Motivation:
We tried to detect the correct alert to use depending on the CertificateException that is thrown by the TrustManager. This not worked all the time as depending on the TrustManager implementation it may also wrap a CertPathValidatorException.
Modification:
- Try to unwrap the CertificateException if needed and detect the right alert via the CertPathValidatorException.
- Add unit to verify
Result:
Send the correct alert depending on the CertificateException when using OpenSslEngine.
Motiviation:
We used ReferenceCountUtil.releaseLater(...) in our tests which simplifies a bit the releasing of ReferenceCounted objects. The problem with this is that while it simplifies stuff it increase memory usage a lot as memory may not be freed up in a timely manner.
Modifications:
- Deprecate releaseLater(...)
- Remove usage of releaseLater(...) in tests.
Result:
Less memory needed to build netty while running the tests.
Motivation:
In preparation for support of Conscrypt, I'm consolidating all of the engine-specific details so that it's easier to add new engine types that affect the behavior of SslHandler.
Modifications:
Added an enum SslEngineType that provides SSL engine-specific details.
Result:
SslHandler is more extensible for other engine types.
Motivation:
The SniHandlerTest.testServerNameParsing did fail when SslProvider.JDK was used as it the JDK SSLEngineImpl does not send an alert.
Modifications:
Ensure tests pass with JDK and OPENSSL ssl implementations.
Result:
SniHandlerTest will run with all SslProvider and not fail when SslProvider.JDK is used.
Motiviation:
We need to ensure we only consume as much da as we can maximal put in one ssl record to not produce a BUFFER_OVERFLOW when calling wrap(...).
Modification:
- Limit the amount of data that we consume based on the maximal plain text size that can be put in one ssl record
- Add testcase to verify the fix
- Tighten up testcases to ensure the amount of produced and consumed data in SslEngineResult matches the buffers. If not the tests will fail now.
Result:
Correct and conform behavior of OpenSslEngine.wrap(...) and better test coverage during handshaking in general.
Motivation:
Netty provides a adaptor from ByteBuf to Java's InputStream interface. The JDK Stream interfaces have an explicit lifetime because they implement the Closable interface. This lifetime may be differnt than the ByteBuf which is wrapped, and controlled by the interface which accepts the JDK Stream. However Netty's ByteBufInputStream currently does not take reference count ownership of the underlying ByteBuf. There may be no way for existing classes which only accept the InputStream interface to communicate when they are done with the stream, other than calling close(). This means that when the stream is closed it may be appropriate to release the underlying ByteBuf, as the ownership of the underlying ByteBuf resource may be transferred to the Java Stream.
Motivation:
- ByteBufInputStream.close() supports taking reference count ownership of the underyling ByteBuf
Result:
ByteBufInputStream can assume reference count ownership so the underlying ByteBuf can be cleaned up when the stream is closed.
Motivation:
OpenSslEngine.wrap(...) and OpenSslEngie.unwrap(...) may consume bytes even if an BUFFER_OVERFLOW / BUFFER_UNDERFLOW is detected. This is not correct as it should only consume bytes if it can process them without storing data between unwrap(...) / wrap(...) calls. Beside this it also should only process one record at a time.
Modifications:
- Correctly detect BUFFER_OVERFLOW / BUFFER_UNDERFLOW and only consume bytes if non of them is detected.
- Only process one record per call.
Result:
OpenSslEngine behaves like stated in the javadocs of SSLEngine.
Motivation:
We should not use the InternalThreadLocalMap where access may be done from outside the EventLoop as this may create a lot of memory usage while not be reused anyway.
Modifications:
Not use InternalThreadLocalMap in places where the code-path will likely be executed from outside the EventLoop.
Result:
Less memory bloat.
Motivation:
Since Java 7, X509TrustManager implementation is wrapped by a JDK class
called AbstractTrustManagerWrapper, which performs an additional
certificate validation for Socket or SSLEngine-backed connections.
This makes the TrustManager implementations provided by
InsecureTrustManagerFactory and FingerprintTrustManagerFactory not
insecure enough, where their certificate validation fails even when it
should pass.
Modifications:
- Add X509TrustManagerWrapper which adapts an X509TrustManager into an
X509ExtendedTrustManager
- Make SimpleTrustManagerFactory wrap an X509TrustManager with
X509TrustManagerWrapper is the provided TrustManager does not extend
X509ExtendedTrustManager
Result:
- InsecureTrustManagerFactory and FingerprintTrustManagerFactory are now
insecure as expected.
- Fixes#5910
Motivation:
Our default cipher list has not been updated in a while. We current support some older ciphers not commonly in use and we don't support some newer ciphers which are more commonly used.
Modifications:
- Update the default list of ciphers for JDK and OpenSSL.
Result:
Default cipher list is more likely to connect to peers.
Fixes https://github.com/netty/netty/issues/5859
Motivation:
If the user removes the SslHandler while still in the processing loop we will produce an IllegalReferenceCountException. We should stop looping when the handlerwas removed.
Modifications:
Ensure we stop looping when the handler is removed.
Result:
No more IllegalReferenceCountException.
Motivation:
Add test-case for doing mutal auth with a certificate chain that holds more then one certificate.
Modifications:
Add test case
Result:
more tests.
Motivation:
the build doesnt seem to enforce this, so they piled up
Modifications:
removed unused import lines
Result:
less unused imports
Signed-off-by: radai-rosenblatt <radai.rosenblatt@gmail.com>
Motivation:
Currently FlushConsolidationHandler only consolidates if a read loop is
active for a Channel, otherwise each writeAndFlush(...) call will still
be flushed individually. When these calls are close enough, it can be
beneficial to consolidate them even outside of a read loop.
Modifications:
When we allow a flush to "go through", don't perform it immediately, but
submit it on the channel's executor. Under high pressure, this gives
other writes a chance to enqueue before the task gets executed, and so
we flush multiple writes at once.
Result:
Lower CPU usage and less context switching.
Motivation
Give the user the ability to back out from SNI negoations.
Modifications
Put a try-catch around the select() call and re-fire any caught Exceptions.
Result
Fixes#5787
Motivation:
IdleStateHandler has a number of volatile member variables which are only accessed from the EventLoop thread. These do not have to be volatile. The accessibility of these member variables are not consistent between private and package private. The state variable can also use a byte instead of an int.
Modifications:
- Remove volatile from member variables
- Change access to private for member variables
- Change state from int to byte
Result:
IdleStateHandler member variables cleaned up.
Motivation:
IdleStateHandler and ReadTimeoutHandler could mistakely not fire an event even if no channelRead(...) call happened.
Modifications:
Only set lastReadTime if a read happened before.
Result:
More correct IdleStateHandler / ReadTimeoutHandler.
Motivation:
There is an incoherence in terms of API when one wants to use
startTls: without startTls one can use the SslContextBuilder's
method newHandler, but with startTls, the developper is forced
to call directly the SslHandler constructor.
Modifications:
Introduce startTls as a SslContextBuilder parameter as well as a
member in SslContext (and thus Jdk and OpenSsl implementations!).
Always use this information to call the SslHandler constructor.
Use false by default, in particular in deprecated constructors of
the SSL implementations.
The client Context use false by default
Results:
Fixes#5170 and more generally homogenise the API so that
everything can be done via SslContextBuilder.
Motivation
I'm looking to harden our SSL impl. a little bit and add some guards agaist certain types of abuse. One can think of invalid hostname strings in the SNI extenstion or invalid SNI handshakes altogether. This will require measuring, velocity tracking and other things.
Modifications
Adding a protected `lookup(ctx, hostname)` method that is called from SniHandler's `select(...)` method which users can override and implement custom behaviour. The default implementation will simply call the AsyncMapper.
Result
It's possible to get a hold onto the ChannelHandlerContext. Users can override that method and do something with it right there or they can delegate it to something else. SniHandler is happy as long as a `Future<SslContext>` is being returned.
Motivation:
af632278d2 introduced a test which only worked on some jvm versions and specific os'es.
Modifications:
Fix test to work on different java versions and os'es
Result:
No flacky test.
Motivation:
We need to ensure we not set duplicated certificates when using OpenSslEngine.
Modifications:
- Skip first cert in chain when set the chain itself and so not send duplicated certificates
- Add interopt unit tests to ensure no duplicates are send.
Result:
No more duplicates.
Motivation:
AbstractTrafficShapingHandler has a package-private method called "userDefinedWritabilityIndex()" which a user may need to override if two sub-classes wants to be used in the ChannelPipeline.
Modifications:
Mark method protected.
Result:
Easier to extend AbstractTrafficShapingHandler.
Motivation:
SslHandler can be cleaned up a bit in terms of naming and duplicated code.
Modifications:
- Fix naming of arguments
- Not schedule timeout event if not really needed
- share some code and simplify
Result:
Cleaner code.
Motivation:
When a SecurityManager is in place it may dissallow accessing the property which will lead to not be able to load the application.
Modifications:
Use AccessController.doPrivileged(...)
Result:
No more problems with SecurityManager.
Motivation
The SniHandler is currently hiding its replaceHandler() method and everything that comes with it. The user has no easy way of getting a hold onto the SslContext for the purpose of reference counting for example. The SniHandler does have getter methods for the SslContext and hostname but they're not very practical or useful. For one the SniHandler will remove itself from the pipeline and we'd have to track a reference of it externally and as we saw in #5745 it'll possibly leave its internal "selection" object with the "EMPTY_SELECTION" value (i.e. we've just lost track of the SslContext).
Modifications
Expose replaceHandler() and allow the user to override it and get a hold onto the hostname, SslContext and SslHandler that will replace the SniHandler.
Result
It's possible to get a hold onto the SslContext, the hostname and the SslHandler that is about to replace the SniHandler. Users can add additional behavior.
Motiviation:
Previously the way how CertificateRequestCallback was working had some issues which could cause memory leaks and segfaults. Due of this tcnative code was updated to change the signature of the method provided by the interface.
Modifications:
Update CertificateRequestCallback implementations to match new interface signature.
Result:
No more segfaults / memory leaks when using boringssl or openssl >= 1.1.0
Motivation
SslHandler's handlerRemoved() is supposed to release the SSLEngine (which it does) but there is no Test for it to make sure it really happens and doesn't unexpectedly change in the future.
Modifications
Add a Unit Test that makes sure that SslHandler releases the SSLEngine when the Channel gets closed.
Result
Assurance that SslHandler will not leak (ReferenceCounted) SSLEngines.
Motivation:
The SniHandler attempts to generate a new SslHandler from the selected SslContext in a and insert that SslHandler into the pipeline. However if the underlying channel has been closed or the pipeline has been modified the pipeline.replace(..) operation may fail. Creating the SslHandler may also create a SSLEngine which is of type ReferenceCounted. The SslHandler states that if it is not inserted into a pipeline that it will not take reference count ownership of the SSLEngine. Under these conditions we will leak the SSLEngine if it is reference counted.
Modifications:
- If the pipeline.replace(..) operation fails we should release the SSLEngine object.
Result:
Fixes https://github.com/netty/netty/issues/5678
Motivation:
When SslHandler.close(...) is called (as part of Channel.close()). it will also try to flush pending messages. This may fail for various reasons, but we still should propergate the close operation
Modifications:
- Ensure flush(...) itself will not throw an Exception if we was able to at least fail one pending promise (which should always be the case).
- If flush(...) fails as part of close ensure we still close the channel and then rethrow.
Result:
No more lost close operations possible if an exception is thrown during close
Motivation:
ReferenceCountedOpenSslEngine depends upon the the SslContext to cleanup JNI resources. If we don't wait until the ReferenceCountedOpenSslEngine is done with cleanup before cleaning up the SslContext we may crash the JVM.
Modifications:
- Wait for the channels to close (and thus the ReferenceCountedOpenSslEngine to be cleaned up) before cleaning up the associated SslContext.
Result:
Cleanup sequencing is correct and no more JVM crash.
Fixes https://github.com/netty/netty/issues/5692
Motivation:
We should fail all promises with the correct SSLENGINE_CLOSED exception one the engine is closed. We did not fail the current promise with this exception if the ByteBuf was not readable.
Modifications:
Correctly fail promises.
Result:
More correct handling of promises if the SSLEngine is closed.
Motivation:
Commit b963595988 added a unit that will not work when KeyManagerFactory is used.
Modifications:
Only run the test if OpenSsl.useKeyManagerFactory() returns false.
Result:
Builds with boringssl
Motivation:
The private key and certificate that are passed into #serKeyMaterial() could be PemEncoded in which case the #toPEM() methods return the identity of the value.
That in turn will fail in the #toBIO() step because the underlying ByteBuf is not necessarily direct.
Modifications:
- Use toBIO(...) which also works with non direct PemEncoded values
- Add unit test.
Result:
Correct handling of PemEncoded.
Motivation:
Its completely fine to start writing before the handshake completes when using SslHandler. The writes will be just queued.
Modifications:
Remove the missleading and incorrect javadoc.
Result:
Correct javadoc.
Motivation:
If netty is used in a tomcat container tomcat itself may ship tcnative. Because of this we will try to use OpenSsl in netty and fail because it is different to netty-tcnative.
Modifications:
Ensure if we find tcnative it is really netty-tcnative before using it.
Result:
No more problems when using netty in a tomcat container that also has tcnative installed.
Motivation:
We need to ensure we only call ReferenceCountUtil.safeRelease(...) in finalize() if the refCnt() > 0 as otherwise we will log a message about IllegalReferenceCountException.
Modification:
Check for a refCnt() > 0 before try to release
Result:
No more IllegalReferenceCountException produced when run finalize() on OpenSsl* objects that where explicit released before.
Motivation:
netty-tcnative API has changed to remove a feature that contributed to a memory leak.
Modifications:
- Update to use the modified netty-tcnative API
Result:
Netty can use the latest netty-tcnative.
Motivation:
In latest refeactoring we failed to cleanup imports and also there are some throws declarations which are not needed.
Modifications:
Cleanup imports and throws declarations
Result:
Cleaner code.
Motivation:
OpenSslEngine and OpenSslContext currently rely on finalizers to ensure that native resources are cleaned up. Finalizers require the GC to do extra work, and this extra work can be avoided if the user instead takes responsibility of releasing the native resources.
Modifications:
- Make a base class for OpenSslENgine and OpenSslContext which does not have a finalizer but instead implements ReferenceCounted. If this engine is inserted into the pipeline it will be released by the SslHandler
- Add a new SslProvider which can be used to enable this new feature
Result:
Users can opt-in to a finalizer free OpenSslEngine and OpenSslContext.
Fixes https://github.com/netty/netty/issues/4958
Motivation:
Sometimes it may be useful to explicit disable the usage of the KeyManagerFactory when using OpenSsl.
Modifications:
Add io.netty.handler.ssl.openssl.useKeyManagerFactory which can be used to explicit disable KeyManagerFactory usage.
Result:
More flexible usage.
Motivation:
We should take the readerIndex into account whe write into the BIO. Its currently not a problem as we slice before and so the readerIndex is always 0 but we should better not depend on this as this will break easily if we ever refactor the code and not slice anymore.
Modifications:
Take readerIndex into acount.
Result:
More safe and correct use.
Motivation:
When we try to close the Channel due a timeout we need to ensure we not log if the notification of the promise fails as it may be completed in the meantime.
Modifications:
Add another constructor to ChannelPromiseNotifier and PromiseNotifier which allows to log on notification failure.
Result:
No more miss-leading logs.