- Fixes#1308
freeInboundBuffer() and freeOutboundBuffer() were introduced in the early days of the new API when we did not have reference counting mechanism in the buffer. A user did not want Netty to free the handler buffers had to override these methods.
However, now that we have reference counting mechanism built into the buffer, a user who wants to retain the buffers beyond handler's life cycle can simply return the buffer whose reference count is greater than 1 in newInbound/OutboundBuffer().
This change also introduce a few other changes which was needed:
* ChannelHandler.beforeAdd(...) and ChannelHandler.beforeRemove(...) were removed
* ChannelHandler.afterAdd(...) -> handlerAdded(...)
* ChannelHandler.afterRemoved(...) -> handlerRemoved(...)
* SslHandler.handshake() -> SslHandler.hanshakeFuture() as the handshake is triggered automatically after
the Channel becomes active
- Add ChannelHandlerUtil and move the core logic of ChannelInbound/OutboundMessageHandler to ChannelHandlerUtil
- Add ChannelHandlerUtil.SingleInbound/OutboundMessageHandler and make ChannelInbound/OutboundMessageHandlerAdapter implement them. This is a backward incompatible change because it forces all handler methods to be public (was protected previously)
- Fixes: #1119
This pull request introduces a new operation called read() that replaces the existing inbound traffic control method. EventLoop now performs socket reads only when the read() operation has been issued. Once the requested read() operation is actually performed, EventLoop triggers an inboundBufferSuspended event that tells the handlers that the requested read() operation has been performed and the inbound traffic has been suspended again. A handler can decide to continue reading or not.
Unlike other outbound operations, read() does not use ChannelFuture at all to avoid GC cost. If there's a good reason to create a new future per read at the GC cost, I'll change this.
This pull request consequently removes the readable property in ChannelHandlerContext, which means how the traffic control works changed significantly.
This pull request also adds a new configuration property ChannelOption.AUTO_READ whose default value is true. If true, Netty will call ctx.read() for you. If you need a close control over when read() is called, you can set it to false.
Another interesting fact is that non-terminal handlers do not really need to call read() at all. Only the last inbound handler will have to call it, and that's just enough. Actually, you don't even need to call it at the last handler in most cases because of the ChannelOption.AUTO_READ mentioned above.
There's no serious backward compatibility issue. If the compiler complains your handler does not implement the read() method, add the following:
public void read(ChannelHandlerContext ctx) throws Exception {
ctx.read();
}
Note that this pull request certainly makes bounded inbound buffer support very easy, but itself does not add the bounded inbound buffer support.
- Fixes#831
This commit ensures the following events are never triggered as a direct
invocation if they are triggered via ChannelPipeline.fire*():
- channelInactive
- channelUnregistered
- exceptionCaught
This commit also fixes the following issues surfaced by this fix:
- Embedded channel implementations run scheduled tasks too early
- SpdySessionHandlerTest tries to generate inbound data even after the
channel is closed.
- AioSocketChannel enters into an infinite loop on I/O error.
This pull request introduces the new default ByteBufAllocator implementation based on jemalloc, with a some differences:
* Minimum possible buffer capacity is 16 (jemalloc: 2)
* Uses binary heap with random branching (jemalloc: red-black tree)
* No thread-local cache yet (jemalloc has thread-local cache)
* Default page size is 8 KiB (jemalloc: 4 KiB)
* Default chunk size is 16 MiB (jemalloc: 2 MiB)
* Cannot allocate a buffer bigger than the chunk size (jemalloc: possible) because we don't have control over memory layout in Java. A user can work around this issue by creating a composite buffer, but it's not always a feasible option. Although 16 MiB is a pretty big default, a user's handler might need to deal with the bounded buffers when the user wants to deal with a large message.
Also, to ensure the new allocator performs good enough, I wrote a microbenchmark for it and made it a dedicated Maven module. It uses Google's Caliper framework to run and publish the test result (example)
Miscellaneous changes:
* Made some ByteBuf implementations public so that those who implements a new allocator can make use of them.
* Added ByteBufAllocator.compositeBuffer() and its variants.
* ByteBufAllocator.ioBuffer() creates a buffer with 0 capacity.
- Add ChannelOption.ALLOW_HALF_CLOSURE
- If true, ChannelInputShutdownEvent is fired via userEventTriggered()
when the remote peer shuts down its output, and the connection is
not closed until a user calls close() explicitly.
- If false, the connection is closed immediately as it did before.
- Add SocketChannel.isInputShutdown()
- Add & improve test cases related with half-closed sockets
- Reimplemented the test
- Fixed various bugs related with read/accept suspension found while testing
- defaultInterestOps of NioServerSocketChannel should be OP_ACCEPT
- There's no need do deregister and re-register to suspend/resume accept()
- Occational infinite loop with 100% CPU consumption in OioEventLoop, caused by OioSocketChannel
- Even if read/accept is suspended, what's read or accepted should be notified to a user
- Add EventExecutorGroup and EventLoopGroup
- EventExecutor and EventLoop extends EventExecutorGroup and
EventLoopGroup
- They form their own group so that .next() returns itself.
- Rename Bootstrap.eventLoop() to group()
- Rename parameter names such as executor to group
- Rename *EventLoop/Executor to *EventLoop/ExecutorGroup
- Rename *ChildEventLoop/Executor to *EventLoop/Executor
- Used reflection hack to dispatch the tasks submitted by JDK
efficiently. Without hack, there's higher chance of additional
context switches.
- Server side performance improved to the expected level.
- Client side performance issue still under investigation
- Add MessageBuf which replaces java.util.Queue
- Add ChannelBuf which is common type of ByteBuf and ChannelBuf
- ChannelBuffers was renamed to ByteBufs
- Add MessageBufs
- All these changes are going to replace ChannelBufferHolder.
- ChannelBuffer gives a perception that it's a buffer of a
channel, but channel's buffer is now a byte buffer or a message
buffer. Therefore letting it be as is is going to be confusing.
- Also prohibited a user from overriding
ChannelInbound(Byte|Message)HandlerAdapter. If a user wants to do
that, he or she should extend ChannelInboundHandlerAdapter instead.
- In computing, 'stream' means both byte stream and message stream,
which is confusing.
- Also, we were already mixing stream and byte in some places and
it's better use the terms consistently.
(e.g. inboundByteBuffer & inbound stream)
- SslHandler always begins handshake unless startTls is true
- Removed issueHandshake property
- If a user wants to start handshake later, he/she has to add
SslHandler later.
- Removed enableRenegotiation property
- JDK upgrade fixes the security vulnerability - no need to complicate
our code
- Some property name changes
- getSSLEngineInboundCloseFuture() -> sslCloseFuture()
- Updated securechat example
- Added timeout for handshake and close_notify for better security
- However, it's currently hard-coded. Will make it a property later.
- Added EventExecutor.inEventLoop(Thread) and replaced executor identity
comparison in DefaultChannelPipeline with it - more elegant IMO
- Removed the test classes that needs rewrite or is of no use
- Extracted some handler methods from ChannelInboundHandler into
ChannelStateHandler
- Extracted some handler methods from ChannelOutboundHandler into
ChannelOperationHandler
- Moved exceptionCaught and userEventTriggered are now in
ChannelHandler
- Channel(Inbound|Outbound)HandlerContext is merged into
ChannelHandlerContext
- ChannelHandlerContext adds direct access methods for inboud and
outbound buffers
- The use of ChannelBufferHolder is minimal now.
- Before: inbound().byteBuffer()
- After: inboundByteBuffer()
- Simpler and better performance
- Bypass buffer types were removed because it just does not work at all
with the thread model.
- All handlers that uses a bypass buffer are broken. Will fix soon.
- CombinedHandlerAdapter does not make sense anymore either because
there are four handler interfaces to consider and often the two
handlers will implement the same handler interface such as
ChannelStateHandler. Thinking of better ways to provide this feature