Motivation:
When doing a gathering write we need to update the indices after the write partial completes. In the current code-base we use the wrong value when compare the expected written bytes and the actual written bytes.
Modifications:
Use the correct value when compare.
Result:
Indices are updated correctly and so no corruption can happen when resume writing after data was only partial written before.
Motivation:
So far, we used a very simple platform string such as linux64 and
linux32. However, this is far from perfection because it does not
include anything about the CPU architecture.
Also, the current build tries to put multiple versions of .so files into
a single JAR. This doesn't work very well when we have to ship for many
different platforms. Think about shipping .so/.dynlib files for both
Linux and Mac OS X.
Modification:
- Use os-maven-plugin as an extension to determine the current OS and
CPU architecture reliable at build time
- Use Maven classifier instead of trying to put all shared libraries
into a single JAR
- NativeLibraryLoader does not guess the OS and bit mode anymore and it
always looks for the same location regardless of platform, because the
Maven classifier does the job instead.
Result:
Better scalable native library deployment and retrieval
Motivation:
Due to the complexity of handling deregistration and re-registration of
a channel, we previously decided to remove the deregister() operation
completely to simplify our code. However, we realized that it shouldn't
be that complicated to implement it during our discussion about making
I/O scheduling more flexible and more customizable [1], and thus the
removal of deregistration and re-registration is unnecessary now.
Modification:
- Revert commit c149f4bcc0
- Revert commit e743a27e75
- Make some additional adjustments
Result:
- deregister(), fireChannelUnregistered(), and channelRegistered() were
added back..
- Channel constructors do not require an EventLoop anymore.
[1] https://github.com/netty/netty/issues/2250
Motivation:
AbstractEpollChannel.clearEpollIn() throws an IllegalStateException if a user tries to change the autoRead configuration for the Channel and the Channel is not registered on an EventLoop yet. This makes it for example impossible to set AUTO_READ to false via the ServerBootstrap as the configuration is modifed before the Channel is registered.
Modification:
Check if the Channel is registered and if not just modify the flags directly so they are respected once the Channel is registered
Result:
It is possible now to configure AUTO_READ via the ServerBootstrap
Motivation:
We are currently try to modify the events via EpollEventLoop even when the channel was closed before and so the fd was set to -1. This fails with a RuntimeException in this case.
Modification:
Always check if the Channel is still open before try to modify the events.
Result:
No more RuntimeException because of a not open channel
Motivation:
Currently the generics used for TCP_KEEPIDLE, TCP_KEEPINTVL and TCP_KEEPCNT are incorrect.
Modifications:
Use Integer as type
Result:
User can use TCP_KEEPIDLE, TCP_KEEPINTVL and TCP_KEEPCNT as expected
Motivation:
EpollDatagramChannel produced buffer leaks when tried to read from the channel and nothing was ready to be read.
Modifications:
Correctly release buffer if nothing was read
Result:
No buffer leak
Motivation:
Allow to set TCP_KEEPIDLE, TCP_KEEPINTVL and TCP_KEEPCNT in native transport to offer the user with more flexibility.
Modifications:
Expose methods to set these options and write the JNI implementation.
Result:
User can now use TCP_KEEPIDLE, TCP_KEEPINTVL and TCP_KEEPCNT.
Motivation:
With SO_REUSEPORT it is possible to bind multiple sockets to the same port and so handle the processing of packets via multiple threads. This allows to handle DatagramPackets with more then one thread on the same port and so gives better performance.
Modifications:
Expose EpollDatagramChannelConfig.setReusePort(..) and isReusePort()
Result:
Allow to bind multiple times to the same local address and so archive better performance.
Motivation:
At the moment ChanneConfig.setAutoRead(false) only is guaranteer to not have an extra channelRead(...) triggered when used from within the channelRead(...) or channelReadComplete(...) method. This is not the correct behaviour as it should also work from other methods that are triggered from within the EventLoop. For example a valid use case is to have it called from within a ChannelFutureListener, which currently not work as expected.
Beside this there is another bug which is kind of related. Currently Channel.read() will not work as expected for OIO as we will stop try to read even if nothing could be read there after one read operation on the socket (when the SO_TIMEOUT kicks in).
Modifications:
Implement the logic the right way for the NIO/OIO/SCTP and native transport, specific to the transport implementation. Also correctly handle Channel.read() for OIO transport by trigger a new read if SO_TIMEOUT was catched.
Result:
It is now also possible to use ChannelConfig.setAutoRead(false) from other methods that are called from within the EventLoop and have direct effect.
Motivation:
There is currently no epoll based DatagramChannel. We should add one to make the set of provided channels complete and also to be able to offer better performance compared to the NioDatagramChannel once SO_REUSEPORT is implemented.
Modifications:
Add implementation of DatagramChannel which uses epoll. This implementation does currently not support multicast yet which will me implemented later on. As most users will not use multicast anyway I think it is fair to just add the EpollDatagramChannel without the support for now. We shipped NioDatagramChannel without support earlier too ...
Result:
Be able to use EpollDatagramChannel for max. performance on linux
Motivation:
In linux kernel 3.9 a new featured named SO_REUSEPORT was introduced which allows to have multiple sockets bind to the same port and so handle the accept() of new connections with multiple threads. This can greatly improve the performance when you not to accept a lot of connections.
Modifications:
Implement SO_REUSEPORT via JNI
Result:
Be able to use the SO_REUSEPORT feature when using the EpollServerSocketChannel
Motivation:
We sometimes see data corruption when writing to the EpollSocketChannel.
Modifications:
Correctly update the position of the ByteBuffer after something was written.
Result:
Fix data-corruption which could happen on partial writes
Motivation:
When using System.getProperty(...) and various methods to get a ClassLoader it will fail when a SecurityManager is in place.
Modifications:
Use a priveled block if needed. This work is based in the PR #2353 done by @anilsaldhana .
Result:
Code works also when SecurityManager is present
Motivation:
EpollSocketChannel.remoteAddress0() is always null on accepted EpollSocketChannels as we not set it excplicit.
Modifications:
Correctly retrieve the local and remote address when accept new channel and store it
Result:
EpollSocketchannel.remoteAddress0() and EpollSocketChannel.localAddress0() return correct addresses
Motivation:
Native.epollCreate(...) fails on systems using a kernel < 2.6.27 / glibc < 2.9 because it uses epoll_create1(...) without checking if it is present
Modifications:
Check if epoll_create1(...) exists abd if not fall back to use epoll_create(...)
Result:
Works even on systems with kernel < 2.6.27 / glibc < 2.9
Motivation:
Make sure the remote/local InetSocketAddress can be obtained correctly
Modifications:
Set the remote/local InetSocketAddress after a bind/connect operation was performed
Result:
It is possible to still access the informations even after the fd became invalid. This mirror the behaviour of NIO.
Motivation:
The epoll testsuite tests the epoll transport only against itself (i.e. epoll x epoll only). We should test the epoll transport also against the well-tested NIO transport, too.
Modifications:
- Make SocketTestPermutation extensible and reusable so that the epoll testsuite can take advantage of it.
- Rename EpollTestUtils to EpollSocketTestPermutation and make it extend SocketTestPermutation.
- Overall clean-up of SocketTestPermutation
- Use Arrays.asList() for simplicity
- Add combo() method to remove code duplication
Result:
The epoll transport is now also tested against the NIO transport. SocketTestPermutation got cleaner.
Motivation:
Previous commit (2de65e25e9) introduced a regression that makes the epoll testsuite fail with an 'incompatible event loop' error.
Modifications:
Use the correct event loop type.
Result:
Build doesn't fail anymore.
Motivation:
We are seeing EpollSocketSslEchoTest does not finish itself while its I/O thread is busy. Jenkins should have terminated them when the global build timeout reaches, but Jenkins seems to fail to do so. What's more interesting is that Jenkins will start another job before the EpollSocketSslEchoTest is terminated, and Linux starts to oom-kill them, impacting the uptime of the CI service.
Modifications:
- Set timeout for all test cases in SocketSslEchoTest so that all SSL tests terminate themselves when they take too long.
- Fix a bug where the epoll testsuite uses non-daemon threads which can potentially prevent JVM from quitting.
- (Cleanup) Separate boss group and worker group just like we do for NIO/OIO transport testsuite.
Result:
Potentially more stable CI machine.
Motivation:
We better use UnresolveableAddressException as NIO does the same.
Modifications:
Replace usage of UnknownHostException with UnresolveableAddressException
Result:
epoll transport and nio transport behave the same way
Motivation:
At the moment when an unresolvable InetSocketAddress is passed into the epoll transport a NPE is thrown
Modifications:
Add check in place which will throw an UnknownHostException if an InetSocketAddress could not been resolved.
Result:
Proper handling of unresolvable InetSocketAddresses
This also does factor out some logic of ChannelOutboundBuffer. Mainly we not need nioBuffers() for many
transports and also not need to copy from heap to direct buffer. So this functionality was moved to
NioSocketChannelOutboundBuffer. Also introduce a EpollChannelOutboundBuffer which makes use of
memory addresses for all the writes to reduce GC pressure
This transport use JNI (C) to directly make use of epoll in Edge-Triggered mode for maximal performance on Linux. Beside this it also support using TCP_CORK and produce less GC then the NIO transport using JDK NIO.
It only builds on linux and skip the build if linux is not used. The transport produce a jar which contains all needed .so files for 32bit and 64 bit. The user only need to include the jar as dependency as usually
to make use of it and use the correct classes.
This includes also some cleanup of @trustin