAll() will remove all
thread-local variables of the caller thread.
- Added FastThreadLocal.size() for diagnostics and tests
- Introduce InternalThreadLocalMap which is a mixture of hard-wired
thread local variable fields and extensible indexed variables
- FastThreadLocal now uses InternalThreadLocalMap to implement a
thread-local variable.
- Added ThreadDeathWatcher.unwatch() so that PooledByteBufAllocator
tells it to stop watching when its thread-local cache has been freed
by FastThreadLocal.removeAll().
- Added FastThreadLocalTest to ensure that removeAll() works
- Added microbenchmark for FastThreadLocal and JDK ThreadLocal
- Upgraded to JMH 0.9
Result:
- A user can remove all thread-local variables Netty created, as long as
he or she did not exit from the current thread. (Note that there's no
way to remove a thread-local variable from outside of the thread.)
- FastThreadLocal exposes more useful operations such as isSet() because
we always implement a thread local variable via InternalThreadLocalMap
instead of falling back to JDK ThreadLocal.
- FastThreadLocalBenchmark shows that this change improves the
performance of FastThreadLocal even more.