/* * Copyright 2012 The Netty Project * * The Netty Project licenses this file to you under the Apache License, * version 2.0 (the "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. */ package io.netty.channel; import io.netty.buffer.ByteBuf; import io.netty.buffer.ByteBufAllocator; import io.netty.buffer.ByteBufHolder; import io.netty.util.DefaultAttributeMap; import io.netty.util.internal.PlatformDependent; import io.netty.util.internal.ThreadLocalRandom; import io.netty.util.internal.logging.InternalLogger; import io.netty.util.internal.logging.InternalLoggerFactory; import java.io.EOFException; import java.io.IOException; import java.net.InetSocketAddress; import java.net.SocketAddress; import java.nio.channels.ClosedChannelException; import java.nio.channels.NotYetConnectedException; /** * A skeletal {@link Channel} implementation. */ public abstract class AbstractChannel extends DefaultAttributeMap implements Channel { private static final InternalLogger logger = InternalLoggerFactory.getInstance(AbstractChannel.class); private final Channel parent; private final long hashCode = ThreadLocalRandom.current().nextLong(); private final Unsafe unsafe; private final DefaultChannelPipeline pipeline; private final ChannelOutboundBuffer outboundBuffer = new ChannelOutboundBuffer(this); private final ChannelFuture succeededFuture = new SucceededChannelFuture(this, null); private final VoidChannelPromise voidPromise = new VoidChannelPromise(this, true); private final VoidChannelPromise unsafeVoidPromise = new VoidChannelPromise(this, false); private final CloseFuture closeFuture = new CloseFuture(this); private volatile SocketAddress localAddress; private volatile SocketAddress remoteAddress; private volatile EventLoop eventLoop; private volatile boolean registered; private ClosedChannelException closedChannelException; private boolean inFlushNow; private boolean flushNowPending; /** Cache for the string representation of this channel */ private boolean strValActive; private String strVal; /** * Creates a new instance. * * @param parent * the parent of this channel. {@code null} if there's no parent. */ protected AbstractChannel(Channel parent) { this.parent = parent; unsafe = newUnsafe(); pipeline = new DefaultChannelPipeline(this); } @Override public boolean isWritable() { return outboundBuffer.getWritable(); } @Override public Channel parent() { return parent; } @Override public ChannelPipeline pipeline() { return pipeline; } @Override public ByteBufAllocator alloc() { return config().getAllocator(); } @Override public EventLoop eventLoop() { EventLoop eventLoop = this.eventLoop; if (eventLoop == null) { throw new IllegalStateException("channel not registered to an event loop"); } return eventLoop; } @Override public SocketAddress localAddress() { SocketAddress localAddress = this.localAddress; if (localAddress == null) { try { this.localAddress = localAddress = unsafe().localAddress(); } catch (Throwable t) { // Sometimes fails on a closed socket in Windows. return null; } } return localAddress; } protected void invalidateLocalAddress() { localAddress = null; } @Override public SocketAddress remoteAddress() { SocketAddress remoteAddress = this.remoteAddress; if (remoteAddress == null) { try { this.remoteAddress = remoteAddress = unsafe().remoteAddress(); } catch (Throwable t) { // Sometimes fails on a closed socket in Windows. return null; } } return remoteAddress; } /** * Reset the stored remoteAddress */ protected void invalidateRemoteAddress() { remoteAddress = null; } @Override public boolean isRegistered() { return registered; } @Override public ChannelFuture bind(SocketAddress localAddress) { return pipeline.bind(localAddress); } @Override public ChannelFuture connect(SocketAddress remoteAddress) { return pipeline.connect(remoteAddress); } @Override public ChannelFuture connect(SocketAddress remoteAddress, SocketAddress localAddress) { return pipeline.connect(remoteAddress, localAddress); } @Override public ChannelFuture disconnect() { return pipeline.disconnect(); } @Override public ChannelFuture close() { return pipeline.close(); } @Override public ChannelFuture deregister() { return pipeline.deregister(); } @Override public Channel flush() { pipeline.flush(); return this; } @Override public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) { return pipeline.bind(localAddress, promise); } @Override public ChannelFuture connect(SocketAddress remoteAddress, ChannelPromise promise) { return pipeline.connect(remoteAddress, promise); } @Override public ChannelFuture connect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) { return pipeline.connect(remoteAddress, localAddress, promise); } @Override public ChannelFuture disconnect(ChannelPromise promise) { return pipeline.disconnect(promise); } @Override public ChannelFuture close(ChannelPromise promise) { return pipeline.close(promise); } @Override public ChannelFuture deregister(ChannelPromise promise) { return pipeline.deregister(promise); } @Override public Channel read() { pipeline.read(); return this; } @Override public ChannelFuture write(Object msg) { return pipeline.write(msg); } @Override public ChannelFuture write(Object msg, ChannelPromise promise) { return pipeline.write(msg, promise); } @Override public ChannelFuture writeAndFlush(Object msg) { return pipeline.writeAndFlush(msg); } @Override public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) { return pipeline.writeAndFlush(msg, promise); } @Override public ChannelPromise newPromise() { return new DefaultChannelPromise(this); } @Override public ChannelProgressivePromise newProgressivePromise() { return new DefaultChannelProgressivePromise(this); } @Override public ChannelFuture newSucceededFuture() { return succeededFuture; } @Override public ChannelFuture newFailedFuture(Throwable cause) { return new FailedChannelFuture(this, null, cause); } @Override public ChannelFuture closeFuture() { return closeFuture; } @Override public Unsafe unsafe() { return unsafe; } /** * Create a new {@link AbstractUnsafe} instance which will be used for the life-time of the {@link Channel} */ protected abstract AbstractUnsafe newUnsafe(); /** * Returns the ID of this channel. */ @Override public final int hashCode() { return (int) hashCode; } /** * Returns {@code true} if and only if the specified object is identical * with this channel (i.e: {@code this == o}). */ @Override public final boolean equals(Object o) { return this == o; } @Override public final int compareTo(Channel o) { if (this == o) { return 0; } long ret = hashCode - o.hashCode(); if (ret > 0) { return 1; } if (ret < 0) { return -1; } ret = System.identityHashCode(this) - System.identityHashCode(o); if (ret != 0) { return (int) ret; } // Jackpot! - different objects with same hashes throw new Error(); } /** * Returns the {@link String} representation of this channel. The returned * string contains the {@linkplain #hashCode()} ID}, {@linkplain #localAddress() local address}, * and {@linkplain #remoteAddress() remote address} of this channel for * easier identification. */ @Override public String toString() { boolean active = isActive(); if (strValActive == active && strVal != null) { return strVal; } SocketAddress remoteAddr = remoteAddress(); SocketAddress localAddr = localAddress(); if (remoteAddr != null) { SocketAddress srcAddr; SocketAddress dstAddr; if (parent == null) { srcAddr = localAddr; dstAddr = remoteAddr; } else { srcAddr = remoteAddr; dstAddr = localAddr; } strVal = String.format("[id: 0x%08x, %s %s %s]", (int) hashCode, srcAddr, active? "=>" : ":>", dstAddr); } else if (localAddr != null) { strVal = String.format("[id: 0x%08x, %s]", (int) hashCode, localAddr); } else { strVal = String.format("[id: 0x%08x]", (int) hashCode); } strValActive = active; return strVal; } @Override public final ChannelPromise voidPromise() { return voidPromise; } /** * {@link Unsafe} implementation which sub-classes must extend and use. */ protected abstract class AbstractUnsafe implements Unsafe { @Override public final SocketAddress localAddress() { return localAddress0(); } @Override public final SocketAddress remoteAddress() { return remoteAddress0(); } @Override public final void register(EventLoop eventLoop, final ChannelPromise promise) { if (eventLoop == null) { throw new NullPointerException("eventLoop"); } if (isRegistered()) { promise.setFailure(new IllegalStateException("registered to an event loop already")); return; } if (!isCompatible(eventLoop)) { promise.setFailure( new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName())); return; } AbstractChannel.this.eventLoop = eventLoop; if (eventLoop.inEventLoop()) { register0(promise); } else { try { eventLoop.execute(new Runnable() { @Override public void run() { register0(promise); } }); } catch (Throwable t) { logger.warn( "Force-closing a channel whose registration task was unaccepted by an event loop: {}", AbstractChannel.this, t); closeForcibly(); promise.setFailure(t); } } } private void register0(ChannelPromise promise) { try { // check if the channel is still open as it could be closed in the mean time when the register // call was outside of the eventLoop if (!ensureOpen(promise)) { return; } Runnable postRegisterTask = doRegister(); registered = true; promise.setSuccess(); pipeline.fireChannelRegistered(); if (postRegisterTask != null) { postRegisterTask.run(); } if (isActive()) { pipeline.fireChannelActive(); } } catch (Throwable t) { // Close the channel directly to avoid FD leak. closeForcibly(); if (!promise.tryFailure(t)) { logger.warn( "Tried to fail the registration promise, but it is complete already. " + "Swallowing the cause of the registration failure:", t); } closeFuture.setClosed(); } } @Override public final void bind(final SocketAddress localAddress, final ChannelPromise promise) { if (!ensureOpen(promise)) { return; } try { boolean wasActive = isActive(); // See: https://github.com/netty/netty/issues/576 if (!PlatformDependent.isWindows() && !PlatformDependent.isRoot() && Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) && localAddress instanceof InetSocketAddress && !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress()) { // Warn a user about the fact that a non-root user can't receive a // broadcast packet on *nix if the socket is bound on non-wildcard address. logger.warn( "A non-root user can't receive a broadcast packet if the socket " + "is not bound to a wildcard address; binding to a non-wildcard " + "address (" + localAddress + ") anyway as requested."); } doBind(localAddress); promise.setSuccess(); if (!wasActive && isActive()) { pipeline.fireChannelActive(); } } catch (Throwable t) { promise.setFailure(t); closeIfClosed(); } } @Override public final void disconnect(final ChannelPromise promise) { try { boolean wasActive = isActive(); doDisconnect(); promise.setSuccess(); if (wasActive && !isActive()) { invokeLater(new Runnable() { @Override public void run() { pipeline.fireChannelInactive(); } }); } } catch (Throwable t) { promise.setFailure(t); closeIfClosed(); } } @Override public final void close(final ChannelPromise promise) { boolean wasActive = isActive(); if (closeFuture.setClosed()) { try { doClose(); promise.setSuccess(); } catch (Throwable t) { promise.setFailure(t); } if (closedChannelException == null) { closedChannelException = new ClosedChannelException(); } // fail all queued messages if (outboundBuffer.next()) { outboundBuffer.fail(closedChannelException); } if (wasActive && !isActive()) { invokeLater(new Runnable() { @Override public void run() { pipeline.fireChannelInactive(); } }); } deregister(voidPromise()); } else { // Closed already. promise.setSuccess(); } } @Override public final void closeForcibly() { try { doClose(); } catch (Exception e) { logger.warn("Failed to close a channel.", e); } } @Override public final void deregister(final ChannelPromise promise) { if (!registered) { promise.setSuccess(); return; } Runnable postTask = null; try { postTask = doDeregister(); } catch (Throwable t) { logger.warn("Unexpected exception occurred while deregistering a channel.", t); } finally { if (registered) { registered = false; promise.setSuccess(); invokeLater(new Runnable() { @Override public void run() { pipeline.fireChannelUnregistered(); } }); } else { // Some transports like local and AIO does not allow the deregistration of // an open channel. Their doDeregister() calls close(). Consequently, // close() calls deregister() again - no need to fire channelUnregistered. promise.setSuccess(); } if (postTask != null) { postTask.run(); } } } @Override public void beginRead() { if (!isActive()) { return; } try { doBeginRead(); } catch (final Exception e) { invokeLater(new Runnable() { @Override public void run() { pipeline.fireExceptionCaught(e); } }); close(voidPromise()); } } @Override public void write(Object msg, ChannelPromise promise) { outboundBuffer.addMessage(msg, promise); } @Override public void flush() { outboundBuffer.addFlush(); if (!inFlushNow) { // Avoid re-entrance // Flush immediately only when there's no pending flush. // If there's a pending flush operation, event loop will call flushNow() later, // and thus there's no need to call it now. if (!isFlushPending()) { flushNow(); } } else { if (!flushNowPending) { flushNowPending = true; eventLoop().execute(new Runnable() { @Override public void run() { flush(); } }); } } } @Override public final void flushNow() { if (inFlushNow) { return; } inFlushNow = true; final ChannelOutboundBuffer outboundBuffer = AbstractChannel.this.outboundBuffer; // Mark all pending write requests as failure if the channel is inactive. if (!isActive()) { if (isOpen()) { outboundBuffer.fail(new NotYetConnectedException()); } else { outboundBuffer.fail(new ClosedChannelException()); } inFlushNow = false; return; } try { for (;;) { MessageList messages = outboundBuffer.currentMessages; if (messages == null) { if (!outboundBuffer.next()) { break; } messages = outboundBuffer.currentMessages; } int messageIndex = outboundBuffer.currentMessageIndex; int messageCount = messages.size(); Object[] messageArray = messages.messages(); ChannelPromise[] promiseArray = messages.promises(); // Write the messages. final int writtenMessages = doWrite(messageArray, messageCount, messageIndex); // Notify the promises. final int newMessageIndex = messageIndex + writtenMessages; for (int i = messageIndex; i < newMessageIndex; i ++) { promiseArray[i].trySuccess(); } // Update the index variable and decide what to do next. outboundBuffer.currentMessageIndex = messageIndex = newMessageIndex; if (messageIndex >= messageCount) { messages.recycle(); if (!outboundBuffer.next()) { break; } } else { // Could not flush the current write request completely. Try again later. break; } } } catch (Throwable t) { outboundBuffer.fail(t); if (t instanceof IOException) { close(voidPromise()); } } finally { inFlushNow = false; } } @Override public ChannelPromise voidPromise() { return unsafeVoidPromise; } protected final boolean ensureOpen(ChannelPromise promise) { if (isOpen()) { return true; } Exception e = new ClosedChannelException(); promise.setFailure(e); return false; } protected final void closeIfClosed() { if (isOpen()) { return; } close(voidPromise()); } private void invokeLater(Runnable task) { // This method is used by outbound operation implementations to trigger an inbound event later. // They do not trigger an inbound event immediately because an outbound operation might have been // triggered by another inbound event handler method. If fired immediately, the call stack // will look like this for example: // // handlerA.inboundBufferUpdated() - (1) an inbound handler method closes a connection. // -> handlerA.ctx.close() // -> channel.unsafe.close() // -> handlerA.channelInactive() - (2) another inbound handler method called while in (1) yet // // which means the execution of two inbound handler methods of the same handler overlap undesirably. eventLoop().execute(task); } } /** * Return {@code true} if the given {@link EventLoop} is compatible with this instance. */ protected abstract boolean isCompatible(EventLoop loop); /** * Returns the {@link SocketAddress} which is bound locally. */ protected abstract SocketAddress localAddress0(); /** * Return the {@link SocketAddress} which the {@link Channel} is connected to. */ protected abstract SocketAddress remoteAddress0(); /** * Is called after the {@link Channel} is registered with its {@link EventLoop} as part of the register process. * You can return a {@link Runnable} which will be run as post-task of the registration process. * * Sub-classes may override this method as it will just return {@code null} */ protected Runnable doRegister() throws Exception { return null; } /** * Bind the {@link Channel} to the {@link SocketAddress} */ protected abstract void doBind(SocketAddress localAddress) throws Exception; /** * Disconnect this {@link Channel} from its remote peer */ protected abstract void doDisconnect() throws Exception; /** * Will be called before the actual close operation will be performed. Sub-classes may override this as the default * is to do nothing. */ protected void doPreClose() throws Exception { // NOOP by default } /** * Close the {@link Channel} */ protected abstract void doClose() throws Exception; /** * Deregister the {@link Channel} from its {@link EventLoop}. * You can return a {@link Runnable} which will be run as post-task of the registration process. * * Sub-classes may override this method */ protected Runnable doDeregister() throws Exception { return null; } /** * Schedule a read operation. */ protected abstract void doBeginRead() throws Exception; /** * Flush the content of the given {@link ByteBuf} to the remote peer. * * Sub-classes may override this as this implementation will just thrown an {@link UnsupportedOperationException} * * @return the number of written messages */ protected abstract int doWrite(Object[] msgs, int msgsLength, int startIndex) throws Exception; protected static void checkEOF(FileRegion region) throws IOException { if (region.transfered() < region.count()) { throw new EOFException("Expected to be able to write " + region.count() + " bytes, but only wrote " + region.transfered()); } } /** * Calculate the number of bytes a message takes up in memory. Sub-classes may override this if they use different * messages then {@link ByteBuf} or {@link ByteBufHolder}. If the size can not be calculated 0 should be returned. */ protected int calculateMessageSize(Object message) { if (message instanceof ByteBuf) { return ((ByteBuf) message).readableBytes(); } if (message instanceof ByteBufHolder) { return ((ByteBufHolder) message).content().readableBytes(); } return 0; } /** * Return {@code true} if a flush to the {@link Channel} is currently pending. */ protected abstract boolean isFlushPending(); final class CloseFuture extends DefaultChannelPromise { CloseFuture(AbstractChannel ch) { super(ch); } @Override public ChannelPromise setSuccess() { throw new IllegalStateException(); } @Override public ChannelPromise setFailure(Throwable cause) { throw new IllegalStateException(); } @Override public boolean trySuccess() { throw new IllegalStateException(); } @Override public boolean tryFailure(Throwable cause) { throw new IllegalStateException(); } boolean setClosed() { try { doPreClose(); } catch (Exception e) { logger.warn("doPreClose() raised an exception.", e); } return super.trySuccess(); } } }