Motivation:
ByteToMessageDecoder requires using an intermediate List to put results into. This intermediate list adds overhead (memory/CPU) which grows as the number of objects increases. This overhead can be avoided by directly propagating events through the ChannelPipeline via ctx.fireChannelRead(...). This also makes the semantics more clear and allows us to keep track if we need to call ctx.read() in all cases.
Modifications:
- Remove List from the method signature of ByteToMessageDecoder.decode(...) and decodeLast(...)
- Adjust all sub-classes
- Adjust unit tests
- Fix javadocs.
Result:
Adjust ByteToMessageDecoder as noted in https://github.com/netty/netty/issues/8525.
# Motivation:
`DefaultByteBufHolder.equals()` considers another object equal if it's an instance of `ByteBufferHolder` and if the contents of two objects are equal. However, the behavior of `equals` method is not a part of the `ByteBufHolder` contract so `DefaultByteBufHolder`'s version may be causing violation of the symmetric property if other classes have different logic.
There are already a few classes that are affected by this: `DefaultHttp2GoAwayFrame`, `DefaultHttp2UnknownFrame`, and `SctpMessage` are all overriding `equals` method breaking the symmetric property.
Another effect of this behavior is that all instances with empty data are considered equal. That may not be desireable in the situations when instances are created for predefined constants, e.g. `FullBulkStringRedisMessage.NULL_INSTANCE` and `FullBulkStringRedisMessage.EMPTY_INSTANCE` in `codec-redis`.
# Modification:
Make `DefaultByteBufHolder.equals()` implementation only work for the objects of the same class.
# Result:
- The symmetric property of the `equals` method is restored for the classes in question.
- Instances of different classes are not considered equal even if the content of the data they hold are the same.
Motivation:
We can just use Objects.requireNonNull(...) as a replacement for ObjectUtil.checkNotNull(....)
Modifications:
- Use Objects.requireNonNull(...)
Result:
Less code to maintain.
Motivation:
We can use the diamond operator these days.
Modification:
Use diamond operator whenever possible.
Result:
More modern code and less boiler-plate.
Motivation:
Most of the maven modules do not explicitly declare their
dependencies and rely on transitivity, which is not always correct.
Modifications:
For all maven modules, add all of their dependencies to pom.xml
Result:
All of the (essentially non-transitive) depepdencies of the modules are explicitly declared in pom.xml
Automatic-Module-Name entry provides a stable JDK9 module name, when Netty is used in a modular JDK9 applications. More info: http://blog.joda.org/2017/05/java-se-9-jpms-automatic-modules.html
When Netty migrates to JDK9 in the future, the entry can be replaced by actual module-info descriptor.
Modification:
The POM-s are configured to put the correct module names to the manifest.
Result:
Fixes#7218.
Motivation:
RedisDecoder can get into an infinite loop while decoding bulk strings if the final \r and \n to indicate the end of content are split on ByteBuf boundaries.
Modifications:
- We should break out of the decode loop if remainingBulkLength is 0 and we don't have enough data to read EOL
Result:
No more infinite loop in RedisDecoder#decodeBulkStringContent.