Motivation:
ABORT and COMMIT commands were missing from the enum but they are part of the STOMP spec.
Modifications:
Modified the enum to add the missing commands.
Result:
ABORT and COMMIT commands can now be parsed properly and acted on.
Motivation:
There is no need for ByteProcessor to throw a checked exception.
The declared checked exception causes unnecessary code complications just to propagate it.
This can be cleaned up.
Modification:
ByteProcessor.process no longer declares to throw a checked exception, and all the places that were trying to cope with the checked exception have been simplified.
Result:
Simpler code.
Motivation:
There is no need for ByteProcessor to throw a checked exception.
The declared checked exception causes unnecessary code complications just to propagate it.
This can be cleaned up.
Modification:
ByteProcessor.process no longer declares to throw a checked exception, and all the places that were trying to cope with the checked exception have been simplified.
Result:
Simpler code.
Motivation:
Heart-beat is a functionality of STOMP enabling clients and servers to know the healthiness of the connection. The current decoder didn't allow for heart-beat messages to be forwarded to the decoder and were simply swallowed as part of the frame decoding.
Modifications:
Adding support for heartbeat message parsing by introducing a new HEARTBEAT command (not a real STOMP command).
Heartbeat received on the channel will trigger a StompFrame with the command set to HEARTBEAT.
Sending heartbeat on the channel is achieved by creating a StompFrame with the command set to HEARTBEAT.
Result:
Heartbeat can now be received/sent and acted upon to determine the healthiness of the connection and terminate it if needed.
Motivation:
HTTP is a plaintext protocol which means that someone may be able
to eavesdrop the data. To prevent this, HTTPS should be used whenever
possible. However, maintaining using https:// in all URLs may be
difficult. The nohttp tool can help here. The tool scans all the files
in a repository and reports where http:// is used.
Modifications:
- Added nohttp (via checkstyle) into the build process.
- Suppressed findings for the websites
that don't support HTTPS or that are not reachable
Result:
- Prevent using HTTP in the future.
- Encourage users to use HTTPS when they follow the links they found in
the code.
Motivation:
Not always STOMP frames contain any payload some times it just headers. So we wan't allocate additional buffer with NULL content for this situation.
Modification:
Modify StompSubframeEncoder to check if content is readable or not. If content is not readable just add NULL byte to encoded header buffer.
Result:
Less allocations
Motivation:
ByteToMessageDecoder requires using an intermediate List to put results into. This intermediate list adds overhead (memory/CPU) which grows as the number of objects increases. This overhead can be avoided by directly propagating events through the ChannelPipeline via ctx.fireChannelRead(...). This also makes the semantics more clear and allows us to keep track if we need to call ctx.read() in all cases.
Modifications:
- Remove List from the method signature of ByteToMessageDecoder.decode(...) and decodeLast(...)
- Adjust all sub-classes
- Adjust unit tests
- Fix javadocs.
Result:
Adjust ByteToMessageDecoder as noted in https://github.com/netty/netty/issues/8525.
Motivation:
We should use Objects.requireNonNull(...) as we require java8
Modifications:
Replace ObjectUtil.checkNonNull(...) with Objects.requireNonNull(...)
Result:
Code cleanup
Motivation:
We can replace some "hand-rolled" integer checks with our own static utility method to simplify the code.
Modifications:
Use methods provided by `ObjectUtil`.
Result:
Cleaner code and less duplication
Motivation:
We can just use Objects.requireNonNull(...) as a replacement for ObjectUtil.checkNotNull(....)
Modifications:
- Use Objects.requireNonNull(...)
Result:
Less code to maintain.
Motivation:
ByteBuf supports “marker indexes”. The intended use case for these is if a speculative operation (e.g. decode) is in process the user can “mark” and interface and refer to it later if the operation isn’t successful (e.g. not enough data). However this is rarely used in practice,
requires extra memory to maintain, and introduces complexity in the state management for derived/pooled buffer initialization, resizing, and other operations which may modify reader/writer indexes.
Modifications:
Remove support for marking and adjust testcases / code.
Result:
Fixes https://github.com/netty/netty/issues/8535.
Motivation:
Incorrect behavior for StompFrame.copy() method.
Modification:
Added copying of frame headers
Result:
When you call the StompFrame.copy() method, the headers are also copied.
Fixes [#7561].
Motivation:
When decoding stomp frames a lot of unnecessary character arrays are created when parsing headers.
For every header, an array is created to read the line into and then more when splitting the line at the colon.
Modifications:
Parse key and value of a header while reading the line instead of afterwards.
Reuse a single AppendableCharSequence.
Reduce initial size of AppendableCharSequence when reading the command as it is expected to be short.
Result:
Allocations when parsing stomp frames have dropped significantly.
Motivation:
By STOMP 1.2 specification - header name or value include any octet except CR or LF or ":".
Modification:
Add constructor argument that allows to enable / disable validation.
Result:
Fixes [#7083]
Motivation:
The `AsciiString#toString` method calculate string value and cache it into field. If an `AsciiString` created from the `String` value, we can avoid rebuilding strings if we cache them immediately when creating `AsciiString`. It would be useful for constants strings, which already stored in the JVMs string table, or in cases where an unavoidable `#toString `method call is assumed.
Modifications:
- Add new static method `AsciiString#cache(String)` which save string value into cache field.
- Apply a "benign" data race in the `#hashCode` and `#toString` methods.
Result:
Less memory usage in some `AsciiString` use cases.
Motivation:
1. `ByteBuf` contains methods to writing `CharSequence` which optimized for UTF-8 and ASCII encodings. We can also apply optimization for ISO-8859-1.
2. In many places appropriate methods are not used.
Modifications:
1. Apply optimization for ISO-8859-1 encoding in the `ByteBuf#setCharSequence` realizations.
2. Apply appropriate methods for writing `CharSequences` into buffers.
Result:
Reduce overhead from string-to-bytes conversion.
Motivation:
While working on #6087 some buffer leaks showed up.
Modifications:
Correctly release buffers.
Result:
No more buffer leaks in memcache and stomp codec tests.
Related: #4333#4421#5128
Motivation:
slice(), duplicate() and readSlice() currently create a non-recyclable
derived buffer instance. Under heavy load, an application that creates a
lot of derived buffers can put the garbage collector under pressure.
Modifications:
- Add the following methods which creates a non-recyclable derived buffer
- retainedSlice()
- retainedDuplicate()
- readRetainedSlice()
- Add the new recyclable derived buffer implementations, which has its
own reference count value
- Add ByteBufHolder.retainedDuplicate()
- Add ByteBufHolder.replace(ByteBuf) so that..
- a user can replace the content of the holder in a consistent way
- copy/duplicate/retainedDuplicate() can delegate the holder
construction to replace(ByteBuf)
- Use retainedDuplicate() and retainedSlice() wherever possible
- Miscellaneous:
- Rename DuplicateByteBufTest to DuplicatedByteBufTest (missing 'D')
- Make ReplayingDecoderByteBuf.reject() return an exception instead of
throwing it so that its callers don't need to add dummy return
statement
Result:
Derived buffers are now recycled when created via retainedSlice() and
retainedDuplicate() and derived from a pooled buffer
Motivation:
DefaultStompFrame.toString() implementations returned a String that contained DefaultFullStompFrame.
Modifications:
Replace DefaultFullStompFrame with DefaultStompFrame.
Result:
Less confusing and more correct return value of toString()
Motivation:
DefaultStompFrame.retain(increment) missed to pass on the increment parameter.
Modifications:
Correctly pass on increment paramter.
Result:
Correctly handle the retain when increment value is given.
Motivation:
The HTTP/2 RFC (https://tools.ietf.org/html/rfc7540#section-8.1.2) indicates that header names consist of ASCII characters. We currently use ByteString to represent HTTP/2 header names. The HTTP/2 RFC (https://tools.ietf.org/html/rfc7540#section-10.3) also eludes to header values inheriting the same validity characteristics as HTTP/1.x. Using AsciiString for the value type of HTTP/2 headers would allow for re-use of predefined HTTP/1.x values, and make comparisons more intuitive. The Headers<T> interface could also be expanded to allow for easier use of header types which do not have the same Key and Value type.
Motivation:
- Change Headers<T> to Headers<K, V>
- Change Http2Headers<ByteString> to Http2Headers<CharSequence, CharSequence>
- Remove ByteString. Having AsciiString extend ByteString complicates equality comparisons when the hash code algorithm is no longer shared.
Result:
Http2Header types are more representative of the HTTP/2 RFC, and relationship between HTTP/2 header name/values more directly relates to HTTP/1.x header names/values.
Motivation:
The STOMP decoder used to fail when parsing a frame with no content-length
and a body split across multiple packets.
Modifications:
Support contentLength of -1 (indicating indeterminate length) and added a
check to getContentLength. Moved the NUL byte searching from the
readHeaders() method out to the main decoder loop.
Result:
A STOMP frame can be properly parsed even if it's missing the
content-length header and the NUL byte is in a later packet.
Motivation:
The HashingStrategy for DefaultStompHeaders was using the java .equals() method which would fail to compare String, AsciiString, and other CharSequence objects as equal.
Modification:
- Use AsciiString.CASE_SENSITIVE_HASHER for DefaultStompHeaders
Result:
DefaultStompHeaders work with all CharSequence objects.
Fixes https://github.com/netty/netty/issues/4247
Motivation:
The HttpObjectAggregator always responds with a 100-continue response. It should check the Content-Length header to see if the content length is OK, and if not responds with a 417.
Modifications:
- HttpObjectAggregator checks the Content-Length header in the case of a 100-continue.
Result:
HttpObjectAggregator responds with 417 if content is known to be too big.
Motivation:
A degradation in performance has been observed from the 4.0 branch as documented in https://github.com/netty/netty/issues/3962.
Modifications:
- Simplify Headers class hierarchy.
- Restore the DefaultHeaders to be based upon DefaultHttpHeaders from 4.0.
- Make various other modifications that are causing hot spots.
Result:
Performance is now on par with 4.0.
Motivation:
We noticed that the headers implementation in Netty for HTTP/2 uses quite a lot of memory
and that also at least the performance of randomly accessing a header is quite poor. The main
concern however was memory usage, as profiling has shown that a DefaultHttp2Headers
not only use a lot of memory it also wastes a lot due to the underlying hashmaps having
to be resized potentially several times as new headers are being inserted.
This is tracked as issue #3600.
Modifications:
We redesigned the DefaultHeaders to simply take a Map object in its constructor and
reimplemented the class using only the Map primitives. That way the implementation
is very concise and hopefully easy to understand and it allows each concrete headers
implementation to provide its own map or to even use a different headers implementation
for processing requests and writing responses i.e. incoming headers need to provide
fast random access while outgoing headers need fast insertion and fast iteration. The
new implementation can support this with hardly any code changes. It also comes
with the advantage that if the Netty project decides to add a third party collections library
as a dependency, one can simply plug in one of those very fast and memory efficient map
implementations and get faster and smaller headers for free.
For now, we are using the JDK's TreeMap for HTTP and HTTP/2 default headers.
Result:
- Significantly fewer lines of code in the implementation. While the total commit is still
roughly 400 lines less, the actual implementation is a lot less. I just added some more
tests and microbenchmarks.
- Overall performance is up. The current implementation should be significantly faster
for insertion and retrieval. However, it is slower when it comes to iteration. There is simply
no way a TreeMap can have the same iteration performance as a linked list (as used in the
current headers implementation). That's totally fine though, because when looking at the
benchmark results @ejona86 pointed out that the performance of the headers is completely
dominated by insertion, that is insertion is so significantly faster in the new implementation
that it does make up for several times the iteration speed. You can't iterate what you haven't
inserted. I am demonstrating that in this spreadsheet [1]. (Actually, iteration performance is
only down for HTTP, it's significantly improved for HTTP/2).
- Memory is down. The implementation with TreeMap uses on avg ~30% less memory. It also does not
produce any garbage while being resized. In load tests for GRPC we have seen a memory reduction
of up to 1.2KB per RPC. I summarized the memory improvements in this spreadsheet [1]. The data
was generated by [2] using JOL.
- While it was my original intend to only improve the memory usage for HTTP/2, it should be similarly
improved for HTTP, SPDY and STOMP as they all share a common implementation.
[1] https://docs.google.com/spreadsheets/d/1ck3RQklyzEcCLlyJoqDXPCWRGVUuS-ArZf0etSXLVDQ/edit#gid=0
[2] https://gist.github.com/buchgr/4458a8bdb51dd58c82b4
Motivation:
The usage and code within AsciiString has exceeded the original design scope for this class. Its usage as a binary string is confusing and on the verge of violating interface assumptions in some spots.
Modifications:
- ByteString will be created as a base class to AsciiString. All of the generic byte handling processing will live in ByteString and all the special character encoding will live in AsciiString.
Results:
The AsciiString interface will be clarified. Users of AsciiString can now be clear of the limitations the class imposes while users of the ByteString class don't have to live with those limitations.
Motivation:
The new Headers interface contains methods to getTimeMillis but no add/set/contains variants. These should be added for consistency.
Modifications:
- Add three new methods: addTimeMillis, setTimeMillis, containsTimeMillis to the Headers interface.
- Add a new method to the Headers.ValueConverter interface: T convertTimeMillis(long)
- Bring these new interfaces up the class hierarchy
Result:
All Headers classes have setters/getters for timeMillis.
Motivation:
The header class hierarchy and algorithm was improved on the master branch for versions 5.x. These improvments should be backported to the 4.1 baseline.
Modifications:
- cherry-pick the following commits from the master branch: 2374e17, 36b4157, 222d258
Result:
Header improvements in master branch are available in 4.1 branch.
Motivation:
Now Netty has a few problems with null values.
Modifications:
- Check HAProxyProxiedProtocol in HAProxyMessage constructor and throw NPE if it is null.
If HAProxyProxiedProtocol is null we will set AddressFamily as null. So we will get NPE inside checkAddress(String, AddressFamily) and it won't be easy to understand why addrFamily is null.
- Check File in DiskFileUpload.toString().
If File is null we will get NPE when calling toString() method.
- Check Result<String> in MqttDecoder.decodeConnectionPayload(...).
If !mqttConnectVariableHeader.isWillFlag() || !mqttConnectVariableHeader.hasUserName() || !mqttConnectVariableHeader.hasPassword() we will get NPE when we will try to create new instance of MqttConnectPayload.
- Check Unsafe before calling unsafe.getClass() in PlatformDependent0 static block.
- Removed unnecessary null check in WebSocket08FrameEncoder.encode(...).
Because msg.content() can not return null.
- Removed unnecessary null check in DefaultStompFrame(StompCommand) constructor.
Because we have this check in the super class.
- Removed unnecessary null checks in ConcurrentHashMapV8.removeTreeNode(TreeNode<K,V>).
- Removed unnecessary null check in OioDatagramChannel.doReadMessages(List<Object>).
Because tmpPacket.getSocketAddress() always returns new SocketAddress instance.
- Removed unnecessary null check in OioServerSocketChannel.doReadMessages(List<Object>).
Because socket.accept() always returns new Socket instance.
- Pass Unpooled.buffer(0) instead of null inside CloseWebSocketFrame(boolean, int) constructor.
If we will pass null we will get NPE in super class constructor.
- Added throw new IllegalStateException in GlobalEventExecutor.awaitInactivity(long, TimeUnit) if it will be called before GlobalEventExecutor.execute(Runnable).
Because now we will get NPE. IllegalStateException will be better in this case.
- Fixed null check in OpenSslServerContext.setTicketKeys(byte[]).
Now we throw new NPE if byte[] is not null.
Result:
Added new null checks when it is necessary, removed unnecessary null checks and fixed some NPE problems.
Modifications:
- Added a static modifier for CompositeByteBuf.Component.
This class is an inner class, but does not use its embedded reference to the object which created it. This reference makes the instances of the class larger, and may keep the reference to the creator object alive longer than necessary.
- Removed unnecessary boxing/unboxing operations in HttpResponseDecoder, RtspResponseDecoder, PerMessageDeflateClientExtensionHandshaker and PerMessageDeflateServerExtensionHandshaker
A boxed primitive is created from a String, just to extract the unboxed primitive value.
- Removed unnecessary 3 times calculations in DiskAttribute.addContent(...).
- Removed unnecessary checks if file exists before call mkdirs() in NativeLibraryLoader and PlatformDependent.
Because the method mkdirs() has this check inside.
- Removed unnecessary `instanceof AsciiString` check in StompSubframeAggregator.contentLength(StompHeadersSubframe) and StompSubframeDecoder.getContentLength(StompHeaders, long).
Because StompHeaders.get(CharSequence) always returns java.lang.String.
Motivation:
We have quite a bit of code duplication between HTTP/1, HTTP/2, SPDY,
and STOMP codec, because they all have a notion of 'headers', which is a
multimap of string names and values.
Modifications:
- Add TextHeaders and its default implementation
- Add AsciiString to replace HttpHeaderEntity
- Borrowed some portion from Apache Harmony's java.lang.String.
- Reimplement HttpHeaders, SpdyHeaders, and StompHeaders using
TextHeaders
- Add AsciiHeadersEncoder to reuse the encoding a TextHeaders
- Used a dedicated encoder for HTTP headers for better performance
though
- Remove shortcut methods in SpdyHeaders
- Replace SpdyHeaders.getStatus() with HttpResponseStatus.parseLine()
Result:
- Removed quite a bit of code duplication in the header implementations.
- Slightly better performance thanks to improved header validation and
hash code calculation
Motivation:
StompSubframeEncoderTest fails because StompHeaders does not respect the order of the headers set.
Modifications:
Use LinkedHashMap instead of HashMap
Result:
Fixes test failures
Motivation:
We have different message aggregator implementations for different
protocols, but they are very similar with each other. They all stems
from HttpObjectAggregator. If we provide an abstract class that provide
generic message aggregation functionality, we will remove their code
duplication.
Modifications:
- Add MessageAggregator which provides generic message aggregation
- Reimplement all existing aggregators using MessageAggregator
- Add DecoderResultProvider interface and extend it wherever possible so
that MessageAggregator respects the state of the decoded message
Result:
Less code duplication