Motivation:
This resolves a TODO from the initial transport-native-kqueue implementation, supplying the user with the pid of the local peer client/server process.
Modification:
Inside netty_kqueue_bsdsocket_getPeerCredentials, Call getsockopt with LOCAL_PEERPID and pass it to PeerCredentials constructor.
Add a test case in KQueueSocketTest.
Result:
PeerCredentials now have pid field set. Fixes https://github.com/netty/netty/issues/9213
Motivation:
The current KQueueEventLoop implementation does not process concurrent domain socket channel registration/unregistration in the order they actual
happen since unregistration are delated by an event loop task scheduling. When a domain socket is closed, it's file descriptor might be reused
quickly and therefore trigger a new channel registration using the same descriptor.
Consequently the KQueueEventLoop#add(AbstractKQueueChannel) method will overwrite the current inactive channels having the same descriptor
and the delayed KQueueEventLoop#remove(AbstractKQueueChannel) will remove the active channel that replaced the inactive one.
As active channels are registered, events for this file descriptor won't be processed anymore and the channels will never be closed.
The same problem can also happen in EpollEventLoop. Beside this we also may never remove the AbstractEpollChannel from the internal map
when it is unregistered which will prevent it from be GC'ed
Modifications:
- Change logic of native KQueue and Epoll implementations to ensure we correctly handle the case of FD reuse
- Only try to update kevent / epoll if the Channel is still open (as otherwise it will be handled by kqueue / epoll itself)
- Correctly remove AbstractEpollChannel from internal map in all cases
- Make implementation of closeAll() consistent for Epoll and KQueueEventLoop
Result:
KQueue and Epoll native transports correctly handle FD reuse
Co-authored-by: Norman Maurer <norman_maurer@apple.com>
Motivation:
OOME is occurred by increasing suppressedExceptions because other libraries call Throwable#addSuppressed. As we have no control over what other libraries do we need to ensure this can not lead to OOME.
Modifications:
Only use static instances of the Exceptions if we can either dissable addSuppressed or we run on java6.
Result:
Not possible to OOME because of addSuppressed. Fixes https://github.com/netty/netty/issues/9151.
Motivation
These implementations delegate most of their methods to an existing Handle and previously extended RecvByteBufAllocator.DelegatingHandle. This was reverted in #6322 with the introduction of ExtendedHandle but it's not clear to me why it needed to be - the code looks a lot cleaner.
Modifications
Have (Epoll|KQueue)RecvByteAllocatorHandle extend DelegatingHandle again, while still implementing ExtendedHandle.
Result
Less code.
Motivation:
We currently only cover ipv4 multicast in the testsuite but we should also have tests for ipv6.
Modifications:
- Add test for ipv6
- Ensure we only try to run multicast test for ipv4 / ipv6 if the loopback interface supports it.
Result:
Better test coverage
Motivation:
When kevent(...) returns with EINTR we do not correctly decrement the timespec
structure contents to account for the time duration. This may lead to negative
values for tv_nsec which will result in an EINVAL and raise an IOException to
the event loop selection loop.
Modifications:
Correctly calculate new timeoutTs when EINTR is detected
Result:
Fixes#9013.
Motivation:
In 42742e233f4b7318d749339bfc6d03ed46e2f84e we already added default methods to Channel*Handler and deprecated the Adapter classes to simplify the class hierarchy. With this change we go even further and merge everything into just ChannelHandler. This simplifies things even more in terms of class-hierarchy.
Modifications:
- Merge ChannelInboundHandler | ChannelOutboundHandler into ChannelHandler
- Adjust code to just use ChannelHandler
- Deprecate old interfaces.
Result:
Cleaner and simpler code in terms of class-hierarchy.
Motivation:
Since DomainSocketChannel is a DuplexChannel, which be able to shutdown input or output individually on demands, but ALLOW_HALF_CLOSURE channel option has not been supported yet.
I thought this could be a missing feature of Unix domain socket, so here the PR for it.
Modifications:
1. Added allHalfClosure property both in EpollDomainSocketChannelConfig and KQueueDomainSocketChannelConfig,
2. Enabled isAllowHalfClosure method of native channel to support domain channel config,
3. Created EpollDomainSocketShutdownOutputByPeerTest and KQueueDomainSocketShutdownOutputByPeerTest to verify the change.
Result:
ALLOW_HALF_CLOSURE channel option can be set with DomainSocketChannel, and no more warning of Unknown channel option 'ALLOW_HALF_CLOSURE'.
Motivation:
As we now us java8 as minimum java version we can deprecate ChannelInboundHandlerAdapter / ChannelOutboundHandlerAdapter and just move the default implementations into the interfaces. This makes things a bit more flexible for the end-user and also simplifies the class-hierarchy.
Modifications:
- Mark ChannelInboundHandlerAdapter and ChannelOutboundHandlerAdapter as deprecated
- Add default implementations to ChannelInboundHandler / ChannelOutboundHandler
- Refactor our code to not use ChannelInboundHandlerAdapter / ChannelOutboundHandlerAdapter anymore
Result:
Cleanup class-hierarchy and make things a bit more flexible.
Motivation:
`DefaultFileRegion.transferTo` will return 0 all the time when we request more data then the actual file size. This may result in a busy spin while processing the fileregion during writes.
Modifications:
- If we wrote 0 bytes check if the underlying file size is smaller then the requested count and if so throw an IOException
- Add DefaultFileRegionTest
- Add a test to the testsuite
Result:
Fixes https://github.com/netty/netty/issues/8868.
Motivation:
In https://github.com/netty/netty/pull/8665 we changed how we handle the registration of Channels to KQueue but missed to removed some code which would deregister the Channel before it actual closed the underlying socket. This could lead to have events triggered still while not have a mapping to the Channel anymore.
Modifications:
Remove deregister call during socket closure.
Result:
Fixes https://github.com/netty/netty/issues/8849.
Motivation:
The SSLEngine does provide a way to signal to the caller that it may need to execute a blocking / long-running task which then can be offloaded to an Executor to ensure the I/O thread is not blocked. Currently how we handle this in SslHandler is not really optimal as while we offload to the Executor we still block the I/O Thread.
Modifications:
- Correctly support offloading the task to the Executor while suspending processing of SSL in the I/O Thread
- Add new methods to SslContext to specify the Executor when creating a SslHandler
- Remove @deprecated annotations from SslHandler constructor that takes an Executor
- Adjust tests to also run with the Executor to ensure all works as expected.
Result:
Be able to offload long running tasks to an Executor when using SslHandler. Partly fixes https://github.com/netty/netty/issues/7862 and https://github.com/netty/netty/issues/7020.
Motivation:
We missed to extend a few tests from the testsuite and so also run these with our native KQueue and Epoll transport.
Modifications:
Extend tests and so run these for our native transports as well.
Result:
More tests.
Motivation:
We can just use Objects.requireNonNull(...) as a replacement for ObjectUtil.checkNotNull(....)
Modifications:
- Use Objects.requireNonNull(...)
Result:
Less code to maintain.
Motivation:
In the native code EpollDatagramChannel / KQueueDatagramChannel creates a DatagramSocketAddress object for each received UDP datagram even when in connected mode as it uses the recvfrom(...) / recvmsg(...) method. Creating these is quite heavy in terms of allocations as internally, char[], String, Inet4Address, InetAddressHolder, InetSocketAddressHolder, InetAddress[], byte[] objects are getting generated when constructing the object. When in connected mode we can just use regular read(...) calls which do not need to allocate all of these.
Modifications:
- When in connected mode use read(...) and NOT recvfrom(..) / readmsg(...) to reduce allocations when possible.
- Adjust tests to ensure read works as expected when in connected mode.
Result:
Less allocations and GC when using native datagram channels in connected mode. Fixes https://github.com/netty/netty/issues/8770.
Motivation:
We have a utility method to check for > 0 and >0 arguments. We should use it.
Modification:
use checkPositive/checkPositiveOrZero instead of if statement.
Result:
Re-use utility method.
Motivation:
We can use lambdas now as we use Java8.
Modification:
use lambda function for all package, #8751 only migrate transport package.
Result:
Code cleanup.
Motivation:
We need to update to a new checkstyle plugin to allow the usage of lambdas.
Modifications:
- Update to new plugin version.
- Fix checkstyle problems.
Result:
Be able to use checkstyle plugin which supports new Java syntax.
* Decouble EventLoop details from the IO handling for each transport to allow easy re-use of code and customization
Motiviation:
As today extending EventLoop implementations to add custom logic / metrics / instrumentations is only possible in a very limited way if at all. This is due the fact that most implementations are final or even package-private. That said even if these would be public there are the ability to do something useful with these is very limited as the IO processing and task processing are very tightly coupled. All of the mentioned things are a big pain point in netty 4.x and need improvement.
Modifications:
This changeset decoubled the IO processing logic from the task processing logic for the main transport (NIO, Epoll, KQueue) by introducing the concept of an IoHandler. The IoHandler itself is responsible to wait for IO readiness and process these IO events. The execution of the IoHandler itself is done by the SingleThreadEventLoop as part of its EventLoop processing. This allows to use the same EventLoopGroup (MultiThreadEventLoupGroup) for all the mentioned transports by just specify a different IoHandlerFactory during construction.
Beside this core API change this changeset also allows to easily extend SingleThreadEventExecutor / SingleThreadEventLoop to add custom logic to it which then can be reused by all the transports. The ideas are very similar to what is provided by ScheduledThreadPoolExecutor (that is part of the JDK). This allows for example things like:
* Adding instrumentation / metrics:
* how many Channels are registered on an SingleThreadEventLoop
* how many Channels were handled during the IO processing in an EventLoop run
* how many task were handled during the last EventLoop / EventExecutor run
* how many outstanding tasks we have
...
...
* Implementing custom strategies for choosing the next EventExecutor / EventLoop to use based on these metrics.
* Use different Promise / Future / ScheduledFuture implementations
* decorate Runnable / Callables when submitted to the EventExecutor / EventLoop
As a lot of functionalities are folded into the MultiThreadEventLoopGroup and SingleThreadEventLoopGroup this changeset also removes:
* AbstractEventLoop
* AbstractEventLoopGroup
* EventExecutorChooser
* EventExecutorChooserFactory
* DefaultEventLoopGroup
* DefaultEventExecutor
* DefaultEventExecutorGroup
Result:
Fixes https://github.com/netty/netty/issues/8514 .
Motivation:
We can use the diamond operator these days.
Modification:
Use diamond operator whenever possible.
Result:
More modern code and less boiler-plate.
Motiviation:
Because of how we implemented the registration / deregistration of an EventLoop it was not possible to wrap an EventLoop implementation and use it with a Channel.
Modification:
- Introduce EventLoop.Unsafe which is responsible for the actual registration.
- Move validation of EventLoop / Channel combo to the EventLoop
- Add unit test that verifies that wrapping works
Result:
Be able to wrap an EventLoop and so add some extra functionality.
Motivation:
At the moment it’s possible to have a Channel in Netty that is not registered / assigned to an EventLoop until register(...) is called. This is suboptimal as if the Channel is not registered it is also not possible to do anything useful with a ChannelFuture that belongs to the Channel. We should think about if we should have the EventLoop as a constructor argument of a Channel and have the register / deregister method only have the effect of add a Channel to KQueue/Epoll/... It is also currently possible to deregister a Channel from one EventLoop and register it with another EventLoop. This operation defeats the threading model assumptions that are wide spread in Netty, and requires careful user level coordination to pull off without any concurrency issues. It is not a commonly used feature in practice, may be better handled by other means (e.g. client side load balancing), and therefore we propose removing this feature.
Modifications:
- Change all Channel implementations to require an EventLoop for construction ( + an EventLoopGroup for all ServerChannel implementations)
- Remove all register(...) methods from EventLoopGroup
- Add ChannelOutboundInvoker.register(...) which now basically means we want to register on the EventLoop for IO.
- Change ChannelUnsafe.register(...) to not take an EventLoop as parameter (as the EventLoop is supplied on custruction).
- Change ChannelFactory to take an EventLoop to create new Channels and introduce ServerChannelFactory which takes an EventLoop and one EventLoopGroup to create new ServerChannel instances.
- Add ServerChannel.childEventLoopGroup()
- Ensure all operations on the accepted Channel is done in the EventLoop of the Channel in ServerBootstrap
- Change unit tests for new behaviour
Result:
A Channel always has an EventLoop assigned which will never change during its life-time. This ensures we are always be able to call any operation on the Channel once constructed (unit the EventLoop is shutdown). This also simplifies the logic in DefaultChannelPipeline a lot as we can always call handlerAdded / handlerRemoved directly without the need to wait for register() to happen.
Also note that its still possible to deregister a Channel and register it again. It's just not possible anymore to move from one EventLoop to another (which was not really safe anyway).
Fixes https://github.com/netty/netty/issues/8513.
Motivation:
How we did the mapping from native code to AbstractKQueueChannel was not safe and could lead to heap corruption. This then sometimes produced ClassCastExceptions or could also lead to crashes. This happened sometimes when running the testsuite.
Modifications:
Use a Map for the mapping (just as we do in the native epoll transport).
Result:
No more heap corruption / crashes.
* Handling AUTO_READ should not be the responsibility of DefaultChannelPipeline but the Channel itself.
Motivation:
At the moment we do automatically call read() in the DefaultChannelPipeline when fireChannelReadComplete() / fireChannelActive() is called and the Channel is using auto read. This is nice in terms of sharing code but imho is not the responsibility of the ChannelPipeline implementation but the responsibility of the Channel implementation.
Modifications:
Move handing of auto read from DefaultChannelPipeline to Channel implementations.
Result:
More clear responsibiliy and not depending on implemention details of the ChannelPipeline.
Motivation:
Add an option (through a SelectStrategy return code) to have the Netty event loop thread to do busy-wait on the epoll.
The reason for this change is to avoid the context switch cost that comes when the event loop thread is blocked on the epoll_wait() call.
On average, the context switch has a penalty of ~13usec.
This benefits both:
The latency when reading from a socket
Scheduling tasks to be executed on the event loop thread.
The tradeoff, when enabling this feature, is that the event loop thread will be using 100% cpu, even when inactive.
Modification:
Added SelectStrategy option to return BUSY_WAIT
Epoll loop will do a epoll_wait() with no timeout
Use pause instruction to hint to processor that we're in a busy loop
Result:
When enabled, minimizes impact of context switch in the critical path
Motivation
The EpollChannelConfig (same for KQueues) and its subclasses repeatetly declare their own channel field which leads to a 3x repetition for each config instance. Given the fields are protected or package-private it's exposing the code code to "field hiding" bugs.
Modifications
Use the the existing protected channel field from the DefaultChannelConfig class and simply cast it when needed.
Result
Fixes#8331
Motivation:
We should ensure we call *UnLoad when we detect an error during calling *OnLoad and previous *OnLoad calls were succesfull.
Modifications:
Correctly call *UnLoad when needed.
Result:
More correct code and no leaks when an error happens during loading the native lib.
* Allow to use native transports when sun.misc.Unsafe is not present on the system
Motivation:
We should be able to use the native transports (epoll / kqueue) even when sun.misc.Unsafe is not present on the system. This is especially important as Java11 will be released soon and does not allow access to it by default.
Modifications:
- Correctly disable usage of sun.misc.Unsafe when -PnoUnsafe is used while running the build
- Correctly increment metric when UnpooledDirectByteBuf is allocated. This was uncovered once -PnoUnsafe usage was fixed.
- Implement fallbacks in all our native transport code for when sun.misc.Unsafe is not present.
Result:
Fixes https://github.com/netty/netty/issues/8229.
Motivation:
We should support to load multiple shaded versions of the same netty artifact as netty is often used in multiple dependencies.
This is related to https://github.com/netty/netty/issues/7272.
Modifications:
- Use -fvisibility=hidden when compiling and use JNIEXPORT for things we really want to have exported
- Ensure fields are declared as static so these are not exported
- Adjust testsuite-shading to use install_name_tool on MacOS to change the id of the lib. Otherwise the wrong may be used.
Result:
Be able to use multiple shaded versions of the same netty artifact.
Motivation:
Epoll and Kqueue channels have internal state which forces
a single read operation after channel construction. This
violates the Channel#read() interface which indicates that
data shouldn't be delivered until this method is called.
The behavior is also inconsistent with the NIO transport.
Modifications:
- Epoll and Kqueue shouldn't unconditionally read upon
initialization, and instead should rely upon Channel#read()
or auto_read.
Result:
Epoll and Kqueue are more consistent with NIO.
Motivation:
We should allow to schedule tasks with a delay up to Long.MAX_VALUE as we did pre 4.1.25.Final.
Modifications:
Just ensure we not overflow and put the correct max limits in place when schedule a timer. At worse we will get a wakeup to early and then schedule a new timeout.
Result:
Fixes https://github.com/netty/netty/issues/7970.
* Read until all data is consumed when EOF is detected even if readPending is false and auto-read is disabled.
Motivation:
We should better always notify the user of EOF even if the user did not request any data as otherwise we may never be notified when the remote peer closes the connection. This should be ok as the amount of extra data we may read and so fire through the pipeline is limited by SO_RECVBUF.
Modifications:
- Always drain the socket when EOF is detected.
- Add testcase
Result:
No risk for the user to be not notified of EOF.
Motivation:
Sometimes it's useful to disable native transports / native ssl to debug a problem. We should allow to do so with a system property so people not need to adjust code for this.
Modifications:
Add system properties which allow to disable native transport and native ssl.
Result:
Easier to disable native code usage without code changes.
Motivation:
Using a very huge delay when calling schedule(...) may cause an Selector error when calling select(...) later on. We should gaurd against such a big value.
Modifications:
- Add guard against a very huge value.
- Added tests.
Result:
Fixes [#7365]
Motivation:
AbstractNioByteChannel will detect that the remote end of the socket has
been closed and propagate a user event through the pipeline. However if
the user has auto read on, or calls read again, we may propagate the
same user events again. If the underlying transport continuously
notifies us that there is read activity this will happen in a spin loop
which consumes unnecessary CPU.
Modifications:
- AbstractNioByteChannel's unsafe read() should check if the input side
of the socket has been shutdown before processing the event. This is
consistent with EPOLL and KQUEUE transports.
- add unit test with @normanmaurer's help, and make transports consistent with respect to user events
Result:
No more read spin loop in NIO when the channel is half closed.
Motivation:
The flush task is currently using flush() which will have the affect of have the flush traverse the whole ChannelPipeline and also flush messages that were written since we gave up flushing. This is not really correct as we should only continue to flush messages that were flushed at the point in time when the flush task was submitted for execution if the user not explicit call flush() by him/herself.
Modification:
Call *Unsafe.flush0() via the flush task which will only continue flushing messages that were marked as flushed before.
Result:
More correct behaviour when the flush task is used.
Motivation:
KQueue implementations current have inconsistent behavior with Epoll implementations with respect to asynchronous sockets and connecting. In the Epoll transport we attempt to connect, if the connect call does not synchornously fail/succeed we set the EPOLLOUT which will be triggered by the kernel if the connection attempt succeeds or an error occurs. The connect API provides no way to asynchronously communicate an error so the Epoll implementation fires a EPOLLOUT event and puts the connect status in getsockopt(SO_ERROR). KQueue provides the same APIs but different behavior. If the EVFILT_WRITE is not enabled and the EVFILT_READ is enabled before connect is called, and there is an error the kernel may fire the EVFILT_READ filter and provide the Connection Refused error via read(). This is even true if we set the EVFILT_WRITE filter after calling connect because connect didn't synchornously complete. After the error has been delievered via read() a call to getsockopt(SO_ERROR) will return 0 indicating there is no error. This means we cannot rely upon the KQueue based kernel to deliver connection errors via the EVFILT_WRITE filter in the same way that the linux kernel does with the EPOLLOUT flag.
ce241bd introduced a change which depends upon the behavior of the EVFILT_WRITE being set and may prematurely stop writing to the OS as a result, becaues we assume the OS will notify us when the socket is writable. However the current work around for the above described behavior is to initialize the EVFILT_WRITE to true for connection oriented protocols. This leads to prematurely exiting from the flush() which may lead to deadlock.
Modifications:
- KQueue should check when an error is obtained from read() if the connectPromise has not yet been completed, and if not complete it with a ConnectException
Result:
No more deadlock in KQueue due to asynchronous connect workaround.
Motivation:
b215794de31f28355e4469fcc04782f55076c80c recently introduced a change in behavior where writeSpinCount provided a limit for how many write operations were attempted per flush operation. However when the write quantum was meet the selector write flag was not cleared, and the channel unsafe flush0 method has an optimization which prematurely exits if the write flag is set. This may lead to no write progress being made under the following scenario:
- flush is called, but the socket can't accept all data, we set the write flag
- the selector wakes us up because the socket is writable, we write data and use the writeSpinCount quantum
- we then schedule a flush() on the EventLoop to execute later, however it the flush0 optimization prematurely exits because the write flag is still set
In this scenario the socket is still writable so the EventLoop may never notify us that the socket is writable, and therefore we may never attempt to flush data to the OS.
Modifications:
- When the writeSpinCount quantum is exceeded we should clear the selector write flag
Result:
Fixes https://github.com/netty/netty/issues/7729
Motivation:
IovArray implements MessageProcessor, and the processMessage method will continue to be called during iteration until it returns true. A recent commit b215794de31f28355e4469fcc04782f55076c80c changed the return value to only return true if any component of a CompositeByteBuf was added as a result of the method call. However this results in the iteration continuing, and potentially subsequent smaller buffers maybe added, which will result in out of order writes and generally corrupts data.
Modifications:
- IovArray#add should return false so that the MessageProcessor#processMessage will stop iterating.
Result:
Native transports which use IovArray will not corrupt data during gathering writes of CompositeByteBuf objects.
Motivation:
FileDescriptor#writev calls JNI code, and that JNI code dereferences a NULL pointer which crashes the application. This occurs when writing a single CompositeByteBuf object with more than one component.
Modifications:
- Initialize the iovec iterator properly to avoid the core dump
- Fix the array length calculation if we aren't able to fit all the ByteBuffer objects in the iovec array
Result:
No more core dump.
Motivation:
The writeSpinCount currently loops over the same buffer, gathering
write, file write, or other write operation multiple times but will
continue writing until there is nothing left or the OS doesn't accept
any data for that specific write. However if the OS keeps accepting
writes there is no way to limit how much time we spend on a specific
socket. This can lead to unfair consumption of resources dedicated to a
single socket.
We currently don't limit the amount of bytes we attempt to write per
gathering write. If there are many more bytes pending relative to the
SO_SNDBUF size we will end up building iov arrays with more elements
than can be written, which results in extra iteration, conditionals,
and book keeping.
Modifications:
- writeSpinCount should limit the number of system calls we make to
write data, instead of applying to individual write operations
- IovArray should support a maximum number of bytes
- IovArray should support composite buffers of greater than size 1024
- We should auto-scale the amount of data that we attempt to write per
gathering write operation relative to SO_SNDBUF and how much data is
successfully written
- The non-unsafe path should also support a maximum number of bytes,
and respect the IOV_MAX limit
Result:
Write resource consumption can be bounded and gathering writes have
a limit relative to the amount of data which can actually be accepted
by the socket.
Motivation:
We used NetUtil.isIpV4StackPreferred() when loading JNI code which tries to load NetworkInterface in its static initializer. Unfortunally a lock on the NetworkInterface class init may be already hold somewhere else which may cause a loader deadlock.
Modifications:
Add a new Socket.initialize() method that will be called when init the library and pass everything needed to the JNI level so we not need to call back to java.
Result:
Fixes [#7458].
Motivation:
AbstractChannel attempts to "filter" messages which are written [1]. A goal of this process is to copy from heap to direct if necessary. However implementations of this method [2][3] may translate a buffer with 0 readable bytes to EMPTY_BUFFER. This may mask a user error where an empty buffer is written but already released.
Modifications:
Replace safeRelease(...) with release(...) to ensure we propagate reference count issues.
Result:
Fixes [#7383]
Motivation:
We need to set readPending to false when we detect a EOF while issue a read as otherwise we may not unregister from the Selector / Epoll / KQueue and so keep on receving wakeups.
The important bit is that we may even get a wakeup for a read event but will still will only be able to read 0 bytes from the socket, so we need to be very careful when we clear the readPending. This can happen because we generally using edge-triggered mode for our native transports and because of the nature of edge-triggered we may schedule an read event just to find out there is nothing left to read atm (because we completely drained the socket on the previous read).
Modifications:
Set readPending to false when EOF is detected.
Result:
Fixes [#7255].
This reverts commit 413c7c2cd82e09dac481ea52ba2cb88ffcd58624 as it introduced an regression when edge-triggered mode is used which is true for our native transports by default. With 413c7c2cd82e09dac481ea52ba2cb88ffcd58624 included it was possible that we set readPending to false by mistake even if we would be interested in read more.
Motivation:
readPending is currently only set to false if data is delivered to the application, however this may result in duplicate events being received from the selector in the event that the socket was closed.
Modifications:
- We should set readPending to false before each read attempt for all
transports besides NIO.
- Based upon the Javadocs it is possible that NIO may have spurious
wakeups [1]. In this case we should be more cautious and only set
readPending to false if data was actually read.
[1] https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SelectionKey.html
That a selection key's ready set indicates that its channel is ready for some operation category is a hint, but not a guarantee, that an operation in such a category may be performed by a thread without causing the thread to block.
Result:
Notification from the selector (or simulated events from kqueue/epoll ET) in the event of socket closure.
Fixes https://github.com/netty/netty/issues/7255