Motivation:
Some methods that either override others or are implemented as part of implementation an interface did miss the `@Override` annotation
Modifications:
Add missing `@Override`s
Result:
Code cleanup
Motivation:
In the past we had the following class hierarchy:
Http2ConnectionHandler --- Http2FrameCodec -- Http2MultiplexCodec
This hierarchy makes it impossible to plug in any code that would like to act on Http2Frame and Http2StreamFrame which can be quite useful for various situations (like metrics, logging etc). Beside this it also made the implementtion very hacky. To allow easier maintainance and also allow more flexible costumizations we should split Http2MultiplexCodec and Http2FrameCode.
Modifications:
- Introduce Http2MultiplexHandler (which is a replacement for Http2MultiplexCodec when used together with Http2FrameCodec)
- Mark Http2MultiplexCodecBuilder and Http2MultiplexCodec as deprecated. People should use Http2FrameCodecBuilder / Http2FrameCodec together with Http2MultiplexHandlder in the future
- Adjust / Add tests
- Adjust examples
Result:
More flexible usage possible and less hacky / coupled implementation for http2 multiplexing
Motivation:
The io.netty.example.http2.helloworld.client.Http2Client example should work in the h2c (HTTP2 cleartext - non-TLS) mode, which is the default for this example unless you set a -Dssl VM param. As we do not set the HOST header some servers do reject the upgrade request.
Modifications:
Set the HOST header
Result:
Fixes https://github.com/netty/netty/issues/9115.
Motivation:
As brought up in https://github.com/netty/netty/issues/8998, JKS can be substantially faster than pkcs12, JDK's new default. Without an option to set the KeyStore type you must change the configuration of the entire JVM which is impractical.
Modification:
- Allow to specify KeyStore type
- Add test case
Result:
Fixes https://github.com/netty/netty/issues/8998.
Motivation:
HttpHelloWorldServer example works incorrect for HTTP 1.1, the value of header connection is always set to close for each request.
Modification:
Correctly set header
Result:
Fixed HttpHelloWorldServerHandler for handling HTTP 1.0/1.1
Motivation:
"Connection: close" header should be specified each time we're going
to close an underlying TCP connection when sending HTTP/1.1 reply.
Modifications:
Introduces changes made in #8914 for the following examples:
* WebSocket index page and WebSocket server handler
* HelloWorld server
* SPDY server handler
* HTTP/1.1 server handler from HTTP/2 HelloWorld example
* HTTP/1.1 server handler from tiles example
Result:
Keep-Alive connections management conforms with RFCs.
Motivation:
We can just use a local variable in HttpUploadServerHandler and so make the example code a bit cleaner.
Modifications:
Use local variable.
Result:
Fixes https://github.com/netty/netty/issues/8892.
Motivation:
Simple rules:
* close the connection when sending any error
* specify "Connection: close" header when closing the connection
* successful responses should keep the connection intact when otherwise is not requested by the client
Modifications:
* "send response and cleanup the connection" logic moved to a helper
* for all successful responses set "Content-Lenght" header
* do not specify "Connection: Keep-Alive" header as far it's a default for HTTP/1.1
* set "Connection: close" header when necessary
Result:
Keep-Alive connections management is inlined with RFCs.
Motivation:
Netty is very widely used which can lead to a lot of pain when we break API / ABI. We should make use japicmp-maven-plugin during the build to verify we do not introduce breakage by mistake.
Modifications:
- Add japicmp-maven-plugin to the build process
- Fix a method signature change in HttpProxyHandler that was flagged as a possible problem.
Result:
Ensure no API/ABI breakage accour between releases.
Motivation:
In most cases, HttpMethod instance is built from the factory method and the same instance is taken for known Http Methods. So we can implement fast path for equals().
Modification:
Replace == checks with HttpMethod.equals;
Use this == o within HttpMethod.equals;
Replaced known new HttpMethod with HttpMethod.valueOf;
Result:
Comparisons should be a bit faster in some cases.
Motivation:
We need to update to a new checkstyle plugin to allow the usage of lambdas.
Modifications:
- Update to new plugin version.
- Fix checkstyle problems.
Result:
Be able to use checkstyle plugin which supports new Java syntax.
Motivation:
Most of the maven modules do not explicitly declare their
dependencies and rely on transitivity, which is not always correct.
Modifications:
For all maven modules, add all of their dependencies to pom.xml
Result:
All of the (essentially non-transitive) depepdencies of the modules are explicitly declared in pom.xml
Motivation:
We currently depend on slf4j in an transitive way in one of our classes in the examples. We should not do this.
Modifications:
Remove logging in example.
Result:
Remove not needed dependency.
Motivation:
After #7527 fix there is no need to manually release chunks (HttpData) during file upload as they will be released on HttpPostRequestDecoder.destroy().
Modification:
HttpUploadServer example doesn't release chunks manually (doesn't call data.release()).
Result:
Fixes#7695 and #7689
Motivation:
MemcacheClientHandler.channelRead(...) need to release the frame after it prints out its content to not introduce a memory leak.
Modifications:
Call release() on the frame.
Result:
Example has no leak any more.
Motivation:
We need to release the inbound data to ensure there are no leaks.
Modifications:
Extend SimpleChannelInboundHandler which will release inbound data by default.
Result:
No more leaks.
Motivation:
Java 11 will be out soon, so we should be able to build (and run tests) netty.
Modifications:
- Add dependency that is needed till Java 11
- Adjust tests so these also pass on Java 11 (SocketChannelImpl.close() behavious a bit differently now).
Result:
Build also works (and tests pass) on Java 11.
Motivation:
At the moment we use a ByteBuf as the payload for a http2 frame. This complicates life-time management a lot with no real gain and also may produce more objects then needed. We should just use a long as it is required to be 8 bytes anyway.
Modifications:
Use long for ping payloads.
Result:
Fixes [#7629].
Motivation:
Even if it's a super micro-optimization (most JVM could optimize such
cases in runtime), in theory (and according to some perf tests) it
may help a bit. It also makes a code more clear and allows you to
access such methods in the test scope directly, without instance of
the class.
Modifications:
Add 'static' modifier for all methods, where it possible. Mostly in
test scope.
Result:
Cleaner code with proper 'static' modifiers.
Motivation:
The `AsciiString#toString` method calculate string value and cache it into field. If an `AsciiString` created from the `String` value, we can avoid rebuilding strings if we cache them immediately when creating `AsciiString`. It would be useful for constants strings, which already stored in the JVMs string table, or in cases where an unavoidable `#toString `method call is assumed.
Modifications:
- Add new static method `AsciiString#cache(String)` which save string value into cache field.
- Apply a "benign" data race in the `#hashCode` and `#toString` methods.
Result:
Less memory usage in some `AsciiString` use cases.
Motivation:
Our http2 child channel implementation was not 100 % complete and had a few bugs. Beside this the performance overhead was non-trivial.
Modifications:
There are a lot of modifications, the most important....
* Http2FrameCodec extends Http2ConnectionHandler and Http2MultiplexCodec extends Http2FrameCodec to reduce performance heads and inter-dependencies on handlers in the pipeline
* Correctly handle outbound flow control for child channels
* Support unknow frame types in Http2FrameCodec and Http2MultiplexCodec
* Use a consistent way how to create Http2ConnectionHandler, Http2FrameCodec and Http2MultiplexCodec (via a builder)
* Remove Http2Codec and Http2CodecBuilder as the user should just use Http2MultipleCodec and Http2MultiplexCodecBuilder now
* Smart handling of flushes from child channels to reduce overhead
* Reduce object allocations
* child channels always use the same EventLoop as the parent Channel to reduce overhead and simplify implementation.
* Not extend AbstractChannel for the child channel implementation to reduce overhead in terms of performance and memory usage
* Remove Http2FrameStream.managedState(...) as the user of the child channel api should just use Channel.attr(...)
Result:
Http2MultiplexCodec (and so child channels) and Http2FrameCodec are more correct, faster and more feature complete.
Motivation:
This PR (unfortunately) does 4 things:
1) Add outbound flow control to the Http2MultiplexCodec:
The HTTP/2 child channel API should interact with HTTP/2 outbound/remote flow control. That is,
if a H2 stream used up all its flow control window, the corresponding child channel should be
marked unwritable and a writability-changed event should be fired. Similarly, a unwritable
child channel should be marked writable and a writability-event should be fired, once a
WINDOW_UPDATE frame has been received. The changes are (mostly) contained in ChannelOutboundBuffer,
AbstractHttp2StreamChannel and Http2MultiplexCodec.
2) Introduce a Http2Stream2 object, that is used instead of stream identifiers on stream frames. A
Http2Stream2 object allows an application to attach state to it, and so a application handler
no longer needs to maintain stream state (i.e. in a map(id -> state)) himself.
3) Remove stream state events, which are no longer necessary due to the introduction of Http2Stream2.
Also those stream state events have been found hard and complex to work with, when porting gRPC
to the Http2FrameCodec.
4) Add support for HTTP/2 frames that have not yet been implemented, like PING and SETTINGS. Also add
a Http2FrameCodecBuilder that exposes options from the Http2ConnectionHandler API that couldn't else
be used with the frame codec, like buffering outbound streams, window update ratio, frame logger, etc.
Modifications:
1) A child channel's writability and a H2 stream's outbound flow control window interact, as described
in the motivation. A channel handler is free to ignore the channel's writability, in which case the
parent channel is reponsible for buffering writes until a WINDOW_UPDATE is received.
The connection-level flow control window is ignored for now. That is, a child channel's writability
is only affected by the stream-level flow control window. So a child channel could be marked writable,
even though the connection-level flow control window is zero.
2) Modify Http2StreamFrame and the Http2FrameCodec to take a Http2Stream2 object intstead of a primitive
integer. Introduce a special Http2ChannelDuplexHandler that has newStream() and forEachActiveStream()
methods. It's recommended for a user to extend from this handler, to use those advanced features.
3) As explained in the documentation, a new inbound stream active can be detected by checking if the
Http2Stream2.managedState() of a Http2HeadersFrame is null. An outbound stream active can be detected
by adding a listener to the ChannelPromise of the write of the first Http2HeadersFrame. A stream
closed event can be listened to by adding a listener to the Http2Stream2.closeFuture().
4) Add a simple Http2FrameCodecBuilder and implement the missing frame types.
Result:
1) The Http2MultiplexCodec supports outbound flow control.
2) The Http2FrameCodec API makes it easy for a user to manage custom stream specific state and to create
new outbound streams.
3) The Http2FrameCodec API is much cleaner and easier to work with. Hacks like the ChannelCarryingHeadersFrame
are no longer necessary.
4) The Http2FrameCodec now also supports PING and SETTINGS frames. The Http2FrameCodecBuilder allows the Http2FrameCodec
to use some of the rich features of the Http2ConnectionHandler API.
Motivation:
In our http1 hello world example we only flush on channelReadComplete(...) to make better use of gathering writes. We should do the same in http2.
Modifications:
Only flush in channelReadComplete(...)
Result:
Better performance and more consistent examples.
Motivation:
We need to fail the promise if a failure during handshake happens.
Modification:
Correctly fail the promise.
Result:
Correct websocket client example. Fixes [#6998]
Motivation:
Http2ServerUpgradeCodec should support Http2FrameCodec.
Modifications:
- Add support for Http2FrameCodec
- Add example that uses Http2FrameCodec
Result:
More flexible use of Http2ServerUpgradeCodec
Motivation:
HelloWorldHttp2Handler throws a NPE when converting from HTTP/1.x headers to HTTP/2 headers because there is no Host header.
Modifications:
- HelloWorldHttp2Handler should check if the Host header is present before setting it in the HTTP/2 headers
Result:
No more NPE in HelloWorldHttp2Handler.
Motivation:
DefaultHttp2FrameWriter has constructors that it would be a hassle to
expose as configuration parameters on Http2Codec. We should instead
make a builder for Http2Codec.
Modifications:
Get rid of the public constructors on Http2Codec and instead make sure
you can always use the builder where you would have used the constructor
before.
Result:
Http2Codec can be configured more flexibly, and the SensitivityDetector
can be configured.
Motivation:
Uptime example is lack of server.
UptimeClient's code style is a little bit different from others, which make reader feel confused.
We don't need to create a new Bootstrap instance each time client reconnect to server.
Modification:
Add UptimeServer and UptimeServerHandler which simply accept all connection and discard all message.
Change UptimeClient's code style.
Share a single Bootstrap instance.
Result:
Uptime server support.
Consistent code style.
Single Bootstrap for all reconnection.
It is generally useful to have origin http servers respond to
"expect: continue-100" as soon as possible but applications without a
HttpObjectAggregator in their pipelines must use boiler plate to do so.
Modifications:
Introduce the HttpServerExpectContinueHandler handler to make it easier.
Result:
Less boiler plate for http application authors.
Motivation:
We not correctly managed the life-cycle of the buffer / frames in our http2 multiplex example which lead to a memory leak.
Modifications:
- Correctly release frame if not echo'ed back the remote peer.
- Not retain content before echo back to remote peer.
Result:
No more leak in the example, fixes [#6636].
https://github.com/netty/netty-tcnative/pull/215
Motivation
OCSP stapling (formally known as TLS Certificate Status Request extension) is alternative approach for checking the revocation status of X.509 Certificates. Servers can preemptively fetch the OCSP response from the CA's responder, cache it for some period of time, and pass it along during (a.k.a. staple) the TLS handshake. The client no longer has to reach out on its own to the CA to check the validity of a cetitficate. Some of the key benefits are:
1) Speed. The client doesn't have to crosscheck the certificate.
2) Efficiency. The Internet is no longer DDoS'ing the CA's OCSP responder servers.
3) Safety. Less operational dependence on the CA. Certificate owners can sustain short CA outages.
4) Privacy. The CA can lo longer track the users of a certificate.
https://en.wikipedia.org/wiki/OCSP_staplinghttps://letsencrypt.org/2016/10/24/squarespace-ocsp-impl.html
Modifications
https://www.openssl.org/docs/man1.0.2/ssl/SSL_set_tlsext_status_type.html
Result
High-level API to enable OCSP stapling
Motivation:
HTTP/2 support two ways to start on a no-tls tcp connection,
http/1.1 upgrade and prior knowlege methodology to start HTTP/2.
Currently, the http2-server from example only support
starting by upgrade. I think we can do a simple dispatch by peek first
bytes from inbound that match to prior knowledge preface or not and
determine which handlers to set into pipeline.
Modifications:
Add ClearTextHttp2ServerUpgradeHandler to support start HTTP/2 via clear
text with two approach. And update example/http2-server to support
this functionality.
Result:
netty HTTP/2 and the example http2-server accept for two ways to start
HTTP/2 over clear text.
Fixed memory leak problem
Update fields to final
Rename ClearText to cleartext
Addressed comments for code improvement
- Always prefer static, final, and private if possible
- Add UnstableApi annotation
- Used EmbeddedChannel.readInbound instead of unhandled inbound handler
- More assertion
Update javadoc for CleartextHttp2ServerUpgradeHandler
Rename ClearTextHttp2ServerUpgradeHandler to CleartextHttp2ServerUpgradeHandler
Removed redundant code about configure pipeline
nit: PriorKnowledgeHandler
Removed Mockito.spy, investigate conn state instead
Add Http2UpgradeEvent
Check null of the constructor arguments
Rename Http2UpgradeEvent to PriorKnowledgeUpgradeEvent
Update unit test
Motivation:
Conscrypt is a Java Security provider that wraps OpenSSL (specifically BoringSSL). It's a possible alternative to Netty-tcnative that we should explore. So this commit is just to enable us to further investigate its use.
Modifications:
Modifying the SslContext creation path to support the Conscrypt provider.
Result:
Netty will support OpenSSL with conscrypt.
Motivation:
Calling a static method is faster then dynamic
Modifications:
Add 'static' keyword for methods where it missed
Result:
A bit faster method calls
Motivation:
2fd42cfc6b fixed a bug related to encoding headers but it also introduced a throws statement onto the Http2FrameWriter methods which write headers. This throws statement makes the API more verbose and is not necessary because we can communicate the failure in the ChannelFuture that is returned by these methods.
Modifications:
- Remove throws from all Http2FrameWriter methods.
Result:
Http2FrameWriter APIs do not propagate checked exceptions.