Motivation:
A microbenchmark will be useful to get a baseline for performance.
Modifications:
- Introduce a new microbenchmark which tests the Http2DefaultFrameWriter.
- Allow benchmarks to run without thread context switching between JMH and Netty.
Result:
Microbenchmark exists to test performance.
Motivation:
When Netty runs in a managed environment such as web application server,
Netty needs to provide an explicit way to remove the thread-local
variables it created to prevent class loader leaks.
FastThreadLocal uses different execution paths for storing a
thread-local variable depending on the type of the current thread.
It increases the complexity of thread-local removal.
Modifications:
- Moved FastThreadLocal and FastThreadLocalThread out of the internal
package so that a user can use it.
- FastThreadLocal now keeps track of all thread local variables it has
initialized, and calling FastThreadLocal.removeAll() will remove all
thread-local variables of the caller thread.
- Added FastThreadLocal.size() for diagnostics and tests
- Introduce InternalThreadLocalMap which is a mixture of hard-wired
thread local variable fields and extensible indexed variables
- FastThreadLocal now uses InternalThreadLocalMap to implement a
thread-local variable.
- Added ThreadDeathWatcher.unwatch() so that PooledByteBufAllocator
tells it to stop watching when its thread-local cache has been freed
by FastThreadLocal.removeAll().
- Added FastThreadLocalTest to ensure that removeAll() works
- Added microbenchmark for FastThreadLocal and JDK ThreadLocal
- Upgraded to JMH 0.9
Result:
- A user can remove all thread-local variables Netty created, as long as
he or she did not exit from the current thread. (Note that there's no
way to remove a thread-local variable from outside of the thread.)
- FastThreadLocal exposes more useful operations such as isSet() because
we always implement a thread local variable via InternalThreadLocalMap
instead of falling back to JDK ThreadLocal.
- FastThreadLocalBenchmark shows that this change improves the
performance of FastThreadLocal even more.
Motivation:
Our Unsafe*ByteBuf implementation always invert bytes when the native ByteOrder is LITTLE_ENDIAN (this is true on intel), even when the user calls order(ByteOrder.LITTLE_ENDIAN). This is not optimal for performance reasons as the user should be able to set the ByteOrder to LITTLE_ENDIAN and so write bytes without the extra inverting.
Modification:
- Introduce a new special SwappedByteBuf (called UnsafeDirectSwappedByteBuf) that is used by all the Unsafe*ByteBuf implementation and allows to write without inverting the bytes.
- Add benchmark
- Upgrade jmh to 0.8
Result:
The user is be able to get the max performance even on servers that have ByteOrder.LITTLE_ENDIAN as their native ByteOrder.