Motivation:
We should call promise.setUncancellable() in DefaultHttp2StreamChannel.Unsafe impl to detect if the operation was cancelled.
Modifications:
Add promise.setUncancellable() calls
Result:
More correct handling of cancelled promises
Motivation:
Our http2 child channel implementation was not 100 % complete and had a few bugs. Beside this the performance overhead was non-trivial.
Modifications:
There are a lot of modifications, the most important....
* Http2FrameCodec extends Http2ConnectionHandler and Http2MultiplexCodec extends Http2FrameCodec to reduce performance heads and inter-dependencies on handlers in the pipeline
* Correctly handle outbound flow control for child channels
* Support unknow frame types in Http2FrameCodec and Http2MultiplexCodec
* Use a consistent way how to create Http2ConnectionHandler, Http2FrameCodec and Http2MultiplexCodec (via a builder)
* Remove Http2Codec and Http2CodecBuilder as the user should just use Http2MultipleCodec and Http2MultiplexCodecBuilder now
* Smart handling of flushes from child channels to reduce overhead
* Reduce object allocations
* child channels always use the same EventLoop as the parent Channel to reduce overhead and simplify implementation.
* Not extend AbstractChannel for the child channel implementation to reduce overhead in terms of performance and memory usage
* Remove Http2FrameStream.managedState(...) as the user of the child channel api should just use Channel.attr(...)
Result:
Http2MultiplexCodec (and so child channels) and Http2FrameCodec are more correct, faster and more feature complete.
Motivation:
This PR (unfortunately) does 4 things:
1) Add outbound flow control to the Http2MultiplexCodec:
The HTTP/2 child channel API should interact with HTTP/2 outbound/remote flow control. That is,
if a H2 stream used up all its flow control window, the corresponding child channel should be
marked unwritable and a writability-changed event should be fired. Similarly, a unwritable
child channel should be marked writable and a writability-event should be fired, once a
WINDOW_UPDATE frame has been received. The changes are (mostly) contained in ChannelOutboundBuffer,
AbstractHttp2StreamChannel and Http2MultiplexCodec.
2) Introduce a Http2Stream2 object, that is used instead of stream identifiers on stream frames. A
Http2Stream2 object allows an application to attach state to it, and so a application handler
no longer needs to maintain stream state (i.e. in a map(id -> state)) himself.
3) Remove stream state events, which are no longer necessary due to the introduction of Http2Stream2.
Also those stream state events have been found hard and complex to work with, when porting gRPC
to the Http2FrameCodec.
4) Add support for HTTP/2 frames that have not yet been implemented, like PING and SETTINGS. Also add
a Http2FrameCodecBuilder that exposes options from the Http2ConnectionHandler API that couldn't else
be used with the frame codec, like buffering outbound streams, window update ratio, frame logger, etc.
Modifications:
1) A child channel's writability and a H2 stream's outbound flow control window interact, as described
in the motivation. A channel handler is free to ignore the channel's writability, in which case the
parent channel is reponsible for buffering writes until a WINDOW_UPDATE is received.
The connection-level flow control window is ignored for now. That is, a child channel's writability
is only affected by the stream-level flow control window. So a child channel could be marked writable,
even though the connection-level flow control window is zero.
2) Modify Http2StreamFrame and the Http2FrameCodec to take a Http2Stream2 object intstead of a primitive
integer. Introduce a special Http2ChannelDuplexHandler that has newStream() and forEachActiveStream()
methods. It's recommended for a user to extend from this handler, to use those advanced features.
3) As explained in the documentation, a new inbound stream active can be detected by checking if the
Http2Stream2.managedState() of a Http2HeadersFrame is null. An outbound stream active can be detected
by adding a listener to the ChannelPromise of the write of the first Http2HeadersFrame. A stream
closed event can be listened to by adding a listener to the Http2Stream2.closeFuture().
4) Add a simple Http2FrameCodecBuilder and implement the missing frame types.
Result:
1) The Http2MultiplexCodec supports outbound flow control.
2) The Http2FrameCodec API makes it easy for a user to manage custom stream specific state and to create
new outbound streams.
3) The Http2FrameCodec API is much cleaner and easier to work with. Hacks like the ChannelCarryingHeadersFrame
are no longer necessary.
4) The Http2FrameCodec now also supports PING and SETTINGS frames. The Http2FrameCodecBuilder allows the Http2FrameCodec
to use some of the rich features of the Http2ConnectionHandler API.
Motivation:
The javadocs of Http2RemoteFlowController.isWritable(...) are incorrect.
Modifications:
Update javadocs to reflect reality.
Result:
Correct javadocs.
Motivation:
The labels identifying the frame types in Http2FrameLogger are not always correct.
Modification:
- Correct the string labels to indicate the right frame type in Http2FrameLogger
Result:
Logs are more correct.
Motivation:
In Http2ConnectionHandler we call flush(...) in channelReadComplete(...) to ensure we update the flow-controller and write stuff to the remote peer. We should better flip the order and so may be able to pick up more bytes.
Modifications:
Change order of calls.
Result:
Better performance
Motivation:
When we use pipeline.replace and we still had ongoing inbound, then
there will be some problem that inbound message would go to wrong
handlers. So we add handler first, and remove self after add, so that
the next handler will be the correct one.
Modifications:
Uses remove after addAfter instead of replace.
Result:
Fixed#6881
Motivation:
Http2FrameCodec should use Http2Settings.defaultSettings() when no Http2Settings were specified by the user.
Modifications:
Replace new Http2Settings() with Http2Settings.defaultSettings()
Result:
Use correct Http2Settings by default when using Http2FrameCodec in all cases.
Motivation:
Currentry logger create hex dump even if log write will not apply.
It's unecessary GC overhead.
Modifications:
Restore optimization from #3492
Result:
Fixes#7025
Motivation:
There should be a way to allow graceful shutdown to wait for all open streams to close without a timeout. Using gracefulShutdownTimeoutMillis with a large value is a bit of a hack, and has a gotcha that sufficiently large values will overflow the long, resulting in a ClosingChannelFutureListener that executes immediately.
Modification:
Allow to use gracefulShutdownTimeoutMillis(-1) to express waiting until all streams are closed.
Result:
We can now shutdown the connection without a forced timeout.
Motivation:
codec-http2 currently does not strictly enforce the HTTP/1.x semantics with respect to the number of headers defined in RFC 7540 Section 8.1 [1]. We currently don't validate the number of headers nor do we validate that the trailing headers should indicate EOS.
[1] https://tools.ietf.org/html/rfc7540#section-8.1
Modifications:
- DefaultHttp2ConnectionDecoder should only allow decoding of a single headers and a single trailers
- DefaultHttp2ConnectionEncoder should only allow encoding of a single headers and optionally a single trailers
Result:
Constraints of RFC 7540 restricting the number of headers/trailers is enforced.
Motivation:
Http2ServerUpgradeCodec should support Http2FrameCodec.
Modifications:
- Add support for Http2FrameCodec
- Add example that uses Http2FrameCodec
Result:
More flexible use of Http2ServerUpgradeCodec
Motivation:
DefaultHttp2ConnectionEncoder#writeHeaders attempts to find a stream object, and if one doesn't exist it tries to create one. However in the event that the local endpoint has received a RST_STREAM frame before writing the response headers we attempt to create a stream. Since this stream ID is for the incorrect endpoint we then generate a GO_AWAY for what appears to be a protocol error, but can instead be failed locally.
Modifications:
- Just fail the local promise in the above situation instead of sending a GO_AWAY
Result:
Less severe consequences if the server asynchronously sends headers after a RST_STREAM has been received.
Fixes https://github.com/netty/netty/issues/6906.
Motivation:
PR #6811 introduced a public utility methods to decode hex dump and its parts, but they are not visible from netty-common.
Modifications:
1. Move the `decodeHexByte`, `decodeHexDump` and `decodeHexNibble` methods into `StringUtils`.
2. Apply these methods where applicable.
3. Remove similar methods from other locations (e.g. `HpackHex` test class).
Result:
Less code duplication.
Motivation:
The Http2FrameLogger uses a custom format when logging events. We should use the more familiar format of 'channel event type: details' and single line logging for more consistent debugging.
Modifications:
- Http2FrameLogger should not use a StringBuilder and instead should directly use the Logger
- Http2FrameLogger should use the more consistent format defined above
Result:
Http2FrameLogger's logging formate is more consistent with other log events.
Motivation:
In a `HttpConversionUtil#toHttp2Headers` a status code conversion can be replaced with using `HttpResponseStatus#codeAsText` method.
Modifications:
Apply `HttpResponseStatus#codeAsText` method.
Result:
Less allocations.
Motivation:
Before we always expanded the buffer by the initialCapacity which by default is 32 bytes. This may lead to many expansions of the buffer until we finally reached the point that the buffer can fin everything.
Modifications:
Double the buffer size until the threshold of >= 1024 is hit. After this will grow it by the initialCapacity
Result:
Less expansion of the buffer (and so allocations / copies) when the intialCapacity is not big enough. Fixes [#6864].
Motivation:
HpackHuffmanDecoder.Decoder did not do any bound-checking but just catched IndexOutOfBoundsException to detect if the array needs to grow. This can be very expensive because of fillInStackTrace()
Modifications:
Add proper bounds checking and grow the array if needed without catching IndexOutOfBoundsException.
Result:
Less overhead if the array needs to grow.
Motivation:
Depending on the use case it may make sense to increase or decrease the initial size of the buffer used during the HPACK huffman decode process. This is currently not exposed through the AbstractHttp2ConnectionHandlerBuilder.
Modifications:
- Add a method to AbstractHttp2ConnectionHandlerBuilder which allows the initial size of the buffer used during the HPACK huffman decode prcoess to be configured.
Result:
AbstractHttp2ConnectionHandlerBuilder provides more control of codec-http2 knobs.
Motivation:
Some JUnit assert calls can be replaced by simpler.
Modifications:
Replacement with a more suitable methods.
Result:
More informative JUnit reports.
Motivation:
DefaultHttp2FrameWriter has constructors that it would be a hassle to
expose as configuration parameters on Http2Codec. We should instead
make a builder for Http2Codec.
Modifications:
Get rid of the public constructors on Http2Codec and instead make sure
you can always use the builder where you would have used the constructor
before.
Result:
Http2Codec can be configured more flexibly, and the SensitivityDetector
can be configured.
Motivation:
Each StreamByteDistributor may allow for priority in different ways, but there are certain characteristics which are invalid regardless of the distribution algorithm. We should validate these invalid characteristics at the flow controller level.
Modifications:
- Disallow negative stream IDs from being used. These streams may be accepted by the WeightedFairQueueByteDistributor and cause state for other valid streams to be evicted.
- Improve unit tests to verify limits are enforced.
Result:
Boundary conditions related to the priority parameters are validated more strictly.
Motivation:
Chrome was randomly getting stuck loading the tiles examples.
Investigation showed that the Netty flow controller thought it had
nothing to send for the connection even though some streams has queued
data and window available.
Modifications:
Fixed an accounting error where an implicitly created parent was not
being added to the dependency tree, thus it and all of its children were
orphaned from the connection's tree and would never have data written.
Result:
Fixes#6621
Motivation:
Although effectively unused, the toString() of
WeightedFairQueueByteDistributor.State is useful for debugging. It
accidentally had an infinite loop, as it would recurse infinitely
between a parent and its child, which makes it less useful for
debugging.
Modifications:
Prune the infinite loop by using the parent's streamId instead of the
parent's toString().
Result:
Faster, less stack-overflowing toString()
Motivation:
The CI servers have reported leaks while building the HTTP/2 unit tests. The unit tests attempt to wait for the channels to be closed before exiting the test, but we should wait in case there are any tasks pending on the EventLoopGroup's task queues.
Modifications:
- Change the Future.sync() operations to Future.syncUninterruptibly()
- HTTP/2 unit tests which use local channel should wait for 5 seconds before shutting down the EventLoopGroups
Result:
More likely that any cleanup related tasks will execute before the unit tests are shutdown.
Motivation:
It is generally useful to override DefaultHttp2HeadersDecoder's creation of a new Http2Headers object so more optimized versions can be substituted if the use case allows for it.
Modifications:
- DefaultHttp2HeadersDecoder should support an overridable method to generate the new Http2Headers object for each decode operation
Result:
DefaultHttp2HeadersDecoder is more extensible.
Fixes https://github.com/netty/netty/issues/6591.
Motivation:
codec-http2 has some helper methods to write to ByteBuf in a big endian fashion. This is the default memory structure for ByteBuf so these helper methods are not necessary.
Modifications:
- remove writeUnsignedInt and writeUnsignedShort
Result:
codec-http2 has less ByteBuf helper methods which are not necessary.
Motivation:
HTTP/2 support two ways to start on a no-tls tcp connection,
http/1.1 upgrade and prior knowlege methodology to start HTTP/2.
Currently, the http2-server from example only support
starting by upgrade. I think we can do a simple dispatch by peek first
bytes from inbound that match to prior knowledge preface or not and
determine which handlers to set into pipeline.
Modifications:
Add ClearTextHttp2ServerUpgradeHandler to support start HTTP/2 via clear
text with two approach. And update example/http2-server to support
this functionality.
Result:
netty HTTP/2 and the example http2-server accept for two ways to start
HTTP/2 over clear text.
Fixed memory leak problem
Update fields to final
Rename ClearText to cleartext
Addressed comments for code improvement
- Always prefer static, final, and private if possible
- Add UnstableApi annotation
- Used EmbeddedChannel.readInbound instead of unhandled inbound handler
- More assertion
Update javadoc for CleartextHttp2ServerUpgradeHandler
Rename ClearTextHttp2ServerUpgradeHandler to CleartextHttp2ServerUpgradeHandler
Removed redundant code about configure pipeline
nit: PriorKnowledgeHandler
Removed Mockito.spy, investigate conn state instead
Add Http2UpgradeEvent
Check null of the constructor arguments
Rename Http2UpgradeEvent to PriorKnowledgeUpgradeEvent
Update unit test
Motivation:
gRPC (and potentially other libraries) has an optimized header processor that requires direct access to the HpackDecoder.
Modifications:
Make the HpackDecoder and its constructors public.
Result:
Fixes#6579
Motivation
Http2StreamChannel ignores options of its parent channel when being created. That leads to surprising results when, for example, unpooled allocator could be silently replaced with pooled allocator (default setting).
Modification
Copy parent channel's options over to the Http2StreamChannel.
Result
Channel options are now consistent between Http2StreamChannel and its parent channel. Newly added test passes on this branch and fails on master. Fixes#6551.
Motivation:
We used some deprecated Mockito methods.
Modifications:
- Replace deprecated method usage
- Some cleanup
Result:
No more usage of deprecated Mockito methods. Fixes [#6482].
Motivation:
DefaultHttp2ConnectionDecoder#onSettingsRead processes the settings, and then sends a SETTINGS ACK to the remote peer. Processing the settings may result in frames which violate the previous settings being send to the remote peer. The remote peer will not apply the new settings until it has received the SETTINGS ACK, and therefore we may violate the settings from the remote peer's perspective and the connection will be shutdown.
Modifications:
- We should send the SETTINGS ACK before we process the settings to ensure the peer receives the SETTINGS ACK before other frames which assume the settings have already been applied
Result:
Fixes https://github.com/netty/netty/issues/6520.
Motivation:
Http2SecurityUtil currently lists HTTP/2 ciphers as documented by
JSSE docs [1] and the IANA [2] using the TLS_ prefix.
In some IBM J9 implementations the SSL_ prefix is used, which is also
covered by the JSSE.
[1] http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
[2] http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
Modifications:
Add both variants of the cipher names (prefixed with SSL_ in additon to TLS_)
Result:
HTTP/2 connections can now be created using the SslProvider.JDK on IBM J9
and potentially other JVMs which use the SSL_ prefix.
Motivation:
A previous commit added methods to AbstractHttp2ConnectionHandlerBuilder but forgot to expose them in Http2ConnectionHandlerBuilder.
Modifications:
- expose the new methods in Http2ConnectionHandlerBuilder
Result:
Http2ConnectionHandlerBuilder supports the new configuration options.
Motivation:
The internal.hpack classes are no longer exposed in our public APIs and can be made package private in the http2 package.
Modifications:
- Make the hpack classes package private in the http2 package
Result:
Less APIs exposed as public.
Motivation:
The timeouts used in the Http2ConnectionRoundtripTest seems to be too low when leak-detection is enabled so we sometimes get failed tests due timeout.
Modifications:
Increase timeouts.
Result:
Fixes [#6442].
Motivation:
DefaultHttp2FrameWriter contains important logic for how http2
frame encode into binary, currently, netty had no unit test
just for DefaultHttp2FrameWriter.
Modifications:
Write DefaultHttp2FrameWriterTest to test DefaultHttp2FrameWriter
Result:
The coverage of DefaultHttp2FrameWriter is increased, and the
class was more reliable
Motivation:
In previous PR about handling unknwon frame in the middle of header
block, I didn't notice and re-use about checking is processing header
. And I added a redundant method for same functionality.
I think that the redundant method would lead to some misleading
situation.
Modifications:
Removed redundant code on DefaultHttp2FrameReader
Result:
The code is more readable
Motivation:
Some unit HTTP/2 unit tests use LocalChannel. LocalChannel's doClose method will ensure any pending items in the queue will be released, but it may execute a Runnable on the peer's EventLoop to ensure the peer's queue is also cleaned up. The HTTP/2 unit tests close the event loop groups with no wait time so that unit tests will execute quickly, but if the doClose Runnable is in the EventLoop's queue it will not run and thus the items in the queue will not be released.
Modifications:
- Ensure all HTTP/2 unit tests which use LocalChannel wait for both client and server channels to be closed before closing the EventLoop.
Result:
Related to https://github.com/netty/netty/issues/5850.
Motivation:
DefaultHttp2FrameReader contains the logic for how it parsed the network
traffic from http2 client,
it also validate the content is legal or not.
So keep high coverage rate on it will increase the stability of api.
Modifications:
Add unit test on DefaultHttp2FrameReader
Result:
Coverage rate increased