Motivation:
We should allow to get a ChannelOption/AttributeKey from a String. This will make it a lot easier to make use of configuration files in applications.
Modifications:
- Add exists(...), newInstance(...) method to ChannelOption and AttributeKey and alter valueOf(...) to return an existing instance for a String or create one.
- Add unit tests.
Result:
Much more flexible usage of ChannelOption and AttributeKey.
Motivation:
As we plan to have other native transports soon (like a kqueue transport) we should move unix classes/interfaces out of the epoll package so we
introduce other implementations without breaking stuff before the next stable release.
Modifications:
Create a new io.netty.channel.unix package and move stuff over there.
Result:
Possible to introduce other native impls beside epoll.
Motivation:
If SO_LINGER is used shutdownOutput() and close() syscalls will block until either all data was send or until the timeout exceed. This is a problem when we try to execute them on the EventLoop as this means the EventLoop may be blocked and so can not process any other I/O.
Modifications:
- Add AbstractUnsafe.closeExecutor() which returns null by default and use this Executor for close if not null.
- Override the closeExecutor() in NioSocketChannel and EpollSocketChannel and return GlobalEventExecutor.INSTANCE if getSoLinger() > 0
- use closeExecutor() in shutdownInput(...) in NioSocketChannel and EpollSocketChannel
Result:
No more blocking of the EventLoop if SO_LINGER is used and shutdownOutput() or close() is called.
Motivation:
isRoot() is an expensive operation. We should avoid calling it if
possible.
Modifications:
Move the isRoot() checks to the end of the 'if' block, so that isRoot()
is evaluated only when really necessary.
Result:
isRoot() is evaluated only when SO_BROADCAST is set and the bind address
is anylocal address.
Related:
- 8b2fb2b985cd969719f23da689eb3dc67282070a
Motivation:
The commit mentioned above introduced a regression where
channelReadComplete() event is swallowed by a handler which was added
dynamically.
Modifications:
Do not suppress channelReadComplete() if the current handler's
channelRead() method was not invoked at all, so that a just-added
handler does not suppress channelReadComplete().
Result:
Regression is gone, and channelReadComplete() is invoked when necessary.
Related:
- 375b9e1307c83a648329711c02237b360d8e3cd5
Motivation:
Even if a handler called ctx.fireChannelReadComplete(), the next handler
should not get its channelReadComplete() invoked if fireChannelRead()
was not invoked before.
Modifications:
- Ensure channelReadComplete() is invoked only when the handler of the
current context actually produced a message, because otherwise there's
no point of triggering channelReadComplete().
i.e. channelReadComplete() must follow channelRead().
- Fix a bug where ctx.read() was not called if the handler of the
current context did not produce any message, making the connection
stall. Read the new comment for more information.
Result:
- channelReadComplete() is invoked only when it makes sense.
- No stale connection
Motivation:
Because of a re-entrance bug in PendingWriteQueue it was possible to get the queue corrupted and also trigger an IllegalStateException caused by multiple recycling of the internal PendingWrite objects.
Modifications:
- Correctly guard against re-entrance
Result:
No more IllegalStateException possible
Motiviation:
When using domain sockets on linux it is supported to recv and send file descriptors. This can be used to pass around for example sockets.
Modifications:
- Add support for recv and send file descriptors when using EpollDomainSocketChannel.
- Allow to obtain the file descriptor for an Epoll*Channel so it can be send via domain sockets.
Result:
recv and send of file descriptors is supported now.
Motivation:
As the ByteBuf is not set to null after release it we may try to release it again in handleReadException()
Modifications:
- set ByteBuf to null to avoid another byteBuf.release() to be called in handleReadException()
Result:
No IllegalReferenceCountException anymore
Motivation:
ctx.fireChannelReadComplete() should only be called if something is produced during a channelRead(...) operation. Also we must ensure that it will be called
if channelRead(...) produced something at some point as channelRead(...) maybe called multiple times by the transport before channelReadComplete(...) is called.
Modifications:
- Ensure channelReadComplete(...) only triggers ctx.fireChannelReadComplete() when a previous channelRead(...) call produced a message
- Ensure read() is called of more data is needed
Result:
Correct semantic with channelReadComplete(...) events and also ensure no stales
Motivation:
Fix a minor documentation bug in
ChannelHandlerContext#fireChannelReadComplete.
Modifications:
ChannelHandlerContext#fireChannelReadComplete no longer references an
incorrect method in its javadoc.
Results:
Documentation is correct.
Motivation:
We only provided a constructor in DefaultFileRegion that takes a FileChannel which means the File itself needs to get opened on construction. This has the problem that if you want to write a lot of Files very fast you may end up with may open FD's even if they are not needed yet. This can lead to hit the open FD limit of the OS.
Modifications:
Add a new constructor to DefaultFileRegion which allows to construct it from a File. The FileChannel will only be obtained when transferTo(...) is called or the DefaultFileRegion is explicit open'ed via open() (this is needed for the native epoll transport)
Result:
Less resource usage when writing a lot of DefaultFileRegion.
Related: #3212
Motivation:
When SslHandler and ChunkedWriteHandler exists in a pipeline together,
it is possible that ChunkedWriteHandler.channelWritabilityChanged()
invokes SslHandler.flush() and vice versa. Because they can feed each
other (i.e. ChunkedWriteHandler.channelWritabilityChanged() ->
SslHandler.flush() -> ChunkedWriteHandler.channelWritabilityChanged() ->
..), they can fall into an inconsistent state due to reentrance (e.g.
bad MAC record at the remote peer due to incorrect ordering.)
Modifications:
- Trigger channelWritabilityChanged() using EventLoop.execute() when
there's a chance where channelWritabilityChanged() can cause a
reentrance issue
- Fix test failures caused by the modification
Result:
Fix the handler reentrance issues related with a
channelWritabilityChanged() event
Related: #3212
Motivation:
PendingWriteQueue.recycle() updates its data structure after triggering
a channelWritabilityChanged() event. It causes a rare corruption such as
double free when channelWritabilityChanged() method accesses the
PendingWriteQueue.
Modifications:
Update the state of PendingWriteQueue before triggering an event.
Result:
Fix a rare double-free problem
Related: #3190
Motivation:
When an outbound handler method raises an exception, its promise is
marked as failed. If the promise is done already, the exception is
logged.
When the promise is void, exceptionCaught() must be triggered to notify
a user. However, AbstractChannelHandlerContext simply swallows it.
Modifications:
Do not swallow an exception when the promise is void.
Result:
A user who uses a void promise for an outbound operation will be
notified on failure.
Related: #3189
Motivation:
OIO transport implementations block for at most 1 second to wait for
additional messages (or accepted connections).
However, because AbstractOioMessageChannel defers the channelRead()
events for the messages read so far until there's nothing to read up to
maxMessagesPerRead, any read operation will be followed by a 1-second
delay.
Modifications:
Fire channelRead() events as soon as doRead() returns so that there is
no 1 second delay between the actual read and the channelRead() event.
Result:
No more weird 1-second delay
Related: #3156
Motivation:
Let's say we have a channel with the following pipeline configuration:
HEAD --> [E1] H1 --> [E2] H2 --> TAIL
when the channel is deregistered, the channelUnregistered() methods of
H1 and H2 will be invoked from the executor thread of E1 and E2
respectively. To ensure that the channelUnregistered() methods are
invoked from the correct thread, new one-time tasks will be created
accordingly and be scheduled via Executor.execute(Runnable).
As soon as the one-time tasks are scheduled,
DefaultChannelPipeline.fireChannelUnregistered() will start to remove
all handlers from the pipeline via teardownAll(). This process is
performed in reversed order of event propagation. i.e. H2 is removed
first, and then H1 is removed.
If the channelUnregistered() event has been passed to H2 before H2 is
removed, a user does not see any problem.
If H2 has been removed before channelUnregistered() event is passed to
H2, a user will often see the following confusing warning message:
An exceptionCaught() event was fired, and it reached at the tail of
the pipeline. It usually means the last handler in the pipeline did
not handle the exception.
Modifications:
To ensure that the handlers are removed *after* all events are
propagated, traverse the pipeline in ascending order before performing
the actual removal.
Result:
A user does not get the confusing warning message anymore.
Motivation:
AbstractUnsafe considers two possibilities during channel registration. First,
the channel may be an outgoing connection, in which case it will be registered
before becoming active. Second, the channel may be an incoming connection in,
which case the channel will already be active when it is registered. To handle
the second case, AbstractUnsafe checks if the channel is active after
registration and calls ChannelPipeline.fireChannelActive() if so. However, if
an active channel is deregistered and then re-registered this logic causes a
second fireChannelActive() to be invoked. This is unexpected; it is reasonable
for handlers to assume that this method will only be invoked once per channel.
Modifications:
This change introduces a flag into AbstractUnsafe to recognize if this is the
first or a subsequent registration. ChannelPipeline.fireChannelActive() is only
possible for the first registration.
Result:
ChannelPipeline.fireChannelActive() is only called once.
Motivation:
Found performance issues via FindBugs and PMD.
Modifications:
- Removed unnecessary boxing/unboxing operations in DefaultTextHeaders.convertToInt(CharSequence) and DefaultTextHeaders.convertToLong(CharSequence). A boxed primitive is created from a string, just to extract the unboxed primitive value.
- Added a static modifier for DefaultHttp2Connection.ParentChangedEvent class. This class is an inner class, but does not use its embedded reference to the object which created it. This reference makes the instances of the class larger, and may keep the reference to the creator object alive longer than necessary.
- Added a static compiled Pattern to avoid compile it each time it is used when we need to replace some part of authority.
- Improved using of StringBuilders.
Result:
Performance improvements.
Motivation:
ChannelPromiseAggregator and ChannelPromiseNotifiers only allow
consumers to work with Channels as the result type. Generic versions
of these classes allow consumers to aggregate or broadcast the results
of an asynchronous execution with other result types.
Modifications:
Add PromiseAggregator and PromiseNotifier. Add unit tests for both.
Remove code in ChannelPromiseAggregator and ChannelPromiseNotifier and
modify them to extend the new base classes.
Result:
Consumers can now aggregate or broadcast the results of an asynchronous
execution with results types other than Channel.
Related: #2945
Motivation:
Some special handlers such as TrafficShapingHandler need to override the
writability of a Channel to throttle the outbound traffic.
Modifications:
Add a new indexed property called 'user-defined writability flag' to
ChannelOutboundBuffer so that a handler can override the writability of
a Channel easily.
Result:
A handler can override the writability of a Channel using an unsafe API.
For example:
Channel ch = ...;
ch.unsafe().outboundBuffer().setUserDefinedWritability(1, false);
Related: #2034
Motivation:
Some users want to mock Bootstrap (or ServerBootstrap), and thus they
should not be final but be fully overridable and extensible.
Modifications:
Remove finals wherever possible
Result:
@daschl is happy.
Related: #2964
Motivation:
Writing a zero-length FileRegion to an NIO channel will lead to an
infinite loop.
Modification:
- Do not write a zero-length FileRegion by protecting with proper 'if'.
- Update the testsuite
Result:
Another bug fixed
Motivation:
When a datagram packet is sent to a destination where nobody actually listens to,
the server O/S will respond with an ICMP Port Unreachable packet.
The ICMP Port Unreachable packet is translated into PortUnreachableException by JDK.
PortUnreachableException is not a harmful exception that prevents a user from sending a datagram.
Therefore, we should not close a datagram channel when PortUnreachableException is caught.
Modifications:
- Do not close a channel when the caught exception is PortUnreachableException.
Result:
A datagram channel is not closed unexpectedly anymore.
Motivation:
JDK's exception messages triggered by a connection attempt failure do
not contain the related remote address in its message. We currently
append the remote address to ConnectException's message, but I found
that we need to cover more exception types such as SocketException.
Modifications:
- Add AbstractUnsafe.annotateConnectException() to de-duplicate the
code that appends the remote address
Result:
- Less duplication
- A transport implementor can annotate connection attempt failure
message more easily
Motiviation:
Before this change, autoRead was a volatile boolean accessed directly. Any thread that invoked the DefaultChannelConfig#setAutoRead(boolean) method would read the current value of autoRead, and then set a new value. If the old value did not match the new value, some action would be immediately taken as part of the same method call.
As volatile only provides happens-before consistency, there was no guarantee that the calling thread was actually the thread mutating the state of the autoRead variable (such that it should be the one to invoke the follow-up actions). For example, with 3 threads:
* Thread 1: get = false
* Thread 1: set = true
* Thread 1: invokes read()
* Thread 2: get = true
* Thread 3: get = true
* Thread 2: set = false
* Thread 2: invokes autoReadCleared()
* Event Loop receives notification from the Selector that data is available, but as autoRead has been cleared, cancels the operation and removes read interest
* Thread 3: set = true
This results in a livelock - autoRead is set true, but no reads will happen even if data is available (as readyOps). The only way around this livelock currently is to set autoRead to false, and then back to true.
Modifications:
Write access to the autoRead variable is now made using the getAndSet() method of an AtomicIntegerFieldUpdater, AUTOREAD_UPDATER. This also changed the type of the underlying autoRead variable to be an integer, as no AtomicBooleanFieldUpdater class exists. Boolean logic is retained by assuming that 1 is true and 0 is false.
Result:
There is no longer a race condition between retrieving the old value of the autoRead variable and setting a new value.
Motivation:
We used the wrong EventExecutor to notify for bind failures if a late registration was done.
Modifications:
Use the correct EventExecutor to notify and only use the GlobelEventExecutor if the registration fails itself.
Result:
The correct Thread will do the notification.
When a ChannelOutboundBuffer contains ByteBufs followed by a FileRegion,
removeBytes() will fail with a ClassCastException. It should break the
loop instead.
f31c630c8cc15c4de1cc7e45b6c5c8053d5bcb75 was causing
SocketGatheringWriteTest to fail because it does not take the case where
an empty buffer exists in a gathering write.
When there is an empty buffer in a gathering write, the number of
buffers returned by ChannelOutboundBuffer.nioBuffer() and the actual
number of write attemps can differ.
To remove the write requests correctly, a byte transport must use
ChannelOutboundBuffer.removeBytes()
Motivation:
Because of an incorrect logic in teh EmbeddedChannel constructor it is not possible to use EmbeddedChannel with a ChannelInitializer as constructor argument. This is because it adds the internal LastInboundHandler to its ChannelPipeline before it register itself to the EventLoop.
Modifications:
First register self to EventLoop before add LastInboundHandler to the ChannelPipeline.
Result:
It's now possible to use EmbeddedChannel with ChannelInitializer.
Motivation:
Due a regression NioSocketChannel.doWrite(...) will throw a ClassCastException if you do something like:
channel.write(bytebuf);
channel.write(fileregion);
channel.flush();
Modifications:
Correctly handle writing of different message types by using the correct message count while loop over them.
Result:
No more ClassCastException
Motivation:
The previous fix did disable the caching of ByteBuffers completely which can cause performance regressions. This fix makes sure we use nioBuffers() for all writes in NioSocketChannel and so prevent data-corruptions. This is still kind of a workaround which will be replaced by a more fundamental fix later.
Modifications:
- Revert 4059c9f3549753119576a287492dd70ae4742988
- Use nioBuffers() for all writes to prevent data-corruption
Result:
No more data-corruption but still retain the original speed.