- Related issue: #1432
- Add Future.isCancellable()
- Add Promise.setUncancellable() which is meant to be used for the party that runs the task uncancellable once started
- Implement Future.isCancelled() and Promise.cancel(boolean) properly
The API changes made so far turned out to increase the memory footprint
and consumption while our intention was actually decreasing them.
Memory consumption issue:
When there are many connections which does not exchange data frequently,
the old Netty 4 API spent a lot more memory than 3 because it always
allocates per-handler buffer for each connection unless otherwise
explicitly stated by a user. In a usual real world load, a client
doesn't always send requests without pausing, so the idea of having a
buffer whose life cycle if bound to the life cycle of a connection
didn't work as expected.
Memory footprint issue:
The old Netty 4 API decreased overall memory footprint by a great deal
in many cases. It was mainly because the old Netty 4 API did not
allocate a new buffer and event object for each read. Instead, it
created a new buffer for each handler in a pipeline. This works pretty
well as long as the number of handlers in a pipeline is only a few.
However, for a highly modular application with many handlers which
handles connections which lasts for relatively short period, it actually
makes the memory footprint issue much worse.
Changes:
All in all, this is about retaining all the good changes we made in 4 so
far such as better thread model and going back to the way how we dealt
with message events in 3.
To fix the memory consumption/footprint issue mentioned above, we made a
hard decision to break the backward compatibility again with the
following changes:
- Remove MessageBuf
- Merge Buf into ByteBuf
- Merge ChannelInboundByte/MessageHandler and ChannelStateHandler into ChannelInboundHandler
- Similar changes were made to the adapter classes
- Merge ChannelOutboundByte/MessageHandler and ChannelOperationHandler into ChannelOutboundHandler
- Similar changes were made to the adapter classes
- Introduce MessageList which is similar to `MessageEvent` in Netty 3
- Replace inboundBufferUpdated(ctx) with messageReceived(ctx, MessageList)
- Replace flush(ctx, promise) with write(ctx, MessageList, promise)
- Remove ByteToByteEncoder/Decoder/Codec
- Replaced by MessageToByteEncoder<ByteBuf>, ByteToMessageDecoder<ByteBuf>, and ByteMessageCodec<ByteBuf>
- Merge EmbeddedByteChannel and EmbeddedMessageChannel into EmbeddedChannel
- Add SimpleChannelInboundHandler which is sometimes more useful than
ChannelInboundHandlerAdapter
- Bring back Channel.isWritable() from Netty 3
- Add ChannelInboundHandler.channelWritabilityChanges() event
- Add RecvByteBufAllocator configuration property
- Similar to ReceiveBufferSizePredictor in Netty 3
- Some existing configuration properties such as
DatagramChannelConfig.receivePacketSize is gone now.
- Remove suspend/resumeIntermediaryDeallocation() in ByteBuf
This change would have been impossible without @normanmaurer's help. He
fixed, ported, and improved many parts of the changes.
- Fixes#1282 (not perfectly, but to the extent it's possible with the current API)
- Add AddressedEnvelope and DefaultAddressedEnvelope
- Make DatagramPacket extend DefaultAddressedEnvelope<ByteBuf, InetSocketAddress>
- Rename ByteBufHolder.data() to content() so that a message can implement both AddressedEnvelope and ByteBufHolder (DatagramPacket does) without introducing two getter methods for the content
- Datagram channel implementations now understand ByteBuf and ByteBufHolder as a message with unspecified remote address.
shutdownGracefully() provides two optional parameters that give more
control over when an executor has to be shut down.
- Related issue: #1307
- Add shutdownGracefully(..) and isShuttingDown()
- Deprecate shutdown() / shutdownNow()
- Replace lastAccessTime with lastExecutionTime and update it after task
execution for accurate quiet period check
- runAllTasks() and runShutdownTasks() update it automatically.
- Add updateLastExecutionTime() so that subclasses can update it
- Add a constructor parameter that tells not to add an unncessary wakeup
task in execute() if addTask() wakes up the executor thread
automatically. Previously, execute() always called wakeup() after
addTask(), which often caused an extra dummy task in the task queue.
- Use shutdownGracefully() wherever possible / Deprecation javadoc
- Reduce the running time of SingleThreadEventLoopTest from 40s to 15s
using custom graceful shutdown parameters
- Other changes made along with this commit:
- takeTask() does not throw InterruptedException anymore.
- Returns null on interruption or wakeup
- Make sure runShutdownTasks() return true even if an exception was
raised while running the shutdown tasks
- Remove unnecessary isShutdown() checks
- Consistent use of SingleThreadEventExecutor.nanoTime()
Replace isWakeupOverridden with a constructor parameter
- Do not attempt to validate localhost by binding a socket because it can fail when SecurityManager is in use
- Find loopback interface first and get address from there instead of getting loopback address from InetAddress.getLocalHost() (because it's more reliable)
- Instead of throwing an Error, just log and fall back to 127.0.0.1 while determining localhost address
- Now works without the transport package
- Renamed TransferFuture to ProgressiveFuture and ChannelProgressiveFuture / same for promises
- ProgressiveFutureListener now extends GenericProgressiveFutureListener and GenericFutureListener (add/removeTransferListener*() were removed)
- Renamed DefaultEventListeners to DefaultFutureListeners and only accept GenericFutureListeners
- Various clean-up
- Count the number of select() calls made to wait until reaching at the expected dead line, and rebuild selectors if too many select() calls were made.
- Rename directbyDefault to preferDirect
- Add a system property 'io.netty.prederDirect' to allow a user from changing the preference on launch-time
- Merge UnpooledByteBufAllocator.DEFAULT_BY_* to DEFAULT
- Borrow SLF4J API which is the best of the best
- InternalLoggerFactory now automatically detects the logging framework
using static class loading. It tries SLF4J, Log4J, and then falls back
to java.util.logging.
- Remove OsgiLogger because it is very likely that OSGi container
already provides a bridge for existing logging frameworks
- Remove JBossLogger because the latest JBossLogger implementation seems
to implement SLF4J binding
- Upgrade SLF4J to 1.7.2
- Remove tests for the untestable logging frameworks
- Remove TestAny
Now that we are going to use buffer pooling by default, it is obvious
that a user will forget to call .free() and report memory leak. In this
case, we should have a tool to determine if it is a bug in our allocator
implementation or in the user's code.
This pull request adds a system property flag called
'io.netty.resourceLeakDetection'. If set, when a user forgets to call
.free(), the ResourceLeakDetector will detect it and log a message with
detailed stack trace to tell where the leaked buffer has been allocated.
Because obtaining stack trace is an expensive operation, I used sampling
technique. Allocation is recorded only for every 113th allocation. I
chose 113 because it's a prime number.
In production, a user might not want to enable this option due to
potential performance impact. If a user does not specify the
'-Dio.netty.resourceLeakDetection' option leak detection is disabled.
Even if the leak detection is enabled, the overhead should be less than
5% because only ~1% of allocations are monitored.
I also replaced SharedResourceMisuseDetector with ResourceLeakDetector.
- Add PooledUnsafeDirectByteBuf, a variant of PooledDirectByteBuf, which
accesses its underlying direct ByteBuffer using sun.misc.Unsafe.
- To decouple Netty from sun.misc.*, sun.misc.Unsafe is accessed via
PlatformDependent.
- This change solely introduces about 8+% improvement in direct memory
access according to the tests conducted as described in #918
use single static initialization of available metrics monitor registries
* This changes the original implementation to work in a similar way to
how slf4j selects and loads an implementation.
* Uses a single static instance so intialization is done only once.
* Doesn't throw IllegalStateException if multiple implementations are
found on the classpath. It instead selects and uses the first
implementation returned by iterator()
* Class left as an iterable to keep the API the same
add yammer metrics to examples to allow them to publish metrics
publish the number of threads used in an EventLoopGroup see issue #718
* seems like the better place to put this because it sets the default
thread count if the MultithreadEventLoopGroup uses super(0,...)
* It also happens to be the common parent class amongst all the
MultiThreadedEventLoopGroup implementations
* Count is reported for
io.netty.channel.{*,.local,.socket.aio,.socket.nio}
fix cosmetic issues pointed out in pull request and updated notice.txt
see https://github.com/netty/netty/pull/780
count # of channels registered in single threaded event loop
measure how many times Selector.select return before SELECT_TIME
This commit introduces a new API for ByteBuf allocation which fixes
issue #643 along with refactoring of ByteBuf for simplicity and better
performance. (see #62)
A user can configure the ByteBufAllocator of a Channel via
ChannelOption.ALLOCATOR or ChannelConfig.get/setAllocator(). The
default allocator is currently UnpooledByteBufAllocator.HEAP_BY_DEFAULT.
To allocate a buffer, do not use Unpooled anymore. do the following:
ctx.alloc().buffer(...); // allocator chooses the buffer type.
ctx.alloc().heapBuffer(...);
ctx.alloc().directBuffer(...);
To deallocate a buffer, use the unsafe free() operation:
((UnsafeByteBuf) buf).free();
The following is the list of the relevant changes:
- Add ChannelInboundHandler.freeInboundBuffer() and
ChannelOutboundHandler.freeOutboundBuffer() to let a user free the
buffer he or she allocated. ChannelHandler adapter classes implement
is already, so most users won't need to call free() by themselves.
freeIn/OutboundBuffer() methods are invoked when a Channel is closed
and deregistered.
- All ByteBuf by contract must implement UnsafeByteBuf. To access an
unsafe operation: ((UnsafeByteBuf) buf).internalNioBuffer()
- Replace WrappedByteBuf and ByteBuf.Unsafe with UnsafeByteBuf to
simplify overall class hierarchy and to avoid unnecesary instantiation
of Unsafe instances on an unsafe operation.
- Remove buffer reference counting which is confusing
- Instantiate SwappedByteBuf lazily to avoid instantiation cost
- Rename ChannelFutureFactory to ChannelPropertyAccess and move common
methods between Channel and ChannelHandlerContext there. Also made it
package-private to hide it from a user.
- Remove unused unsafe operations such as newBuffer()
- Add DetectionUtil.canFreeDirectBuffer() so that an allocator decides
which buffer type to use safely
First cut at implementing a generic abstraction layer for pluggable
metrics providers. This first cut is closely modeled after Yammer
Metrics. It remains to be seen if it is indeed flexibel enough to
support other providers.
Provide a default implementation of this new abstraction layer
based on Yammer Metrics.
Support pluggable Monitoring Providers using Java 6's ServiceLoader.
Use this new abstraction layer to provide stats on (a) number of
Timeouts executed per second and (b) distribution of absolute
deviation between scheduled and actual Timeout execution time in
HashedWheelTimer.
* Interface ValueDistributionMonitor, a monitor for histograms.
* Interface EventRateMonitor, a monitor for measuring the rate per time
unit of specific events.
* Interface ValueMonitor, a monitor for tracking an arbitrary datum's
current value
* Interface CounterMonitor, a monitor for incrementing/decrementing a
long value
* Interface MonitorRegistry, a registry for monitors that serves as the
interface between Netty and concrete metrics providers as e.g. Yammer
Metrics.
* Interface MonitorRegistryFactory, to be implemented by metrics
providers.
* Document how to use Netty's new monitoring support in javadocs for
package io.netty.monitor.
- Removed VoidEnum because a user can now specify Void instead
- AIO: Prefer discardReadBytes to clear
- AIO: Fixed a potential bug where notifyFlushFutures() is not called
if flush() was requested with no outbound data
- Really attempt to create a queue to determine LTQ can be initialized
in runtime, and cache the result
- Remove unnecessary Class<T> parameter in createQueue()
- Remove unused createQueue(Collection)
- AbstractChannel now handles flushing a message buffer
- Cleaned up DatagramChannel interface
- Removed ProtocolFamily because a user can create an NIO
DatagramChannel and specify it as a constructor parameter
- UniqueName and UniqueKey constructors became public so that
I don't need to create a subclass every time.
- UniqueKey removes the duplication between ChannelOption and
AttributeKey
- UniqueName provides common name collision check for AttributeKey,
ChannelOption, and Signal.
- Replaced ReplayError with Signal
- SingleThreadEventLoop now implements ScheduledExecutorService
- Scheduled tasks are automatically fetched into taskQueue by
pollTask() and takeTask()
- Removed MapBackedSet because Java 6 provides it