- Fixes#1282 (not perfectly, but to the extent it's possible with the current API)
- Add AddressedEnvelope and DefaultAddressedEnvelope
- Make DatagramPacket extend DefaultAddressedEnvelope<ByteBuf, InetSocketAddress>
- Rename ByteBufHolder.data() to content() so that a message can implement both AddressedEnvelope and ByteBufHolder (DatagramPacket does) without introducing two getter methods for the content
- Datagram channel implementations now understand ByteBuf and ByteBufHolder as a message with unspecified remote address.
- Fixes#1315
If a user specifies the arena size of 0, the pool is now disabled
instead of raising an IllegalArgumentException. Using this, you can
disable only heap or direct buffer pool easily. Once disabled,
PooledByteBufAllocator will delegate the allocation request to
UnpooledByteBufAllocator.
- Fixes#1229
- Primarily written by @normanmaurer and revised by @trustin
This commit removes the notion of unfolding from the codec framework
completely. Unfolding was introduced in Netty 3.x to work around the
shortcoming of the codec framework where encode() and decode() did not
allow generating multiple messages.
Such a shortcoming can be fixed by changing the signature of encode()
and decode() instead of introducing an obscure workaround like
unfolding. Therefore, we changed the signature of them in 4.0.
The change is simple, but backward-incompatible. encode() and decode()
do not return anything. Instead, the codec framework will pass a
MessageBuf<Object> so encode() and decode() can add the generated
messages into the MessageBuf.
This pull request provides a framework for exchanging a very large
stream between handlers, typically between a decoder and an inbound
handler (or between a handler that writes a message and an encoder that
encodes that message).
For example, an HTTP decoder, previously, generates multiple
micro-messages to decode an HTTP message (i.e. HttpRequest +
HttpChunks). With the streaming API, The HTTP decoder can simply
generate a single HTTP message whose content is a Stream. And then the
inbound handler can consume the Stream via the buffer you created when
you begin to read the stream. If you create a buffer whose capacity is
bounded, you can handle a very large stream without allocating a lot of
memory. If you just want to wait until the whole content is ready, you
can also do that with an unbounded buffer.
The streaming API also supports a limited form of communication between
a producer (i.e. decoder) and a consumer. A producer can abort the
stream if the stream is not valid anymore. A consumer can choose to
reject or discard the stream, where rejection is for unrecoverable
failure and discard is for recoverable failure.
P.S. Special thanks to @jpinner for the initial input.
- Make PoolSubpage a linked list node in the pool
- Now that a subpage is added to and removed from the pool correctly, allocating a subpage from the pool became vastly simpler.
- Rename directbyDefault to preferDirect
- Add a system property 'io.netty.prederDirect' to allow a user from changing the preference on launch-time
- Merge UnpooledByteBufAllocator.DEFAULT_BY_* to DEFAULT
- Rename ChannelHandlerAdapter to ChannelDuplexHandler
- Add ChannelHandlerAdapter that implements only ChannelHandler
- Rename CombinedChannelHandler to CombinedChannelDuplexHandler and
improve runtime validation
- Remove ChannelInbound/OutboundHandlerAdapter which are not useful
- Make ChannelOutboundByteHandlerAdapter similar to
ChannelInboundByteHandlerAdapter
- Make the tail and head handler of DefaultChannelPipeline accept both
bytes and messages. ChannelHandlerContext.hasNext*() were removed
because they always return true now.
- Removed various unnecessary null checks.
- Correct method/field names:
inboundBufferSuspended -> channelReadSuspended
- Move common methods from ByteBuf to Buf
- Rename ensureWritableBytes() to ensureWritable()
- Rename readable() to isReadable()
- Rename writable() to isWritable()
- Add isReadable(int) and isWritable(int)
- Add AbstractMessageBuf
- Rewrite DefaultMessageBuf and QueueBackedMessageBuf
- based on Josh Bloch's public domain ArrayDeque impl
- Rename message types for clarity
- HttpMessage -> FullHttpMessage
- HttpHeader -> HttpMessage
- HttpRequest -> FullHttpRequest
- HttpResponse -> FulllHttpResponse
- HttpRequestHeader -> HttpRequest
- HttpResponseHeader -> HttpResponse
- HttpContent now extends ByteBufHolder; no more content() method
- Make HttpHeaders abstract, make its header access methods public, and
add DefaultHttpHeaders
- Header accessor methods in HttpMessage and LastHttpContent are
replaced with HttpMessage.headers() and
LastHttpContent.trailingHeaders(). Both methods return HttpHeaders.
- Remove setters wherever possible and remove 'get' prefix
- Instead of calling setContent(), a user can either specify the content
when constructing a message or write content into the buffer.
(e.g. m.content().writeBytes(...))
- Overall cleanup & fixes
Now that we are going to use buffer pooling by default, it is obvious
that a user will forget to call .free() and report memory leak. In this
case, we should have a tool to determine if it is a bug in our allocator
implementation or in the user's code.
This pull request adds a system property flag called
'io.netty.resourceLeakDetection'. If set, when a user forgets to call
.free(), the ResourceLeakDetector will detect it and log a message with
detailed stack trace to tell where the leaked buffer has been allocated.
Because obtaining stack trace is an expensive operation, I used sampling
technique. Allocation is recorded only for every 113th allocation. I
chose 113 because it's a prime number.
In production, a user might not want to enable this option due to
potential performance impact. If a user does not specify the
'-Dio.netty.resourceLeakDetection' option leak detection is disabled.
Even if the leak detection is enabled, the overhead should be less than
5% because only ~1% of allocations are monitored.
I also replaced SharedResourceMisuseDetector with ResourceLeakDetector.
- Add PooledUnsafeDirectByteBuf, a variant of PooledDirectByteBuf, which
accesses its underlying direct ByteBuffer using sun.misc.Unsafe.
- To decouple Netty from sun.misc.*, sun.misc.Unsafe is accessed via
PlatformDependent.
- This change solely introduces about 8+% improvement in direct memory
access according to the tests conducted as described in #918