Commit Graph

486 Commits

Author SHA1 Message Date
Scott Mitchell
63f5cdb0d5 ByteBuf#ensureWritable(int, boolean) should not throw
Motivation:
The javadocs for ByteBuf#ensureWritable(int, boolean) indicate that it should not throw, and instead the return code should indicate the result of the operation. Due to a bug in AbstractByteBuf it is possible for a resize to be attempted on a buffer that may exceed maxCapacity() and therefore throw.

Modifications:
- If there is not enough space in the buffer, and force is false, then a resize should not be attempted

Result:
AbstractByteBuf#ensureWritable(int, boolean) enforces the javadoc constraints and does not throw.
2017-05-09 00:12:25 -07:00
Jason Tedor
98beb777f8 Enable configuring available processors
Motivation:

In cases when an application is running in a container or is otherwise
constrained to the number of processors that it is using, the JVM
invocation Runtime#availableProcessors will not return the constrained
value but rather the number of processors available to the virtual
machine. Netty uses this number in sizing various resources.
Additionally, some applications will constrain the number of threads
that they are using independenly of the number of processors available
on the system. Thus, applications should have a way to globally
configure the number of processors.

Modifications:

Rather than invoking Runtime#availableProcessors, Netty should rely on a
method that enables configuration when the JVM is started or by the
application. This commit exposes a new class NettyRuntime for enabling
such configuraiton. This value can only be set once. Its default value
is Runtime#availableProcessors so that there is no visible change to
existing applications, but enables configuring either a system property
or configuring during application startup (e.g., based on settings used
to configure the application).

Additionally, we introduce the usage of forbidden-apis to prevent future
uses of Runtime#availableProcessors from creeping. Future work should
enable the bundled signatures and clean up uses of deprecated and
other forbidden methods.

Result:

Netty can be configured to not use the underlying number of processors,
but rather the constrained number of processors.
2017-04-23 10:31:17 +02:00
Norman Maurer
bf0beb772c Fix IllegalArgumentException when release a wrapped ByteBuffer on Java9
Motivation:

Unsafe.invokeCleaner(...) checks if the passed in ByteBuffer is a slice or duplicate and if so throws an IllegalArgumentException on Java9. We need to ensure we never try to free a ByteBuffer that was provided by the user directly as we not know if its a slice / duplicate or not.

Modifications:

Never try to free a ByteBuffer that was passed into UnpooledUnsafeDirectByteBuf constructor by an user (via Unpooled.wrappedBuffer(....)).

Result:

Build passes again on Java9
2017-04-20 19:19:11 +02:00
Nikolay Fedorovskikh
0692bf1b6a fix the typos 2017-04-20 04:56:09 +02:00
Norman Maurer
e482d933f7 Add 'io.netty.tryAllocateUninitializedArray' system property which allows to allocate byte[] without memset in Java9+
Motivation:

Java9 added a new method to Unsafe which allows to allocate a byte[] without memset it. This can have a massive impact in allocation times when the byte[] is big. This change allows to enable this when using Java9 with the io.netty.tryAllocateUninitializedArray property when running Java9+. Please note that you will need to open up the jdk.internal.misc package via '--add-opens java.base/jdk.internal.misc=ALL-UNNAMED' as well.

Modifications:

Allow to allocate byte[] without memset on Java9+

Result:

Better performance when allocate big heap buffers and using java9.
2017-04-19 11:45:39 +02:00
Scott Mitchell
21562d8808 Retained[Duplicate|Slice] operations should not increase the reference count for UnreleasableByteBuf
Motivation:
UnreleasableByteBuf operations are designed to not modify the reference count of the underlying buffer. The Retained[Duplicate|Slice] operations violate this assumption and can cause the underlying buffer's reference count to be increased, but never allow for it to be decreased. This may lead to memory leaks.

Modifications:
- UnreleasableByteBuf's Retained[Duplicate|Slice] should leave the reference count of the parent buffer unchanged after the operation completes.

Result:
No more memory leaks due to usage of the Retained[Duplicate|Slice] on an UnreleasableByteBuf object.
2017-03-31 17:45:29 -07:00
Scott Mitchell
ef21d5f4ca UnsafeByteBufUtil errors and simplification
Motiviation:
UnsafeByteBufUtil has some bugs related to using an incorrect index, and also omitting the array paramter when dealing with byte[] objects. There is also some simplification possible with respect to type casting, and minor formatting consistentcy issues.

Modifications:
- Ensure indexing is correct when dealing with native memory
- Fix the native access and endianness for the medium/unsigned medium methods
- Ensure array is used when dealing with heap memory
- Remove unecessary casts when using long
- Fix formating and alignment

Result:
UnsafeByteBufUtil is more correct and won't access direct memory when heap arrays are used.
2017-03-30 11:52:03 -07:00
Bryce Anderson
aa2f16f314 EmptyByteBuf allows writing ByteBufs with 0 readable bytes
Motivation:

The contract of `ByteBuf.writeBytes(ByteBuf src)` is such that it will
throw an `IndexOutOfBoundsException if `src.readableBytes()` is greater than
`this.writableBytes()`. The EmptyByteBuf class will throw the exception,
even if the source buffer has zero readable bytes, in violation of the
contract.

Modifications:

Use the helper method `checkLength(..)` to check the length and throw
the exception, if appropriate.

Result:

Conformance with the stated behavior of ByteBuf.
2017-03-21 22:00:54 -07:00
Norman Maurer
3ad3356892 Expose ByteBufAllocator metric in a more general way
Motivation:

PR [#6460] added a way to access the used memory of an allocator. The used naming was not very good and how things were exposed are not consistent.

Modifications:

- Add a new ByteBufAllocatorMetric and ByteBufAllocatorMetricProvider interface
- Let the ByteBufAllocator implementations implement ByteBufAllocatorMetricProvider
- Move exposed stats / metric from PooledByteBufAllocator to PooledByteBufAllocatorMetric and mark old methods as `@Deprecated`.

Result:

More consistent way to expose metric / stats for ByteBufAllocator
2017-03-08 20:07:58 +01:00
Scott Mitchell
2cff918044 Correct usages of internalNioBuffer
Motivation:
There are numerous usages of internalNioBuffer which hard code 0 for the index when the intention was to use the readerIndex().

Modifications:
- Remove hard coded 0 for the index and use readerIndex()

Result:
We are less susceptible to using the wrong index, and don't make assumptions about the ByteBufAllocator.
2017-03-02 12:51:22 -08:00
Norman Maurer
461f9a1212 Allow to obtain informations of used direct and heap memory for ByteBufAllocator implementations
Motivation:

Often its useful for the user to be able to get some stats about the memory allocated via an allocator.

Modifications:

- Allow to obtain the used heap and direct memory for an allocator
- Add test case

Result:

Fixes [#6341]
2017-03-01 18:53:43 +01:00
Norman Maurer
a7fe6c0153 Metrics exposed by PooledByteBufAllocator needs to be correctly synchronized
Motivation:

As we may access the metrics exposed of PooledByteBufAllocator from another thread then the allocations happen we need to ensure we synchronize on the PoolArena to ensure correct visibility.

Modifications:

Synchronize on the PoolArena to ensure correct visibility.

Result:

Fix multi-thread issues on the metrics
2017-03-01 06:26:08 +01:00
Norman Maurer
deb90923a2 Ensure PooledByteBuf.initUnpooled(...) correctly set the allocator
Motivation:

Commit 8dda984afe introduced a regression which lead to the situation that the allocator is not set when PooledByteBuf.initUnpooled(...) is called. Thus it was possible that PooledByteBuf.alloc() returns null or the wrong allocator if multiple PooledByteBufAllocator are used in an application.

Modifications:

- Correctly set the allocator
- Add test-case

Result:

Fixes [#6436].
2017-02-23 19:53:17 +01:00
Nikolay Fedorovskikh
0623c6c533 Fix javadoc issues
Motivation:

Invalid javadoc in project

Modifications:

Fix it

Result:

More correct javadoc
2017-02-22 07:31:07 +01:00
Norman Maurer
8a3a3245df Ensure Unsafe buffer implementations are used when sun.misc.Unsafe is present
Motivation:

When sun.misc.Unsafe is present we want to use *Unsafe*ByteBuf implementations. We missed to do so in PooledByteBufAllocator when the heapArena is null.

Modifications:

- Correctly use UnpooledUnsafeHeapByteBuf
- Add unit tests

Result:

Use most optimal ByteBuf implementation.
2017-02-16 07:48:33 +01:00
Norman Maurer
f09a721d7f Expose the chunkSize used by PooledByteBufAllocator.
Motivation:

Sometimes it may be useful to know the used chunkSize.

Modifications:

Add method to expose chunkSize.

Result:

More exposed details.
2017-02-14 08:37:05 +01:00
Norman Maurer
371c0ca0f8 Eliminate unnessary wrapping when call ByteBuf.asReadOnly() in some cases
Motivation:

We can eliminate unnessary wrapping when call ByteBuf.asReadOnly() in some cases to reduce indirection.

Modifications:

- Check if asReadOnly() needs to create a new instance or not
- Add test cases

Result:

Less object creation / wrapping.
2017-02-14 08:35:16 +01:00
fenik17
0cf3f54a8d Adding 'final' keyword for private fields where possible
Motivation

Missing 'final' keyword for fields

Modifications

Add 'final' for fields where possible

Result

More safe and consistent code
2017-02-14 08:29:15 +01:00
Norman Maurer
54339c08ac Only try to calculate direct memory offset when sun.misc.Unsafe is present
Motivation:

We should only try to calculate the direct memory offset when sun.misc.Unsafe is present as otherwise it will fail with an NPE as PlatformDependent.directBufferAddress(...) will throw it.
This problem was introduced by 66b9be3a46.

Modifications:

Use offset of 0 if no sun.misc.Unsafe is present.

Result:

PooledByteBufAllocator also works again when no sun.misc.Unsafe is present.
2017-02-14 07:49:24 +01:00
Kiril Menshikov
66b9be3a46 Allow to allign allocated Buffers
Motivation:

64-byte alignment is recommended by the Intel performance guide (https://software.intel.com/en-us/articles/practical-intel-avx-optimization-on-2nd-generation-intel-core-processors) for data-structures over 64 bytes.
Requiring padding to a multiple of 64 bytes allows for using SIMD instructions consistently in loops without additional conditional checks. This should allow for simpler and more efficient code.

Modification:

At the moment cache alignment must be setup manually. But probably it might be taken from the system. The original code was introduced by @normanmaurer https://github.com/netty/netty/pull/4726/files

Result:

Buffer alignment works better than miss-align cache.
2017-02-06 07:58:29 +01:00
Norman Maurer
756b78b7df Add common tests for ByteBufAllocator / AbstractByteBufAllocator implementations.
Motivation:

We not had tests for ByteBufAllocator implementations in general.

Modifications:

Added ByteBufAllocatorTest, AbstractByteBufAllocatorTest and UnpooledByteBufAllocatorTest

Result:

More tests for allocator implementations.
2017-02-06 07:51:10 +01:00
Dmitriy Dumanskiy
b9abd3c9fc Cleanup : for loops for arrays to make code easier to read and removed unnecessary toLowerCase() 2017-02-06 07:47:59 +01:00
Norman Maurer
66b1731041 PooledByteBuf.capacity(...) not enforces maxCapacity()
Motivation:

PooledByteBuf.capacity(...) miss to enforce maxCapacity() and so its possible to increase the capacity of the buffer even if it will be bigger then maxCapacity().

Modifications:

- Correctly enforce maxCapacity()
- Add unit tests for capacity(...) calls.

Result:

Correctly enforce maxCapacity().
2017-02-01 18:45:54 +01:00
Carl Mastrangelo
ead9938980 Include Http 1 request in error message
Motivation:

When An HTTP server is listening in plaintext mode, it doesn't have
a chance to negotiate "h2" in the tls handshake.  HTTP 1 clients
that are not expecting an HTTP2 server will accidentally a request
that isn't an upgrade, which the HTTP/2 decoder will not
understand.  The decoder treats the bytes as hex and adds them to
the error message.

These error messages are hard to understand by humans, and result
in extra, manual work to decode.

Modification:

If the first bytes of the request are not the preface, the decoder
will now see if they are an HTTP/1 request first.  If so, the error
message will include the method and path of the original request in
the error message.

In case the path is long, the decoder will check up to the first
1024 bytes to see if it matches.  This could be a DoS vector if
tons of bad requests or other garbage come in.  A future optimization
would be to treat the first few bytes as an AsciiString and not do
any Charset decoding.  ByteBuf.toCharSequence alludes to such an
optimization.

The code has been left simple for the time being.

Result:

Faster identification of errant HTTP requests.
2017-01-30 09:46:38 -08:00
ming.ma
f10f8a3131 Calculate correct count for tiny/small/normal allocation
Motivation:

Disable ThreadLocal Cache, then allocate Pooled ByteBuf and release all these buffers, PoolArena's tiny/small/normal allocation count is incorrect.

Modifications:

- Calculate PoolArena's tiny/small/normal allocation one time
- Add testAllocationCounter TestCase

Result:

Fixes #6282 .
2017-01-30 10:32:58 +01:00
Norman Maurer
8dda984afe Null out references to tmpNioBuf and chunk to allow quicker collecting
Motivation:

In PooledByteBuf we missed to null out the chunk and tmpNioBuf fields before recycle it to the Recycler. This could lead to keep objects longer alive then necessary which may hold a lot of memory.

Modifications:

Null out tmpNioBuf and chunk before recycle.

Result:

Possible to earlier GC objects.
2017-01-26 22:06:47 +01:00
ming.ma
44add3c525 Log correct value for useCacheForAllThreads
Motivation:

Log about "-Dio.netty.allocator.useCacheForAllThreads" is missing log placeholder, and so can't output correct value.

Modification:

- Add placeholder

Result:

Fixes #6265 .
2017-01-25 08:01:23 +01:00
Scott Mitchell
583a59abb1 ByteBufUtil.compare int underflow
Motivation:
ByteBufUtil.compare uses long arithmetic but doesn't check for underflow on when converting from long to int to satisfy the Comparable interface. This will result in incorrect comparisons and violate the Comparable interface contract.

Modifications:
- ByteBufUtil.compare should protect against int underflow

Result:
Fixes https://github.com/netty/netty/issues/6169
2017-01-10 11:43:59 -08:00
Norman Maurer
89e93968ac Remove usage of own Atomic*FieldUpdater in favor of JDKs
Motivation:

In later Java8 versions our Atomic*FieldUpdater are slower then the JDK implementations so we should not use ours anymore. Even worse the JDK implementations provide for example an optimized version of addAndGet(...) using intrinsics which makes it a lot faster for this use-case.

Modifications:

- Remove methods that return our own Atomic*FieldUpdaters.
- Use the JDK implementations everywhere.

Result:

Faster code.
2016-12-15 08:09:06 +00:00
Norman Maurer
24b39bc287 Only schedule a ThreadDeathWatcher task if caches are used.
Motivation:

If caches are disabled it does not make sense to schedule a task that will free up memory consumed by the caches.

Modifications:

Do not schedule if caches are disabled.

Result:

Less overhead.
2016-12-08 10:36:29 +01:00
Norman Maurer
13a8ebade4 Correctly handle the case when no ResourceLeakTracker was created for derived pooled buffers. This was missed in c2f4daa739 2016-12-04 23:09:23 +01:00
Norman Maurer
c2f4daa739 Fix false-positives when using ResourceLeakDetector.
Motivation:

We need to ensure the tracked object can not be GC'ed before ResourceLeak.close() is called as otherwise we may get false-positives reported by the ResourceLeakDetector. This can happen as the JIT / GC may be able to figure out that we do not need the tracked object anymore and so already enqueue it for collection before we actually get a chance to close the enclosing ResourceLeak.

Modifications:

- Add ResourceLeakTracker and deprecate the old ResourceLeak
- Fix some javadocs to correctly release buffers.
- Add a unit test for ResourceLeakDetector that shows that ResourceLeakTracker has not the problems.

Result:

No more false-positives reported by ResourceLeakDetector when ResourceLeakDetector.track(...) is used.
2016-12-04 09:01:39 +01:00
Norman Maurer
2b8fd8d43b Allow to disable caching in PooledByteBufAllocator for non FastThreadLocalThreads
Motivation:

If a user allocates a lot from outside the EventLoop we may end up creating a lot of caches in the PooledByteBufAllocator. This may be wasteful and so it may be useful for an other to configure that caches should only be used from within EventLoops.

Modifications:

Add new constructor which allows to configure the caching behaviour.

Result:

More flexible configuration of PooledByteBufAllocator possible
2016-12-02 07:40:33 +01:00
Norman Maurer
feae0435b5 SwappedByteBuf.unwrap() should return wrapped buffer.
Motivation:

SwappedByteBuf.unwrap() not returned the wrapped buffer but the buffer that was wrapped by the original buffer. This is not correct.

Modifications:

Correctly return wrapped buffer and fix test.

Result:

SwappedByteBuf.unwrap() works as expected.
2016-12-01 21:22:30 +01:00
Stephane Landelle
ba95c401a7 Misc clean up
Motivation:
IntelliJ issues several warnings.

Modifications:

* `ClientCookieDecoder` and `ServerCookieDecoder`:
  * `nameEnd`, `valueBegin` and `valueEnd` don't need to be initialized
  * `keyValLoop` loop doesn't been to be labelled, as it's the most inner one (same thing for labelled breaks)
  * Remove `if (i != headerLen)` as condition is always true
* `ClientCookieEncoder` javadoc still mention old logic
* `DefaultCookie`, `ServerCookieEncoder` and `DefaultHttpHeaders` use ternary ops that can be turned into simple boolean ones
* `DefaultHeaders` uses a for(int) loop over an array. It can be turned into a foreach one as javac doesn't allocate an iterator to iterate over arrays
* `DefaultHttp2Headers` and `AbstractByteBuf` `equal` can be turned into a single boolean statement
Result:

Cleaner code
2016-11-22 15:17:05 -08:00
Scott Mitchell
930633350d Consistency between pooled/unpooled derived buffers
Motivation:
4bba7526e2 introduced changes which made pooled and unpooled derived buffers inconsistent in a few ways:
- Pooled derived buffers always generated a duplicate buffer when duplicate() was called and always generated a sliced buffer when slice() was called. Unpooled derived buffers some times generated a sliced buffer when duplicate() was called.
- The indexes that were set for duplicate buffers generated from slices were not always consistent.
There were also some various bugs in the derived pooled buffer implementation.

Modifications:
- Make pooled/unpooled consistently generate duplicate buffers when duplicate() is called and sliced buffers when slice() is called.
- Fix bugs in the derived pooled buffer

Result:
More consistent behavior from the derived pooled/unpooled buffers.
2016-11-21 11:38:10 -08:00
Scott Mitchell
4bba7526e2 retained[Slice|Duplicate] buffer reference count bug
Motivation:
Currently the ByteBuf created as a result of retained[Slice|Duplicate] maintains its own reference count, and when this reference count is depleated it will release the ByteBuf returned from unwrap(). The unwrap() buffer is designed to be the 'root parent' and will skip all intermediate layers of buffers. If the intermediate layers of buffers contain a retained[Slice|Duplicate] then these reference counts will be ignored during deallocation. This may lead to deallocating the 'root parent' before all derived pooled buffers are actually released. This same issue holds if a retained[Slice|Duplicate] is in the heirachy and a 'regular' slice() or duplicate() buffer is created.

Modifications:
- AbstractPooledDerivedByteBuf must maintain a reference to the direct parent (the buffer which retained[Slice|Duplicate] was called on) and release on this buffer instead of the 'root parent' returned by unwrap()
- slice() and duplicate() buffers created from AbstractPooledDerivedByteBuf must also delegate reference count operations to their immediate parent (or first ancestor which maintains an independent reference count).

Result:
Fixes https://github.com/netty/netty/issues/5999
2016-11-17 09:35:39 -08:00
Scott Mitchell
c1932a8537 ByteBuf Input Stream Reference Count Ownership
Motivation:
Netty provides a adaptor from ByteBuf to Java's InputStream interface. The JDK Stream interfaces have an explicit lifetime because they implement the Closable interface. This lifetime may be differnt than the ByteBuf which is wrapped, and controlled by the interface which accepts the JDK Stream. However Netty's ByteBufInputStream currently does not take reference count ownership of the underlying ByteBuf. There may be no way for existing classes which only accept the InputStream interface to communicate when they are done with the stream, other than calling close(). This means that when the stream is closed it may be appropriate to release the underlying ByteBuf, as the ownership of the underlying ByteBuf resource may be transferred to the Java Stream.

Motivation:
- ByteBufInputStream.close() supports taking reference count ownership of the underyling ByteBuf

Result:
ByteBufInputStream can assume reference count ownership so the underlying ByteBuf can be cleaned up when the stream is closed.
2016-11-14 16:29:55 -08:00
Norman Maurer
97bf3c0a9b Correctly throw IndexOutOfBoundsException when dst.remaining() is too big.
Motivation:

In some ByteBuf implementations we not correctly implement getBytes(index, ByteBuffer).

Modifications:

Correct code to do what is defined in the javadocs and adding test.

Result:

Implementation works as described.
2016-10-12 14:41:56 +02:00
Norman Maurer
5986c229c4 [#5833] Ensure direct memory is released when DirectPoolArena is collected
Motivation:

We need to ensure we release all direct memory once the DirectPoolArena is collected. Otherwise we may never reclaim the memory and so leak memory.

Modifications:

Ensure we destroy all PoolChunk memory when DirectPoolArena is collected.

Result:

Free up unreleased memory when DirectPoolArena is collected.
2016-09-23 15:20:59 -07:00
Norman Maurer
3103f0551c Share code between retain(...) and release(...) implementations.
Motivation:

We can share the code in retain() and retain(...) and also in release() and release(...).

Modifications:

Share code.

Result:

Less duplicated code.
2016-09-02 21:53:10 +02:00
Norman Maurer
463b5cf21b [#5773] AbstractByteBuf.forEachByteDesc(ByteProcessor) starts from wrong index
Motivation:

We introduced a regression in 1abdbe6f67 which let the iteration start from the wrong index.

Modifications:

Fix start index and add tests.

Result:

Fix regression.
2016-09-01 08:21:12 +02:00
Norman Maurer
a01519e4f8 [#5718] Result of ByteBufUtil.compare(ByteBuf a, ByteBuf b) is dependent on ByteOrder of supplied ByteBufs
Motivation:

Result of ByteBufUtil.compare(ByteBuf a, ByteBuf b) is dependent on ByteOrder of supplied ByteBufs which should not be the case (as stated in the javadocs).

Modifications:

Ensure we get a consistent behavior when calling ByteBufUtil.compare(ByteBuf a, ByteBuf b) and not depend on ByteOrder.

Result:

ByteBufUtil.compare(ByteBuf a, ByteBuf b) and so AbstractByteBuf.compare(...) works correctly as stated in the javadocs.
2016-08-26 15:36:06 +02:00
Norman Maurer
e7449b1ef3 [#5645] Allow to create ByteBuf from existing memory address.
Motivation:

Sometimes it is useful to be able to wrap an existing memory address (a.k.a pointer) and create a ByteBuf from it. This way its easier to interopt with other libraries.

Modifications:

Add a new Unpooled.wrappedBuffer(....) method that takes a memory address.

Result:

Be able to wrap an existing memory address into a ByteBuf.
2016-08-16 14:16:15 +02:00
Scott Mitchell
1abdbe6f67 AbstractByteBuf forEach minimize byte code
Motivation:
The default limit for the maximum amount of bytes that a method will be inlined is 35 bytes. AbstractByteBuf#forEach and AbstractByteBuf#forEachDesc comprise of method calls which are more than this maximum default threshold and may prevent or delay inlining for occuring. The byte code for these methods can be reduced to allow for easier inlining. Here are the current byte code sizes:

AbstractByteBuf::forEachByte (24 bytes)
AbstractByteBuf::forEachByte(int,int,..) (14 bytes)
AbstractByteBuf::forEachByteAsc0 (71 bytes)
AbstractByteBuf::forEachByteDesc (24 bytes)
AbstractByteBuf::forEachByteDesc(int,int,.) (24 bytes)
AbstractByteBuf::forEachByteDesc0 (69 bytes)

Modifications:
- Reduce the code for each method in the AbstractByteBuf#forEach and AbstractByteBuf#forEachDesc call stack

Result:
AbstractByteBuf::forEachByte (25 bytes)
AbstractByteBuf::forEachByte(int,int,..) (25 bytes)
AbstractByteBuf::forEachByteAsc0 (29 bytes)
AbstractByteBuf::forEachByteDesc (25 bytes)
AbstractByteBuf::forEachByteDesc(int,int,..) (27 bytes)
AbstractByteBuf::forEachByteDesc0 (29 bytes)
2016-08-10 13:02:16 -07:00
Norman Maurer
d44017189e Remove extra conditional check in retain
Motivation:

We not need to do an extra conditional check in retain(...) as we can just check for overflow after we did the increment.

Modifications:

- Remove extra conditional check
- Add test code.

Result:

One conditional check less.
2016-08-05 13:09:26 +02:00
Norman Maurer
3fa8f31055 Reduce conditionals in AbstractReferenceCountedByteBuf
Motivation:
AbstractReferenceCountedByteBuf as independent conditional statements to check the bounds of the retain IllegalReferenceCountException condition. One of the exceptions also uses the incorrect increment. The same fix was done for AbstractReferenceCounted as 01523e7835.

Modifications:
- Combined independent conditional checks into 1 where possible
- Correct IllegalReferenceCountException with incorrect increment
- Remove the subtract to check for overflow and re-use the addition and check for overflow to remove 1 arithmetic operation (see http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.18.2)

Result:
AbstractReferenceCountedByteBuf has less independent branch statements and more correct IllegalReferenceCountException. Compilation size of AbstractReferenceCountedByteBuf.retain() is reduced.
2016-08-05 07:25:47 +02:00
Norman Maurer
76a3ea699d [#5629] Ensure direct ByteBuffer are wrapped in as direct ByteBuf.
Motivation:

We need to check if a ByteBuffer is direct via isDirect() to detect if its direct as hasArray() may also return true for a direct ByteBuffer.

See also:
https://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html#allocateDirect-int-

Modifications:

Add isDirect() check.

Result:

Correct wrap a direct ByteBuffer in all cases.
2016-08-05 07:16:46 +02:00
Scott Mitchell
82b22d6f11 findNextPositivePowerOfTwo out of bounds
Motivation:
Some usages of findNextPositivePowerOfTwo assume that bounds checking is taken care of by this method. However bounds checking is not taken care of by findNextPositivePowerOfTwo and instead assert statements are used to imply the caller has checked the bounds. This can lead to unexpected non power of 2 return values if the caller is not careful and thus invalidate any logic which depends upon a power of 2.

Modifications:
- Add a safeFindNextPositivePowerOfTwo method which will do runtime bounds checks and always return a power of 2

Result:
Fixes https://github.com/netty/netty/issues/5601
2016-08-01 19:52:13 -07:00
Norman Maurer
e85d437398 [#5597] Not try to double release empty buffer in Unpooled.wrappedBuffer(...)
Motivation:

When Unpooled.wrappedBuffer(...) is called with an array of ByteBuf with length >= 2 and the first ByteBuf is not readable it will result in double releasing of these empty buffers when release() is called on the returned buffer.

Modifications:

- Ensure we only wrap readable buffers.
- Add unit test

Result:

No double release of buffers.
2016-07-30 21:16:44 +02:00