Motivation:
HTTP is a plaintext protocol which means that someone may be able
to eavesdrop the data. To prevent this, HTTPS should be used whenever
possible. However, maintaining using https:// in all URLs may be
difficult. The nohttp tool can help here. The tool scans all the files
in a repository and reports where http:// is used.
Modifications:
- Added nohttp (via checkstyle) into the build process.
- Suppressed findings for the websites
that don't support HTTPS or that are not reachable
Result:
- Prevent using HTTP in the future.
- Encourage users to use HTTPS when they follow the links they found in
the code.
Motivation:
ByteToMessageDecoder requires using an intermediate List to put results into. This intermediate list adds overhead (memory/CPU) which grows as the number of objects increases. This overhead can be avoided by directly propagating events through the ChannelPipeline via ctx.fireChannelRead(...). This also makes the semantics more clear and allows us to keep track if we need to call ctx.read() in all cases.
Modifications:
- Remove List from the method signature of ByteToMessageDecoder.decode(...) and decodeLast(...)
- Adjust all sub-classes
- Adjust unit tests
- Fix javadocs.
Result:
Adjust ByteToMessageDecoder as noted in https://github.com/netty/netty/issues/8525.
Motivation:
Socks5InitialRequestDecoder does not correctly handle fragmentation
Modifications:
- Delete detection of not enough bytes as ReplyingDecoder already handles all of this correctly.
- Add unit test
Result:
Fixes#9574.
Motivation:
There appears to be a thread-safety issue in the way that `SocksAuthRequest` is using its `CharsetEncoder` instance. `CharsetUtil#encoder` returns a cached thread-local encoder instance, so it is not correct to store this instance in a static member variable and reuse it across multiple threads. The result is an occasional `IllegalStateException` as in the following example:
```
java.lang.IllegalStateException: Current state = RESET, new state = FLUSHED
at java.base/java.nio.charset.CharsetEncoder.throwIllegalStateException(CharsetEncoder.java:989)
at java.base/java.nio.charset.CharsetEncoder.flush(CharsetEncoder.java:672)
at java.base/java.nio.charset.CharsetEncoder.encode(CharsetEncoder.java:801)
at java.base/java.nio.charset.CharsetEncoder.canEncode(CharsetEncoder.java:907)
at java.base/java.nio.charset.CharsetEncoder.canEncode(CharsetEncoder.java:982)
at io.netty.handler.codec.socks.SocksAuthRequest.<init>(SocksAuthRequest.java:43)
```
Modification:
Instead of retrieving the thread-local encoder instance once and storing it as a static member instance, the encoder should be retrieved each time the constructor is invoked. This change prevents any potential concurrency issues where multiple threads may end up using the same encoder instance.
Result:
Fixes#9556.
Motivation:
We can just use Objects.requireNonNull(...) as a replacement for ObjectUtil.checkNotNull(....)
Modifications:
- Use Objects.requireNonNull(...)
Result:
Less code to maintain.
Motivation:
We can use lambdas now as we use Java8.
Modification:
use lambda function for all package, #8751 only migrate transport package.
Result:
Code cleanup.
Motivation:
We can use the diamond operator these days.
Modification:
Use diamond operator whenever possible.
Result:
More modern code and less boiler-plate.
Motivation:
While we are not yet quite sure if we want to require Java11 as minimum we are at least sure we want to use java8 as minimum.
Modifications:
Change minimum version to java8 and update some tests which failed compilation after this change.
Result:
Use Java8 as minimum and be able to use Java8 features.
Motivation:
ByteBuf supports “marker indexes”. The intended use case for these is if a speculative operation (e.g. decode) is in process the user can “mark” and interface and refer to it later if the operation isn’t successful (e.g. not enough data). However this is rarely used in practice,
requires extra memory to maintain, and introduces complexity in the state management for derived/pooled buffer initialization, resizing, and other operations which may modify reader/writer indexes.
Modifications:
Remove support for marking and adjust testcases / code.
Result:
Fixes https://github.com/netty/netty/issues/8535.
Motivation:
Most of the maven modules do not explicitly declare their
dependencies and rely on transitivity, which is not always correct.
Modifications:
For all maven modules, add all of their dependencies to pom.xml
Result:
All of the (essentially non-transitive) depepdencies of the modules are explicitly declared in pom.xml
* Optimize AbstractByteBuf.getCharSequence() in US_ASCII case
Motivation:
Inspired by https://github.com/netty/netty/pull/8388, I noticed this
simple optimization to avoid char[] allocation (also suggested in a TODO
here).
Modifications:
Return an AsciiString from AbstractByteBuf.getCharSequence() if
requested charset is US_ASCII or ISO_8859_1 (latter thanks to
@Scottmitch's suggestion). Also tweak unit tests not to require Strings
and include a new benchmark to demonstrate the speedup.
Result:
Speed-up of AbstractByteBuf.getCharSequence() in ascii and iso 8859/1
cases
Motivation:
If you encode a SOCKS5 message like new DefaultSocks5CommandResponse(FAILURE, DOMAIN, "", 0)
you correctly get a result of 05010003000000.
But if the bndAddr is null, for example like new DefaultSocks5CommandResponse(FAILURE, DOMAIN)
the encoded result is 0501000301000000 which means the domain name has a length of one and consists of a 0-byte.
Modification:
With this commit it is also correctly encoded as a string of 0 length.
Result:
Correctly encode empty SOCKS5 address
Automatic-Module-Name entry provides a stable JDK9 module name, when Netty is used in a modular JDK9 applications. More info: http://blog.joda.org/2017/05/java-se-9-jpms-automatic-modules.html
When Netty migrates to JDK9 in the future, the entry can be replaced by actual module-info descriptor.
Modification:
The POM-s are configured to put the correct module names to the manifest.
Result:
Fixes#7218.
Motivation: Today when Netty encounters a general error while decoding
it treats this as a decoder exception. However, for fatal causes this
should not be treated as such, instead the fatal error should be carried
up the stack without the callee having to unwind causes. This was
probably done for byte to byte message decoder but is now done for all
decoders.
Modifications: Instead of translating any error to a decoder exception,
we let those unwind out the stack (note that finally blocks still
execute) except in places where an event needs to fire where we fire
with the error instead of wrapping in a decoder exception.
Result: Fatal errors will not be treated as innocent decoder exceptions.
Motivation:
According to SOCKS 5 spec, dstPort = 0 is a valid value in case of UDP ASSOCIATE.
Modifications:
- Allow 0 as port.
- Add unit tests.
Result:
Fixes [#7156].