Commit Graph

61 Commits

Author SHA1 Message Date
Jakob Buchgraber
6fd0a0c55f Faster and more memory efficient headers for HTTP, HTTP/2, STOMP and SPYD. Fixes #3600
Motivation:

We noticed that the headers implementation in Netty for HTTP/2 uses quite a lot of memory
and that also at least the performance of randomly accessing a header is quite poor. The main
concern however was memory usage, as profiling has shown that a DefaultHttp2Headers
not only use a lot of memory it also wastes a lot due to the underlying hashmaps having
to be resized potentially several times as new headers are being inserted.

This is tracked as issue #3600.

Modifications:
We redesigned the DefaultHeaders to simply take a Map object in its constructor and
reimplemented the class using only the Map primitives. That way the implementation
is very concise and hopefully easy to understand and it allows each concrete headers
implementation to provide its own map or to even use a different headers implementation
for processing requests and writing responses i.e. incoming headers need to provide
fast random access while outgoing headers need fast insertion and fast iteration. The
new implementation can support this with hardly any code changes. It also comes
with the advantage that if the Netty project decides to add a third party collections library
as a dependency, one can simply plug in one of those very fast and memory efficient map
implementations and get faster and smaller headers for free.

For now, we are using the JDK's TreeMap for HTTP and HTTP/2 default headers.

Result:

- Significantly fewer lines of code in the implementation. While the total commit is still
  roughly 400 lines less, the actual implementation is a lot less. I just added some more
  tests and microbenchmarks.

- Overall performance is up. The current implementation should be significantly faster
  for insertion and retrieval. However, it is slower when it comes to iteration. There is simply
  no way a TreeMap can have the same iteration performance as a linked list (as used in the
  current headers implementation). That's totally fine though, because when looking at the
  benchmark results @ejona86 pointed out that the performance of the headers is completely
  dominated by insertion, that is insertion is so significantly faster in the new implementation
  that it does make up for several times the iteration speed. You can't iterate what you haven't
  inserted. I am demonstrating that in this spreadsheet [1]. (Actually, iteration performance is
  only down for HTTP, it's significantly improved for HTTP/2).

- Memory is down. The implementation with TreeMap uses on avg ~30% less memory. It also does not
  produce any garbage while being resized. In load tests for GRPC we have seen a memory reduction
  of up to 1.2KB per RPC. I summarized the memory improvements in this spreadsheet [1]. The data
  was generated by [2] using JOL.

- While it was my original intend to only improve the memory usage for HTTP/2, it should be similarly
  improved for HTTP, SPDY and STOMP as they all share a common implementation.

[1] https://docs.google.com/spreadsheets/d/1ck3RQklyzEcCLlyJoqDXPCWRGVUuS-ArZf0etSXLVDQ/edit#gid=0
[2] https://gist.github.com/buchgr/4458a8bdb51dd58c82b4
2015-08-04 17:12:24 -07:00
Scott Mitchell
a7713069a1 HttpObjectDecoder performance improvements
Motivation:
The HttpObjectDecoder is on the hot code path for the http codec. There are a few hot methods which can be modified to improve performance.

Modifications:
- Modify AppendableCharSequence to provide unsafe methods which don't need to re-check bounds for every call.
- Update HttpObjectDecoder methods to take advantage of new AppendableCharSequence methods.

Result:
Peformance boost for decoding http objects.
2015-07-29 23:26:26 -07:00
Scott Mitchell
9747ffe5fc HTTP/2 Flow Controller should use Channel.isWritable()
Motivation:
See #3783

Modifications:
- The DefaultHttp2RemoteFlowController should use Channel.isWritable() before attempting to do any write operations.
- The Flow controller methods should no longer take ChannelHandlerContext. The concept of flow control is tied to a connection and we do not support 1 flow controller keeping track of multiple ChannelHandlerContext.

Result:
Writes are delayed until isWritable() is true. Flow controller interface methods are more clear as to ChannelHandlerContext restrictions.
2015-07-16 14:38:48 -07:00
Louis Ryan
05ce33f5ca Make the flow-controllers write fewer, fatter frames to improve throughput.
Motivation:

Coalescing many small writes into a larger DATA frame reduces framing overheads on the wire and reduces the number of calls to Http2FrameListeners on the remote side.
Delaying the write of WINDOW_UPDATE until flush allows for more consumed bytes to be returned as the aggregate of consumed bytes is returned and not the amount consumed when the threshold was crossed.

Modifications:
- Remote flow controller no longer immediately writes bytes when a flow-controlled payload is enqueued. Sequential data payloads are now merged into a single CompositeByteBuf which are written when 'writePendingBytes' is called.
- Listener added to remote flow-controller which observes written bytes per stream.
- Local flow-controller no longer immediately writes WINDOW_UPDATE when the ratio threshold is crossed. Now an explicit call to 'writeWindowUpdates' triggers the WINDOW_UPDATE for all streams who's ratio is exceeded at that time. This results in
  fewer window updates being sent and more bytes being returned.
- Http2ConnectionHandler.flush triggers 'writeWindowUpdates' on the local flow-controller followed by 'writePendingBytes' on the remote flow-controller so WINDOW_UPDATES preceed DATA frames on the wire.

Result:
- Better throughput for writing many small DATA chunks followed by a flush, saving 9-bytes per coalesced frame.
- Fewer WINDOW_UPDATES being written and more flow-control bytes returned to remote side more quickly, thereby improving throughput.
2015-06-19 15:20:31 -07:00
Louis Ryan
a3cea186ce Have Http2LocalFlowController.consumeBytes indicate whether a WINDOW_UPDATE was written 2015-05-04 13:22:18 -07:00
Scott Mitchell
f812180c2d ByteString arrayOffset method
Motivation:
The ByteString class currently assumes the underlying array will be a complete representation of data. This is limiting as it does not allow a subsection of another array to be used. The forces copy operations to take place to compensate for the lack of API support.

Modifications:
- add arrayOffset method to ByteString
- modify all ByteString and AsciiString methods that loop over or index into the underlying array to use this offset
- update all code that uses ByteString.array to ensure it accounts for the offset
- add unit tests to test the implementation respects the offset

Result:
ByteString and AsciiString can represent a sub region of a byte[].
2015-04-24 18:54:01 -07:00
nmittler
70a2608325 Optimizing user-defined stream properties.
Motivation:

Streams currently maintain a hash map of user-defined properties, which has been shown to add significant memory overhead as well as being a performance bottleneck for lookup of frequently used properties.

Modifications:

Modifying the connection/stream to use an array as the storage of user-defined properties, indexed by the class that identifies the index into the array where the property is stored.

Result:

Stream processing performance should be improved.
2015-04-23 12:41:14 -07:00
Scott Mitchell
b426fb1618 Compile error introduced in ee9233d
Motivation:
Commit ee9233d introduced a compile error in microbench.

Modifications:
Fix compile error.

Result:
Code now builds.
2015-04-22 16:23:39 -07:00
Scott Mitchell
541137cc93 HTTP/2 Flow Controller interface updates
Motivation:
Flow control is a required part of the HTTP/2 specification but it is currently structured more like an optional item. It must be accessed through the property map which is time consuming and does not represent its required nature. This access pattern does not give any insight into flow control outside of the codec (or flow controller implementation).

Modifications:
1. Create a read only public interface for LocalFlowState and RemoteFlowState.
2. Add a LocalFlowState localFlowState(); and RemoteFlowState remoteFlowState(); to Http2Stream.

Result:
Flow control is not part of the Http2Stream interface. This clarifies its responsibility and logical relationship to other interfaces. The flow controller no longer must be acquired though a map lookup.
2015-04-20 20:02:02 -07:00
Scott Mitchell
2b8104c852 HTTP/2 Priority Tree Benchmark
Motivation:
There is no benchmark to measure the priority tree implementation performance.

Modifications:
Introduce a new benchmark which will populate the priority tree, and then shuffle parent/child links around.

Result:
A simple benchmark to get a baseline for the HTTP/2 codec's priority tree implementation.
2015-04-17 10:14:13 -07:00
Louis Ryan
f3fb77f4bc Have microbenchmarks produce a deployable artifact. Fix some minor miscellaneous issues.
Motivation:
Allows for running benchmarks from built jars which is useful in development environments that only take released artifacts.

Modifications:
Move benchmarks into 'main' from 'test'
Add @State annotations to benchmarks that are missing them
Fix timing issue grabbing context during channel initialization

Result:
Users can run benchmarks more easily.
2015-04-17 10:04:26 -07:00