Motivation:
We incorrectly used SslContext.newServerContext() in some places where a we needed a client context.
Modifications:
Use SslContext.newClientContext() when using ssl on the client side.
Result:
Working ssl client examples.
Motivation:
The HTTP tranlsation layer uses a FullHttpMessage object after it has been fired up the pipeline.
Although the content ByteBuf is not used by default it is still not ideal to use a releasable object
after it has potentially been released.
Modifications:
-InboundHttp2ToHttpAdapter ordering issues will be corrected
Result:
Safer access to releasable objects in the HTTP/2 to HTTP translation layer.
Motivation:
To eliminate the tests as being a cause of leaks, removing the automatic
retaining of ByteBufs in Http2TestUtil.
Modifications:
Each test that relied on retaining buffers for validation has been
modified to copy the buffer into a list of Strings that are manually
validated after the message is received.
Result:
The HTTP/2 tests should (hopefully) no longer be reporting erroneous
leaks due to the testing code, itself.
Motivation:
The current implementation of the HTTP/2 decompression does not integrate with flow control properly.
The decompression code is giving the post-decompression size to the flow control algorithm which
results in flow control errors at incorrect times.
Modifications:
-DecompressorHttp2FrameReader.java will need to change where it hooks into the HTTP/2 codec
-Enhance unit tests to test this condition
Result:
No more flow control errors because of decompression design flaw
Motivation:
The java implementations for Inet6Address.getHostName() do not follow the RFC 5952 (http://tools.ietf.org/html/rfc5952#section-4) for recommended string representation. This introduces inconsistencies when integrating with other technologies that do follow the RFC.
Modifications:
-NetUtil.java to have another public static method to convert InetAddress to string. Inet4Address will use the java InetAddress.getHostAddress() implementation and there will be new code to implement the RFC 5952 IPV6 string conversion.
-New unit tests to test the new method
Result:
Netty provides a RFC 5952 compliant string conversion method for IPV6 addresses
Motivation:
We use malloc(1) in the on JNI_OnLoad method but never free the allocated memory. This means we have a tiny memory leak of 1 byte.
Modifications:
Call free(...) on previous allocated memory.
Result:
Fix memory leak
Motivation:
We introduced a PoolThreadCache which is used in our PooledByteBufAllocator to reduce the synchronization overhead on PoolArenas when allocate / deallocate PooledByteBuf instances. This cache is used for both the allocation path and deallocation path by:
- Look for cached memory in the PoolThreadCache for the Thread that tries to allocate a new PooledByteBuf and if one is found return it.
- Add the memory that is used by a PooledByteBuf to the PoolThreadCache of the Thread that release the PooledByteBuf
This works out very well when all allocation / deallocation is done in the EventLoop as the EventLoop will be used for read and write. On the otherside this can lead to surprising side-effects if the user allocate from outside the EventLoop and and pass the ByteBuf over for writing. The problem here is that the memory will be added to the PoolThreadCache that did the actual write on the underlying transport and not on the Thread that previously allocated the buffer.
Modifications:
Don't cache if different Threads are used for allocating/deallocating
Result:
Less confusing behavior for users that allocate PooledByteBufs from outside the EventLoop.
Motivation:
When MemoryRegionCache.trim() is called, some unused cache entries will be freed (started from head). However, in MeoryRegionCache.trim() the head is not updated, which make entry list's head point to an entry whose chunk is null now and following allocate of MeoryRegionCache will return false immediately.
In other word, cache is no longer usable once trim happen.
Modifications:
Update head to correct idx after free entries in trim().
Result:
MemoryRegionCache behaves correctly even after calling trim().
Motivation:
The current build is showing potential leaks in the HTTP/2 tests that
use Http2TestUtil.FrameCountDown, which copies the buffers when it
receives them from the decoder. The leak detecor sees this copy as the
source of a leak. It would be better all around to just retain, rather
than copying the buffer. This should help to lower the overall memory
footprint of the tests as well as potentially getting rid of the
reported "leaks".
Modifications:
Modified Http2TestUtil to use ByteBuf.retain() everywhere that was
previously calling ByteBuf.copy().
Result:
Smaller memory footprint for tests and hopefully getting rid of reported
leaks.
Motivation:
When an assertTrue(condition) statement fails we usually don't know
why, as the parameters of the condition are not logged.
Modifications:
Include relevant parameters in the assertion error message.
Result:
Easier to debug and understand test failures.
Motivation:
handlerAdded and handlerRemoved were overriden but super was never
called, while it should.
Also add one missing information in the toString method.
Modifications:
Add the super corresponding call, and add checkInterval to the
toString() method
Result;
super method calls are correctly passed to the super implementation
part.
Motivation:
A discovered typo in LzmaFrameEncoder constructor when we check `lc + lp` for better compatibility.
Modifications:
Changed `lc + pb` to `lc + lp`.
Result:
Correct check of `lc + lp` value.
Motivation:
Sometimes it is useful to be able to access the uri that was used to initialize the QueryStringDecoder.
Modifications:
Add method which allows to retrieve the uri.
Result:
Allow to retrieve the uri that was used to create the QueryStringDecoder.
Motivation:
When constructing a FingerprintTrustManagerFactory from an Iterable of Strings, the fingerprints were correctly parsed but never added to the result array. The constructed FingerprintTrustManagerFactory consequently fails to validate any certificate.
Modifications:
I added a line to add each converted SHA-1 certificate fingerprint to the result array which then gets passed on to the next constructor.
Result:
Certificate fingerprints passed to the constructor are now correctly added to the array of valid fingerprints. The resulting FingerprintTrustManagerFactory object correctly validates certificates against the list of specified fingerprints.
Motivation:
The HTTP/2 spec does not restrict headers to being String. The current
implementation of the HTTP/2 codec uses Strings as header keys and
values. We should change this so that header keys and values allow
binary values.
Modifications:
Making Http2Headers based on AsciiString, which is a wrapper around a
byte[].
Various changes throughout the HTTP/2 codec to use the new interface.
Result:
HTTP/2 codec no longer requires string headers.
Motiviation:
If sendmmsg is already defined then the native epoll module failed to build because of conflicting definitions.
The mmsghdr type was also redefined on systems that already supported this structure.
Modifications:
Provide a way so that systems which already define sendmmsg and mmsghdr can build
Provide a way so that systems which don't define sendmmsg and mmsghdr can build
Result:
The native EPOLL module can build in more environments
Motivation:
The HTTP/2 unit tests are suffering from OOME on the master branch.
These unit tests allocating a large number of threads (~706 peak live) which may
be related to this memory pressure.
Modifications:
Each EventLoopGroup shutdown operation will have a `sync()` call.
Result:
Lower peek live thread count and less associated memory pressure.
Motivation:
LZMA compression algorithm has a very good compression ratio.
Modifications:
- Added `lzma-java` library which implements LZMA algorithm.
- Implemented LzmaFrameEncoder which extends MessageToByteEncoder and provides compression of outgoing messages.
- Added tests to verify the LzmaFrameEncoder and how it can compress data for the next uncompression using the original library.
Result:
LZMA encoder which can compress data using LZMA algorithm.
Motivation:
ExtensionRegistry is a subclass of ExtensionRegistryLite. The ProtobufDecoder
doesn't use the registry directly, it simply passes it through to the Protobuf
API. The Protobuf calls in question are themselves written in terms
ExtensionRegistryLite not ExtensionRegistry.
Modifications:
Require ExtensionRegistryLite instead of ExtensionRegistry in ProtobufDecoder.
Result:
Consumers can use ExtensionRegistryLite with ProtobufDecoder.
Motivation:
The HTTP/2 tests do not always clean up ByteBuf resources reliably. There are issues with the refCnt, over allocating buffers, and potentially not waiting long enough to reclaim resources for stress tests.
Modifications:
Scrub the HTTP/2 unit tests for ByteBuf leaks.
Result:
Less leaks (hopefully none) in the HTTP/2 unit tests. No OOME from HTTP/2 unit tests.
Motivation:
The HTTP/2 codec does not provide a way to decompress data. This functionality is supported by the HTTP codec and is expected to be a commonly used feature.
Modifications:
-The Http2FrameReader will be modified to allow hooks for decompression
-New classes which detect the decompression from HTTP/2 header frames and uses that decompression when HTTP/2 data frames come in
-New unit tests
Result:
The HTTP/2 codec will provide a means to support data decompression
Motiviation:
The HttpContentDecoder.getTargetContentEncoding has a SuppressWarnings(unused) on its parameter.
This should be SuppressWarnings(UnusedParameters).
Modifications:
SuppressWarnings(unused) -> SuppressWarnings(UnusedParameters)
Result:
Correctly suppressing warnings due to HttpContentDecoder.getTargetContentEncoding
Motivation:
Currently the Executor created by (Nio|Epoll)EventLoopGroup is not correctly shutdown.
This might lead to resource shortages, due to resources not being freed asap.
Modifications:
If (Nio|Epoll)EventLoopGroup create their internal Executor via a constructor
provided `ExecutorServiceFactory` object or via
MultithreadEventLoopGroup.newDefaultExecutorService(...) the ExecutorService.shutdown()
method will be called after (Nio|Epoll)EventLoopGroup is shutdown.
ExecutorService.shutdown() will not be called if the Executor object was passed
to the (Nio|Epoll)EventLoopGroup (that is, it was instantiated outside of Netty).
Result:
Correctly release resources on (Nio|Epoll)EventLoopGroup shutdown.
Motivation:
The ServerBootrap's child group would not be shutdown.
Modification:
Add missing shutdownGracefully() call.
Result:
The child group is shutdown correctly.
Motivation:
The HTTP/2 specification places restrictions on the cipher suites that can be used. There is no central place to pull the ciphers that are allowed by the specification, supported by different java versions, and recommended by the community.
Modifications:
-HTTP/2 will have a security utility class to define supported ciphers
-netty-handler will be modified to support filtering the supplied list of ciphers to the supported ciphers for the current SSLEngine
Result:
-Netty provides unified support for HTTP/2 cipher lists and ciphers can be pruned by currently supported ciphers
Motiviation:
The HTTP content decoder's cleanup method is not cleaning up the decoder correctly.
The cleanup method is currently doing a readOutbound on the EmbeddedChannel but
for decoding the call should be readInbound.
Modifications:
-Change readOutbound to readInbound in the cleanup method
Result:
The cleanup method should be correctly releaseing unused resources
Motivation:
In linux it is possible to write more then one buffer withone syscall when sending datagram messages.
Modifications:
Not copy CompositeByteBuf if it only contains direct buffers.
Result:
More performance due less overhead for copy.
Motivation:
Due incorrect usage of CompositeByteBuf a buffer leak was introduced.
Modifications:
Correctly handle tests with CompositeByteBuf.
Result:
No more buffer leaks
Motivation:
On linux with glibc >= 2.14 it is possible to send multiple DatagramPackets with one syscall. This can be a huge performance win and so we should support it in our native transport.
Modification:
- Add support for sendmmsg by reuse IovArray
- Factor out ThreadLocal support of IovArray to IovArrayThreadLocal for better separation as we use IovArray also without ThreadLocal in NativeDatagramPacketArray now
- Introduce NativeDatagramPacketArray which is used for sendmmsg(...)
- Implement sendmmsg(...) via jni
- Expand DatagramUnicastTest to test also sendmmsg(...)
Result:
Netty now automatically use sendmmsg(...) if it is supported and we have more then 1 DatagramPacket in the ChannelOutboundBuffer and flush() is called.
Motivation:
On linux it is possible to use the sendMsg(...) system call to write multiple buffers with one system call when using datagram/udp.
Modifications:
- Implement the needed changes and make use of sendMsg(...) if possible for max performance
- Add tests that test sending datagram packets with all kind of different ByteBuf implementations.
Result:
Performance improvement when using CompoisteByteBuf and EpollDatagramChannel.
Motivation:
InetAddress.getByName(...) uses exceptions for control flow when try to parse IPv4-mapped-on-IPv6 addresses. This is quite expensive.
Modifications:
Detect IPv4-mapped-on-IPv6 addresses in the JNI level and convert to IPv4 addresses before pass to InetAddress.getByName(...) (via InetSocketAddress constructor).
Result:
Eliminate performance problem causes by exception creation when parsing IPv4-mapped-on-IPv6 addresses.
Motivation:
There is a bug in the JettySslEngineTest where the interface receiving a message does not do a latch.countDown().
This causes each test to be subject to the CountDownLatch timeout period instead of being notified right when an event occurs.
Modifications:
- The JettySslEngineTest message handler will call the appropriate latch.countDown after a message is received
Result:
JettySslEngineTest will not be subject to waiting the timeout period even if the message is correctly received
Motivation:
Outbound flow control does not properly remove the head of queue after
it's written. This will cause streams with multiple frames to get stuck
and not send all of the data.
Modifications:
Modified the DefaultHttp2OutboundFlowController to properly remove the
head of the pending write queue once a queued frame has been written.
Added an integration test that sends a large message to verify that all
DATA frames are properly collected at the other end.
Result:
Outbound flow control properly handles several queued messages.
Motivation:
Once the interrupted flag in SingleThreadEventLoopB was set it was never reset.
That way the eventloop thread was always in an interrupted state and all calls
to Thread.sleep/LockSupport.parkNanos would fail.
Modifications:
Reset interrupted flag.
Result:
Number of GC runs when executing the test is down to zero (from 20 - 50).
Looking at the heap dump shows >10x decrease in memory consumption e.g.
the number of ForkJoinTasks is down to 25k from 350k previously. Similar
is true for BlockingQueue.Node objects.
Motivation:
We received a bug-report that the ByteBuf.refCnt() does sometimes not show the correct value when release() and refCnt() is called from different Threads.
Modifications:
Add test-case which shows that all is working like expected
Result:
Test-case added which shows everything is ok.
Motivation:
Because of a bug a NPE was thrown when tried to encode HTTP to SPDY and no X-SPDY-Associated-To-Stream-ID was present.
Modifications:
Use 0 as default value when X-SPDY-Associated-To-Stream-ID not present.
Result:
No NPE anymore.
Motivation:
This fixes bug #2848 which caused Recycler to become unbounded and cache infinite number of objects with maxCapacity that's not a power of two. This can result in general sluggishness of the application and OutOfMemoryError.
Modifications:
The test for maxCapacity has been moved out of test to check if the buffer has filled. The buffer is now also capped at maxCapacity and cannot grow over it as it jumps from one power of two to the other.
Additionally, a unit test was added to verify maxCapacity is honored even when it's not a power of two.
Result:
With these changes the user is able to use a custom maxCapacity number and not have it ignored. The unit test assures this bug will not repeat itself.
Motivation:
We failed to release buffers on protocolErrors which caused buffer leaks when using HTTP/2
Modifications:
Release buffer on protocol errors
Result:
No more buffer leaks
Motivation:
Netty only supports a java NPN implementation provided by npn-api and npn-boot.
There is no java implementation for ALPN.
ALPN is needed to be compliant with the HTTP/2 spec.
Modifications:
-SslContext and JdkSslContext to support ALPN
-JettyNpn* class restructure for NPN and ALPN common aspects
-Pull in alpn-api and alpn-boot optional dependencies for ALPN java implementation
Result:
-Netty provides access to a java implementation of APLN
Motivation:
The SingleThreadEventLoopTest allocated up to half a gigabyte of memory per run,
causing up to 50 GC runs in ~20 seconds.
Modification:
Charlie Hunt identified TLAB allocations to be the root cause of this excessive
memory usage [1]. By reusing the Executor in every test we can reduce the
memory usage by >50%.
Result:
Lower Memory Usage and fewer Garbage Collector runs.
Helps to resolve GitHub issue #2841.
[1] https://twitter.com/charlesjhunt/status/505351389317722112
Motivation:
Sometimes the SingleThreadEventLoopTest did fail on our CI. This was because of GC pressure produced by Thread.sleep(...) when interrupted as it creates a new InterruptedException all the time (and need to fill it).
Modifications:
Replace Thread.sleep(...) with LockSupport.parkNanos(...) to eliminate exception overhead.
Result:
SingleThreadEventLoopTest produce a lot less garbage.
Motivation:
A recent refactoring of the outbound flow controller interface
introduced a bug when writing data. We're no longer properly handling
the completion of the write (i.e. updating stream state/handling error).
Modifications:
Updated AbstractHttp2ConnectionHandler.writeData to properly handle the
completion of the write future.
Result:
DATA writes now perform post-write cleanup.
The 'bin/' directory is currently not in the .gitignore file.
Eclipse creates this directory to support IDE operations.
These directory is generated and not related to source code and therefore does not belong in git.
Modifications:
-Add 'bin/' to .gitignore
Result:
-No more 'bin/' directory confusion for eclipse users.
Motivation:
We currently have a mix of "Observer" and "Listener" for interface
names. We should make them all "Listener" to be consistent.
Modifications:
Renamed Http2DataObserver->Http2DataListener and
Http2FrameObserver->Http2FrameListener.
Result:
Listener interface names are consistent.
Motivation:
The priority information reported by the HTTP/2 to HTTP tranlsation layer is not correct in all situations.
The HTTP translation layer is not using the Http2Connection.Listener interface to track tree restructures.
This incorrect information is being sent up to clients and is misleading.
Modifications:
-Restructure InboundHttp2ToHttpAdapter to allow a default data/header mode
-Extend this interface to provide an optional priority translation layer
Result:
-Priority information being correctly reported in HTTP/2 to HTTP translation layer
-Cleaner code with seperation of concerns (optional priority conversion).
Motivation:
Currently, window maintenance is automatically performed when a flow
control window drops below half its initial size. We should provide a
way for advanced applications to determine whether or not this should be
done on a per-stream basis.
Modifications:
Modifying DefaultHttp2InboundFlowController to allow enabling/disabling
of window maintenance per stream.
Result:
Inbound flow control window maintenance will be dynamically
configurable.
Motivation:
In EpollSocketchannel.doWriteFileRegion(...) we need to make sure we write until sendFile(...) returns either 0 or all is written. Otherwise we may not get notified once the Channel is writable again.
This is the case as we use EPOLL_ET.
Modifications:
Always write until either sendFile returns 0 or all is written.
Result:
No more hangs when writing DefaultFileRegion can happen.