Commit Graph

334 Commits

Author SHA1 Message Date
Carl Mastrangelo
9abeaf16fd Properly debounce wakeups (#9191)
Motivation:
The wakeup logic in EpollEventLoop is overly complex

Modification:
* Simplify the race to wakeup the loop
* Dont let the event loop wake up itself (it's already awake!)
* Make event loop check if there are any more tasks after preparing to
sleep.  There is small window where the non-eventloop writers can issue
eventfd writes here, but that is okay.

Result:
Cleaner wakeup logic.

Benchmarks:

```
BEFORE
Benchmark                                   Mode  Cnt       Score      Error  Units
EpollSocketChannelBenchmark.executeMulti   thrpt   20  408381.411 ± 2857.498  ops/s
EpollSocketChannelBenchmark.executeSingle  thrpt   20  157022.360 ± 1240.573  ops/s
EpollSocketChannelBenchmark.pingPong       thrpt   20   60571.704 ±  331.125  ops/s

Benchmark                                   Mode  Cnt       Score      Error  Units
EpollSocketChannelBenchmark.executeMulti   thrpt   20  440546.953 ± 1652.823  ops/s
EpollSocketChannelBenchmark.executeSingle  thrpt   20  168114.751 ± 1176.609  ops/s
EpollSocketChannelBenchmark.pingPong       thrpt   20   61231.878 ±  520.108  ops/s
```
2019-06-04 05:17:23 -07:00
Nick Hill
2ca526fac6 Ensure "full" ownership of msgs passed to EmbeddedChannel.writeInbound() (#9058)
Motivation

Pipeline handlers are free to "take control" of input buffers if they have singular refcount - in particular to mutate their raw data if non-readonly via discarding of read bytes, etc.

However there are various places (primarily unit tests) where a wrapped byte-array buffer is passed in and the wrapped array is assumed not to change (used after the wrapped buffer is passed to EmbeddedChannel.writeInbound()). This invalid assumption could result in unexpected errors, such as those exposed by #8931.

Modifications

Anywhere that the data passed to writeInbound() might be used again, ensure that either:
- A copy is used rather than wrapping a shared byte array, or
- The buffer is otherwise protected from modification by making it read-only

For the tests, copying is preferred since it still allows the "mutating" optimizations to be exercised.

Results

Avoid possible errors when pipeline assumes it has full control of input buffer.
2019-05-22 12:08:49 +02:00
root
ba06eafa1c [maven-release-plugin] prepare for next development iteration 2019-04-30 16:42:29 +00:00
root
49a451101c [maven-release-plugin] prepare release netty-4.1.36.Final 2019-04-30 16:41:28 +00:00
root
baab215f66 [maven-release-plugin] prepare for next development iteration 2019-04-17 07:26:24 +00:00
root
dfe657e2d4 [maven-release-plugin] prepare release netty-4.1.35.Final 2019-04-17 07:25:40 +00:00
Francesco Nigro
fb50847e39 The benchmark is not taking into account nanoTime granularity (#9033)
Motivation:

Results are just wrong for small delays.

Modifications:

Switching to AvarageTime avoid to rely on OS nanoTime granularity.

Result:

Uncontended low delay results are not reliable
2019-04-15 15:14:36 +02:00
Norman Maurer
8f7ef1cabb
Skip execution of Channel*Handler method if annotated with @Skip and … (#8988)
Motivation:

Invoking ChannelHandlers is not free and can result in some overhead when the ChannelPipeline becomes very long. This is especially true if most handlers will just forward the call to the next handler in the pipeline. When the user extends Channel*HandlerAdapter we can easily detect if can just skip the handler and invoke the next handler in the pipeline directly. This reduce the overhead of dispatch but also reduce the call-stack in many cases.

This backports https://github.com/netty/netty/pull/8723 and https://github.com/netty/netty/pull/8987 to 4.1

Modifications:

Detect if we can skip the handler when walking the pipeline.

Result:

Reduce overhead for long pipelines.

Benchmark                                       (extraHandlers)   Mode  Cnt       Score      Error  Units
DefaultChannelPipelineBenchmark.propagateEventOld             4  thrpt   10  267313.031 ± 9131.140  ops/s
DefaultChannelPipelineBenchmark.propagateEvent                4  thrpt   10  824825.673 ± 12727.594  ops/s
2019-04-09 09:36:52 +02:00
root
92b19cfedd [maven-release-plugin] prepare for next development iteration 2019-03-08 08:55:45 +00:00
root
ff7a9fa091 [maven-release-plugin] prepare release netty-4.1.34.Final 2019-03-08 08:51:34 +00:00
Norman Maurer
14ef469f31
Use maven plugin to prevent API/ABI breakage as part of build process (#8904)
Motivation:

Netty is very widely used which can lead to a lot of pain when we break API / ABI. We should make use japicmp-maven-plugin during the build to verify we do not introduce breakage by mistake.

Modifications:

- Add japicmp-maven-plugin to the build process
- Fix a method signature change in HttpProxyHandler that was flagged as a possible problem.

Result:

Ensure no API/ABI breakage accour between releases.
2019-03-01 19:42:29 +01:00
Nick Hill
0811409ca3 Further reduce ensureAccessible() overhead (#8895)
Motivation:

This PR fixes some non-negligible overhead discovered in the ByteBuf
accessibility (non-zero refcount) checking. The cause turned out to be
mostly twofold:
- Unnecessary operations used to calculate the refcount from the "raw"
encoded int field value
- Call stack depths exceeding the default limit for inlining, in some
places (CompositeByteBuf in particular)

It's a follow-on from #8882 which uses the maxCapacity field for a
simpler non-negative check. The performance gap between these two
variants appears to be _mostly_ closed, but there's one exception which
may warrant further analysis.

Modifications:

- Replace ABB.internalRefCount() with ByteBuf.isAccessible(), the
default still checks for non-zero refCnt()
- Just test for parity of raw refCnt instead of converting to "real",
with fast-path for specific small values
- Make sure isAccessible() is delegated by derived/wrapper ByteBufs
- Use existing freed flag in CompositeByteBuf for faster isAccessible()
- Manually inline some calls in methods like CompositeByteBuf.setLong()
and AbstractReferenceCountedByteBuf.isAccessible() to reduce stack
depths (to ensure default inlining limit isn't hit)
- Add ByteBufAccessBenchmark which is an extension of
UnsafeByteBufBenchmark (maybe latter could now be removed)

Results:

Before:

Benchmark   (bufferType)  (checkAccessible)  (checkBounds)   Mode  Cnt
Score          Error  Units
readBatch         UNSAFE               true           true  thrpt   30
84524972.863 ±   518338.811  ops/s
readBatch   UNSAFE_SLICE               true           true  thrpt   30
38608795.037 ±   298176.974  ops/s
readBatch           HEAP               true           true  thrpt   30
80003697.649 ±   974674.119  ops/s
readBatch      COMPOSITE               true           true  thrpt   30
18495554.788 ±   108075.023  ops/s
setGetLong        UNSAFE               true           true  thrpt   30
247069881.578 ± 10839162.593  ops/s
setGetLong  UNSAFE_SLICE               true           true  thrpt   30
196355905.206 ±  1802420.990  ops/s
setGetLong          HEAP               true           true  thrpt   30
245686644.713 ± 11769311.527  ops/s
setGetLong     COMPOSITE               true           true  thrpt   30
83170940.687 ±   657524.123  ops/s
setLong           UNSAFE               true           true  thrpt   30
278940253.918 ±  1807265.259  ops/s
setLong     UNSAFE_SLICE               true           true  thrpt   30
202556738.764 ± 11887973.563  ops/s
setLong             HEAP               true           true  thrpt   30
280045958.053 ±  2719583.400  ops/s
setLong        COMPOSITE               true           true  thrpt   30
121299806.002 ±  2155084.707  ops/s


After:

Benchmark   (bufferType)  (checkAccessible)  (checkBounds)   Mode  Cnt
Score          Error  Units
readBatch         UNSAFE               true           true  thrpt   30
101641801.035 ±  3950050.059  ops/s
readBatch   UNSAFE_SLICE               true           true  thrpt   30
84395902.846 ±  4339579.057  ops/s
readBatch           HEAP               true           true  thrpt   30
100179060.207 ±  3222487.287  ops/s
readBatch      COMPOSITE               true           true  thrpt   30
42288494.472 ±   294919.633  ops/s
setGetLong        UNSAFE               true           true  thrpt   30
304530755.027 ±  6574163.899  ops/s
setGetLong  UNSAFE_SLICE               true           true  thrpt   30
212028547.645 ± 14277828.768  ops/s
setGetLong          HEAP               true           true  thrpt   30
309335422.609 ±  2272150.415  ops/s
setGetLong     COMPOSITE               true           true  thrpt   30
160383609.236 ±   966484.033  ops/s
setLong           UNSAFE               true           true  thrpt   30
298055969.747 ±  7437449.627  ops/s
setLong     UNSAFE_SLICE               true           true  thrpt   30
223784178.650 ±  9869750.095  ops/s
setLong             HEAP               true           true  thrpt   30
302543263.328 ±  8140104.706  ops/s
setLong        COMPOSITE               true           true  thrpt   30
157083673.285 ±  3528779.522  ops/s

There's also a similar knock-on improvement to other benchmarks (e.g.
HPACK encoding/decoding) as shown in #8882.

For sanity I did a final comparison of the "fast path" tweak using one
of the HPACK benchmarks:

(rawCnt & 1) == 0:

Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode
Cnt      Score     Error  Units
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt
30  50914.479 ± 940.114  ops/s


rawCnt == 2 || rawCnt == 4 || rawCnt == 6 || rawCnt == 8 ||  (rawCnt &
1) == 0:

Benchmark                     (limitToAscii)  (sensitive)  (size)   Mode
Cnt      Score      Error  Units
HpackDecoderBenchmark.decode            true         true  MEDIUM  thrpt
30  60036.425 ± 1478.196  ops/s
2019-02-28 20:40:41 +01:00
Dmitriy Dumanskiy
b72fea340b Improve DateFormatter parsing performance (#8821)
Motivation:

Just was looking through code and found 1 interesting place DateFormatter.tryParseMonth that was not very effective, so I decided to optimize it a bit.

Modification:

Changed DateFormatter.tryParseMonth method. Instead of invocation regionMatch() for every month - compare chars one by one.

Result:

DateFormatter.parseHttpDate method performance improved from ~3% to ~15%.

Benchmark                                                                (DATE_STRING)   Mode  Cnt        Score       Error  Units
DateFormatter2Benchmark.parseHttpHeaderDateFormatter     Sun, 27 Jan 2016 19:18:46 GMT  thrpt    6  4142781.221 ± 82155.002  ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatter     Sun, 27 Dec 2016 19:18:46 GMT  thrpt    6  3781810.558 ± 38679.061  ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatterNew  Sun, 27 Jan 2016 19:18:46 GMT  thrpt    6  4372569.705 ± 30257.537  ops/s
DateFormatter2Benchmark.parseHttpHeaderDateFormatterNew  Sun, 27 Dec 2016 19:18:46 GMT  thrpt    6  4339785.100 ± 57542.660  ops/s
2019-02-04 10:04:20 +01:00
Norman Maurer
cd3254df88
Update to new checkstyle plugin (#8777) (#8780)
Motivation:

We need to update to a new checkstyle plugin to allow the usage of lambdas.

Modifications:

- Update to new plugin version.
- Fix checkstyle problems.

Result:

Be able to use checkstyle plugin which supports new Java syntax.
2019-01-25 11:58:42 +01:00
root
cf03ed0478 [maven-release-plugin] prepare for next development iteration 2019-01-21 12:26:44 +00:00
root
37484635cb [maven-release-plugin] prepare release netty-4.1.33.Final 2019-01-21 12:26:12 +00:00
Francesco Nigro
b8a3394f9b Adding an execute burst cost benchmark for Netty executors (#8594)
Motivation:

Netty executors doesn't have yet any means to compare with each others
nor to compare with the j.u.c. executors

Modifications:

A new benchmark measuring execute burst cost is being added

Result:

It's now possible to compare some of Netty executors with each others
and with the j.u.c. executors
2018-12-04 15:46:25 +01:00
root
8eb313072e [maven-release-plugin] prepare for next development iteration 2018-11-29 11:15:09 +00:00
root
afcb4a37d3 [maven-release-plugin] prepare release netty-4.1.32.Final 2018-11-29 11:14:20 +00:00
Nick Hill
10539f4dc7 Streamline CompositeByteBuf internals (#8437)
Motivation:

CompositeByteBuf is a powerful and versatile abstraction, allowing for
manipulation of large data without copying bytes. There is still a
non-negligible cost to reading/writing however relative to "singular"
ByteBufs, and this can be mostly eliminated with some rework of the
internals.

My use case is message modification/transformation while zero-copy
proxying. For example replacing a string within a large message with one
of a different length

Modifications:

- No longer slice added buffers and unwrap added slices
   - Components store target buf offset relative to position in
composite buf
   - Less allocations, object footprint, pointer indirection, offset
arithmetic
- Use Component[] rather than ArrayList<Component>
   - Avoid pointer indirection and duplicate bounds check, more
efficient backing array growth
   - Facilitates optimization when doing bulk-inserts - inserting n
ByteBufs behind m is now O(m + n) instead of O(mn)
- Avoid unnecessary casting and method call indirection via superclass
- Eliminate some duplicate range/ref checks via non-checking versions of
toComponentIndex and findComponent
- Add simple fast-path for toComponentIndex(0); add racy cache of
last-accessed Component to findComponent(int)
- Override forEachByte0(...) and forEachByteDesc0(...) methods
- Make use of RecyclableArrayList in nioBuffers(int, int) (in line with
FasterCompositeByteBuf impl)
- Modify addComponents0(boolean,int,Iterable) to use the Iterable
directly rather than copy to an array first (and possibly to an
ArrayList before that)
- Optimize addComponents0(boolean,int,ByteBuf[],int) to not perform
repeated array insertions and avoid second loop for offset updates
- Simplify other logic in various places, in particular the general
pattern used where a sub-range is iterated over
- Add benchmarks to demonstrate some improvements

While refactoring I also came across a couple of clear bugs. They are
fixed in these changes but I will open another PR with unit tests and
fixes to the current version.

Result:

Much faster creation, manipulation, and access; many fewer allocations
and smaller footprint. Benchmark results to follow.
2018-11-03 10:37:07 +01:00
root
3e7ddb36c7 [maven-release-plugin] prepare for next development iteration 2018-10-29 15:38:51 +00:00
root
9e50739601 [maven-release-plugin] prepare release netty-4.1.31.Final 2018-10-29 15:37:47 +00:00
Nick Hill
583d838f7c Optimize AbstractByteBuf.getCharSequence() in US_ASCII case (#8392)
* Optimize AbstractByteBuf.getCharSequence() in US_ASCII case

Motivation:

Inspired by https://github.com/netty/netty/pull/8388, I noticed this
simple optimization to avoid char[] allocation (also suggested in a TODO
here).

Modifications:

Return an AsciiString from AbstractByteBuf.getCharSequence() if
requested charset is US_ASCII or ISO_8859_1 (latter thanks to
@Scottmitch's suggestion). Also tweak unit tests not to require Strings
and include a new benchmark to demonstrate the speedup.

Result:

Speed-up of AbstractByteBuf.getCharSequence() in ascii and iso 8859/1
cases
2018-10-26 15:32:38 -07:00
Norman Maurer
87ec2f882a
Reduce overhead by ByteBufUtil.decodeString(...) which is used by AbstractByteBuf.toString(...) and AbstractByteBuf.getCharSequence(...) (#8388)
Motivation:

Our current implementation that is used for toString(Charset) operations on AbstractByteBuf implementation is quite slow as it does a lot of uncessary memory copies. We should just use new String(...) as it has a lot of optimizations to handle these cases.

Modifications:

Rewrite ByteBufUtil.decodeString(...) to use new String(...)

Result:

Less overhead for toString(Charset) operations.

Benchmark                                         (charsetName)  (direct)  (size)   Mode  Cnt         Score         Error  Units
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII     false       8  thrpt   20  22401645.093 ? 4671452.479  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII     false      64  thrpt   20  23678483.384 ? 3749164.446  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII      true       8  thrpt   20  15731142.651 ? 3782931.591  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString          US-ASCII      true      64  thrpt   20  16244232.229 ? 1886259.658  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8     false       8  thrpt   20  25983680.959 ? 5045782.289  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8     false      64  thrpt   20  26235589.339 ? 2867004.950  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8      true       8  thrpt   20  18499027.808 ? 4784684.268  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString             UTF-8      true      64  thrpt   20  16825286.141 ? 1008712.342  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16     false       8  thrpt   20   5789879.092 ? 1201786.359  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16     false      64  thrpt   20   2173243.225 ?  417809.341  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16      true       8  thrpt   20   5035583.011 ? 1001978.854  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString            UTF-16      true      64  thrpt   20   2162345.301 ?  402410.408  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1     false       8  thrpt   20  30039052.376 ? 6539111.622  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1     false      64  thrpt   20  31414163.515 ? 2096710.526  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1      true       8  thrpt   20  19538587.855 ? 4639115.572  ops/s
ByteBufUtilDecodeStringBenchmark.decodeString        ISO-8859-1      true      64  thrpt   20  19467839.722 ? 1672687.213  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII     false       8  thrpt   20  10787326.745 ? 1034197.864  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII     false      64  thrpt   20   7129801.930 ? 1363019.209  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII      true       8  thrpt   20   9002529.605 ? 2017642.445  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld       US-ASCII      true      64  thrpt   20   3860192.352 ?  826218.738  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8     false       8  thrpt   20  10532838.027 ? 2151743.968  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8     false      64  thrpt   20   7185554.597 ? 1387685.785  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8      true       8  thrpt   20   7352253.316 ? 1333823.850  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld          UTF-8      true      64  thrpt   20   2825578.707 ?  349701.156  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16     false       8  thrpt   20   7277446.665 ? 1447034.346  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16     false      64  thrpt   20   2445929.579 ?  562816.641  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16      true       8  thrpt   20   6201174.401 ? 1236137.786  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld         UTF-16      true      64  thrpt   20   2310674.973 ?  525587.959  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1     false       8  thrpt   20  11142625.392 ? 1680556.468  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1     false      64  thrpt   20   8127116.405 ? 1128513.860  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1      true       8  thrpt   20   9405751.952 ? 2193324.806  ops/s
ByteBufUtilDecodeStringBenchmark.decodeStringOld     ISO-8859-1      true      64  thrpt   20   3943282.076 ?  737798.070  ops/s

Benchmark result is saved to /home/norman/mainframer/netty/microbench/target/reports/performance/ByteBufUtilDecodeStringBenchmark.json
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1,030.173 sec - in io.netty.buffer.ByteBufUtilDecodeStringBenchmark
[1030.460s][info   ][gc,heap,exit ] Heap
[1030.460s][info   ][gc,heap,exit ]  garbage-first heap   total 516096K, used 257918K [0x0000000609a00000, 0x0000000800000000)
[1030.460s][info   ][gc,heap,exit ]   region size 2048K, 127 young (260096K), 2 survivors (4096K)
[1030.460s][info   ][gc,heap,exit ]  Metaspace       used 17123K, capacity 17438K, committed 17792K, reserved 1064960K
[1030.460s][info   ][gc,heap,exit ]   class space    used 1709K, capacity 1827K, committed 1920K, reserved 1048576K
2018-10-19 14:00:13 +02:00
root
2d7cb47edd [maven-release-plugin] prepare for next development iteration 2018-09-27 19:00:45 +00:00
root
3a9ac829d5 [maven-release-plugin] prepare release netty-4.1.30.Final 2018-09-27 18:56:12 +00:00
Norman Maurer
e542a2cf26
Use a non-volatile read for ensureAccessible() whenever possible to reduce overhead and allow better inlining. (#8266)
Motiviation:

At the moment whenever ensureAccessible() is called in our ByteBuf implementations (which is basically on each operation) we will do a volatile read. That per-se is not such a bad thing but the problem here is that it will also reduce the the optimizations that the compiler / jit can do. For example as these are volatile it can not eliminate multiple loads of it when inline the methods of ByteBuf which happens quite frequently because most of them a quite small and very hot. That is especially true for all the methods that act on primitives.

It gets even worse as people often call a lot of these after each other in the same method or even use method chaining here.

The idea of the change is basically just ue a non-volatile read for the ensureAccessible() check as its a best-effort implementation to detect acting on already released buffers anyway as even with a volatile read it could happen that the user will release it in another thread before we actual access the buffer after the reference check.

Modifications:

- Try to do a non-volatile read using sun.misc.Unsafe if we can use it.
- Add a benchmark

Result:

Big performance win when multiple ByteBuf methods are called from a method.

With the change:
UnsafeByteBufBenchmark.setGetLongUnsafeByteBuf  thrpt   20  281395842,128 ± 5050792,296  ops/s

Before the change:
UnsafeByteBufBenchmark.setGetLongUnsafeByteBuf  thrpt   20  217419832,801 ± 5080579,030  ops/s
2018-09-07 07:47:02 +02:00
Norman Maurer
052c2fbefe
Update to jmh 1.2.1 (#8270)
Motivation:

We should use the latest jmh version which also supports -prof dtraceasm on MacOS.

Modifications:

Update to latest jmh version.

Result:

Better benchmark / profiling support on MacOS.
2018-09-06 22:31:52 +02:00
Norman Maurer
02d559e6a4
Remove flags when running benchmarks. (#8262)
Motivation:

Some of the flags we used are not supported anymore on more recent JDK versions. We should just remove all of them and only keep what we really need. This may also reflect better what people use in production.

Modifications:

Remove some flags when running the benchmarks.

Result:

Benchmarks also run with JDK11.
2018-09-05 19:05:02 +02:00
Norman Maurer
8635d88d4d
Allow to generate a jmh uber jar to run benchmarks easily from cmdline with different arguments. (#8264)
Motivation:

It is sometimes useful to be able to run benchmarks easily from the commandline and passs different arguments / options here. We should support this.

Modifications:

Add the benchmark-jar profile which allows to generate such an "uber-jar" that can be used directly to run benchmarks as documented at http://openjdk.java.net/projects/code-tools/jmh/.

Result:

More flexible way to run benchmarks.
2018-09-05 18:28:35 +02:00
Carl Mastrangelo
379a56ca49 Add an Epoll benchmark
Motivation:
Optimizing the Epoll channel needs an objective measure of how fast
it is.

Modification:
Add a simple, closed loop,  ping-pong benchmark.

Result:
Benchmark can be used to measure #7816

Initial numbers:

```
Result "io.netty.microbench.channel.epoll.EpollSocketChannelBenchmark.pingPong":
  22614.403 ±(99.9%) 797.263 ops/s [Average]
  (min, avg, max) = (21093.160, 22614.403, 24977.387), stdev = 918.130
  CI (99.9%): [21817.140, 23411.666] (assumes normal distribution)

Benchmark                              Mode  Cnt      Score     Error  Units
EpollSocketChannelBenchmark.pingPong  thrpt   20  22614.403 ± 797.263  ops/s
```
2018-09-04 10:15:15 +02:00
Francesco Nigro
c78be33443 Added configurable ByteBuf bounds checking (#7521)
Motivation:

The JVM isn't always able to hoist out/reduce bounds checking (due to ref counting operations etc etc) hence making it configurable could improve performances for most CPU intensive use cases.

Modifications:

Each AbstractByteBuf bounds check has been tested against a new static final configuration property similar to checkAccessible ie io.netty.buffer.bytebuf.checkBounds.

Result:

Any user could disable ByteBuf bounds checking in order to get extra performances.
2018-09-03 20:33:47 +02:00
root
a580dc7585 [maven-release-plugin] prepare for next development iteration 2018-08-24 06:36:33 +00:00
root
3fc789e83f [maven-release-plugin] prepare release netty-4.1.29.Final 2018-08-24 06:36:06 +00:00
root
fcb19cb589 [maven-release-plugin] prepare for next development iteration 2018-07-27 04:59:28 +00:00
root
ff785fbe39 [maven-release-plugin] prepare release netty-4.1.28.Final 2018-07-27 04:59:06 +00:00
root
b4dbdc2036 [maven-release-plugin] prepare for next development iteration 2018-07-11 15:37:40 +00:00
root
1c16519ac8 [maven-release-plugin] prepare release netty-4.1.27.Final 2018-07-11 15:37:21 +00:00
root
7bb9e7eafe [maven-release-plugin] prepare for next development iteration 2018-07-10 05:21:24 +00:00
root
8ca5421bd2 [maven-release-plugin] prepare release netty-4.1.26.Final 2018-07-10 05:18:13 +00:00
Norman Maurer
83710cb2e1
Replace toArray(new T[size]) with toArray(new T[0]) to eliminate zero-out and allow the VM to optimize. (#8075)
Motivation:

Using toArray(new T[0]) is usually the faster aproach these days. We should use it.

See also https://shipilev.net/blog/2016/arrays-wisdom-ancients/#_conclusion.

Modifications:

Replace toArray(new T[size]) with toArray(new T[0]).

Result:

Faster code.
2018-06-29 07:56:04 +02:00
unknown
4a8d3a274c Including the setup code in the benchmark method to avoid JMH Invocation level hiccups.
Motivation:

The usage of Invocation level for JMH fixture methods (setup/teardown) inccurs in a significant overhead
in the benchmark time (see org.openjdk.jmh.annotations.Level documentation).

In the case of CodecInputListBenchmark, benchmarks are far too small (less than 50ns) and the Invocation
level setup offsets the measurement considerably.
On such cases, the recommended fix patch is to include the setup/teardown code in the benchmark method.

Modifications:

Include the setup/teardown code in the relevant benchmark methods.
Remove the setup/teardown methods from the benchmark class.

Result:

We run the entire benchmark 10 times with default parameters we observed:
- ArrayList benchmark affected directly by JMH overhead is now from 15-80% faster.
- CodecList benchmark is now 50% faster than original (even with the setup code being measured).
- Recyclable ArrayList is ~30% slower.
- All benchmarks have significant different means (ANOVA) and medians (Moore)

Mode: Throughput (Higher the better)

Method	              Full params		Factor	    Modified (Median)	Original (Median)
recyclableArrayList	 (elements = 1)		0.615520967	21719082.75	        35285691.2
recyclableArrayList	 (elements = 4)		0.699553431	17149442.76	        24514843.31
arrayList	         (elements = 4)		1.152666631	27120407.18	        23528404.88
codecOutList	     (elements = 1)		1.527275908	67251089.04	        44033359.47
codecOutList	     (elements = 4)		1.596917095	59174088.78	        37055204.03
arrayList	         (elements = 1)		1.878616889	62188238.24	        33103204.06

Environment:
Tests run on a Computational server with CPU: E5-1660-3.3GHZ  (6 cores + HT), 64 GB RAM.
2018-06-21 12:22:13 +02:00
unknown
cb420a9ffc Including the setup code in the benchmark method to avoid JMH Invocation level hiccups.
Motivation:

The usage of Invocation level for JMH fixture methods (setup/teardown) inccurs in a significant impact in
in the benchmark time (see org.openjdk.jmh.annotations.Level documentation).

When the benchmark and the setup/teardown is too small (less than a milisecond) the Invocation level might saturate the system with
timestamp requests and iteration synchronizations which introduce artificial latency, throughput, and scalability bottlenecks.

In the HeadersBenchmark, all benchmarks take less than 100ns and the Invocation level setup offsets the measurement considerably.
As fixture methods is defined for the entire class, this overhead also impacts every single benchmark in this class, not only
the ones that use the emptyHttpHeaders object (cleaned in the setup).

The recommended fix patch here is to include the setup/teardown code in the benchmark where the object is used.

Modifications:

Include the setup/teardown code in the relevant benchmark methods.
Remove the setup/teardown method of Invocation level from the benchmark class.

Result:

We run all benchmarks from HeadersBenchmark 10 times with default parameter, we observe:
- Benchmarks that were not directly affected by the fix patch, improved execution time.
    For instance, http2Remove with (exampleHeader = THREE) had its median reported as 2x faster than the original version.
- Benchmarks that had the setup code inserted (eg. http2AddAllFastest) did not suffer a significant punch in the execution time,
as the benchmarks are not dominated by the clear().

Environment:
Tests run on a Computational server with CPU: E5-1660-3.3GHZ  (6 cores + HT), 64 GB RAM.
2018-06-21 12:21:19 +02:00
Norman Maurer
64bb279f47 [maven-release-plugin] prepare for next development iteration 2018-05-14 11:11:45 +00:00
Norman Maurer
c67a3b0507 [maven-release-plugin] prepare release netty-4.1.25.Final 2018-05-14 11:11:24 +00:00
Norman Maurer
b75f44db9a [maven-release-plugin] prepare for next development iteration 2018-04-19 11:56:07 +00:00
Norman Maurer
04fac00c8c [maven-release-plugin] prepare release netty-4.1.24.Final 2018-04-19 11:55:47 +00:00
root
0a61f055f5 [maven-release-plugin] prepare for next development iteration 2018-04-04 10:44:46 +00:00
root
8c549bad38 [maven-release-plugin] prepare release netty-4.1.23.Final 2018-04-04 10:44:15 +00:00
Scott Mitchell
9d51a40df0 Update NetUtilBenchmark (#7826)
Motivation:
NetUtilBenchmark is using out of date data, throws an exception in the benchmark, and allocates a Set on each run.

Modifications:
- Update the benchmark and reduce each run's overhead

Result:
NetUtilBenchmark is updated.
2018-03-31 08:27:08 +02:00