netty5/codec/src/main/java/io/netty/handler/codec/compression/Bzip2Decoder.java
Norman Maurer 0e4c073bcf
Remove the intermediate List from ByteToMessageDecoder (and sub-class… (#8626)
Motivation:

ByteToMessageDecoder requires using an intermediate List to put results into. This intermediate list adds overhead (memory/CPU) which grows as the number of objects increases. This overhead can be avoided by directly propagating events through the ChannelPipeline via ctx.fireChannelRead(...). This also makes the semantics more clear and allows us to keep track if we need to call ctx.read() in all cases.

Modifications:

- Remove List from the method signature of ByteToMessageDecoder.decode(...) and decodeLast(...)
- Adjust all sub-classes
- Adjust unit tests
- Fix javadocs.

Result:

Adjust ByteToMessageDecoder as noted in https://github.com/netty/netty/issues/8525.
2019-12-16 21:00:32 +01:00

329 lines
14 KiB
Java

/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.ByteToMessageDecoder;
import static io.netty.handler.codec.compression.Bzip2Constants.*;
/**
* Uncompresses a {@link ByteBuf} encoded with the Bzip2 format.
*
* See <a href="http://en.wikipedia.org/wiki/Bzip2">Bzip2</a>.
*/
public class Bzip2Decoder extends ByteToMessageDecoder {
/**
* Current state of stream.
*/
private enum State {
INIT,
INIT_BLOCK,
INIT_BLOCK_PARAMS,
RECEIVE_HUFFMAN_USED_MAP,
RECEIVE_HUFFMAN_USED_BITMAPS,
RECEIVE_SELECTORS_NUMBER,
RECEIVE_SELECTORS,
RECEIVE_HUFFMAN_LENGTH,
DECODE_HUFFMAN_DATA,
EOF
}
private State currentState = State.INIT;
/**
* A reader that provides bit-level reads.
*/
private final Bzip2BitReader reader = new Bzip2BitReader();
/**
* The decompressor for the current block.
*/
private Bzip2BlockDecompressor blockDecompressor;
/**
* Bzip2 Huffman coding stage.
*/
private Bzip2HuffmanStageDecoder huffmanStageDecoder;
/**
* Always: in the range 0 .. 9. The current block size is 100000 * this number.
*/
private int blockSize;
/**
* The CRC of the current block as read from the block header.
*/
private int blockCRC;
/**
* The merged CRC of all blocks decompressed so far.
*/
private int streamCRC;
@Override
protected void decode(ChannelHandlerContext ctx, ByteBuf in) throws Exception {
if (!in.isReadable()) {
return;
}
final Bzip2BitReader reader = this.reader;
reader.setByteBuf(in);
for (;;) {
switch (currentState) {
case INIT:
if (in.readableBytes() < 4) {
return;
}
int magicNumber = in.readUnsignedMedium();
if (magicNumber != MAGIC_NUMBER) {
throw new DecompressionException("Unexpected stream identifier contents. Mismatched bzip2 " +
"protocol version?");
}
int blockSize = in.readByte() - '0';
if (blockSize < MIN_BLOCK_SIZE || blockSize > MAX_BLOCK_SIZE) {
throw new DecompressionException("block size is invalid");
}
this.blockSize = blockSize * BASE_BLOCK_SIZE;
streamCRC = 0;
currentState = State.INIT_BLOCK;
// fall through
case INIT_BLOCK:
if (!reader.hasReadableBytes(10)) {
return;
}
// Get the block magic bytes.
final int magic1 = reader.readBits(24);
final int magic2 = reader.readBits(24);
if (magic1 == END_OF_STREAM_MAGIC_1 && magic2 == END_OF_STREAM_MAGIC_2) {
// End of stream was reached. Check the combined CRC.
final int storedCombinedCRC = reader.readInt();
if (storedCombinedCRC != streamCRC) {
throw new DecompressionException("stream CRC error");
}
currentState = State.EOF;
break;
}
if (magic1 != BLOCK_HEADER_MAGIC_1 || magic2 != BLOCK_HEADER_MAGIC_2) {
throw new DecompressionException("bad block header");
}
blockCRC = reader.readInt();
currentState = State.INIT_BLOCK_PARAMS;
// fall through
case INIT_BLOCK_PARAMS:
if (!reader.hasReadableBits(25)) {
return;
}
final boolean blockRandomised = reader.readBoolean();
final int bwtStartPointer = reader.readBits(24);
blockDecompressor = new Bzip2BlockDecompressor(this.blockSize, blockCRC,
blockRandomised, bwtStartPointer, reader);
currentState = State.RECEIVE_HUFFMAN_USED_MAP;
// fall through
case RECEIVE_HUFFMAN_USED_MAP:
if (!reader.hasReadableBits(16)) {
return;
}
blockDecompressor.huffmanInUse16 = reader.readBits(16);
currentState = State.RECEIVE_HUFFMAN_USED_BITMAPS;
// fall through
case RECEIVE_HUFFMAN_USED_BITMAPS:
Bzip2BlockDecompressor blockDecompressor = this.blockDecompressor;
final int inUse16 = blockDecompressor.huffmanInUse16;
final int bitNumber = Integer.bitCount(inUse16);
final byte[] huffmanSymbolMap = blockDecompressor.huffmanSymbolMap;
if (!reader.hasReadableBits(bitNumber * HUFFMAN_SYMBOL_RANGE_SIZE + 3)) {
return;
}
int huffmanSymbolCount = 0;
if (bitNumber > 0) {
for (int i = 0; i < 16; i++) {
if ((inUse16 & 1 << 15 >>> i) != 0) {
for (int j = 0, k = i << 4; j < HUFFMAN_SYMBOL_RANGE_SIZE; j++, k++) {
if (reader.readBoolean()) {
huffmanSymbolMap[huffmanSymbolCount++] = (byte) k;
}
}
}
}
}
blockDecompressor.huffmanEndOfBlockSymbol = huffmanSymbolCount + 1;
int totalTables = reader.readBits(3);
if (totalTables < HUFFMAN_MINIMUM_TABLES || totalTables > HUFFMAN_MAXIMUM_TABLES) {
throw new DecompressionException("incorrect huffman groups number");
}
int alphaSize = huffmanSymbolCount + 2;
if (alphaSize > HUFFMAN_MAX_ALPHABET_SIZE) {
throw new DecompressionException("incorrect alphabet size");
}
huffmanStageDecoder = new Bzip2HuffmanStageDecoder(reader, totalTables, alphaSize);
currentState = State.RECEIVE_SELECTORS_NUMBER;
// fall through
case RECEIVE_SELECTORS_NUMBER:
if (!reader.hasReadableBits(15)) {
return;
}
int totalSelectors = reader.readBits(15);
if (totalSelectors < 1 || totalSelectors > MAX_SELECTORS) {
throw new DecompressionException("incorrect selectors number");
}
huffmanStageDecoder.selectors = new byte[totalSelectors];
currentState = State.RECEIVE_SELECTORS;
// fall through
case RECEIVE_SELECTORS:
Bzip2HuffmanStageDecoder huffmanStageDecoder = this.huffmanStageDecoder;
byte[] selectors = huffmanStageDecoder.selectors;
totalSelectors = selectors.length;
final Bzip2MoveToFrontTable tableMtf = huffmanStageDecoder.tableMTF;
int currSelector;
// Get zero-terminated bit runs (0..62) of MTF'ed Huffman table. length = 1..6
for (currSelector = huffmanStageDecoder.currentSelector;
currSelector < totalSelectors; currSelector++) {
if (!reader.hasReadableBits(HUFFMAN_SELECTOR_LIST_MAX_LENGTH)) {
// Save state if end of current ByteBuf was reached
huffmanStageDecoder.currentSelector = currSelector;
return;
}
int index = 0;
while (reader.readBoolean()) {
index++;
}
selectors[currSelector] = tableMtf.indexToFront(index);
}
currentState = State.RECEIVE_HUFFMAN_LENGTH;
// fall through
case RECEIVE_HUFFMAN_LENGTH:
huffmanStageDecoder = this.huffmanStageDecoder;
totalTables = huffmanStageDecoder.totalTables;
final byte[][] codeLength = huffmanStageDecoder.tableCodeLengths;
alphaSize = huffmanStageDecoder.alphabetSize;
/* Now the coding tables */
int currGroup;
int currLength = huffmanStageDecoder.currentLength;
int currAlpha = 0;
boolean modifyLength = huffmanStageDecoder.modifyLength;
boolean saveStateAndReturn = false;
loop: for (currGroup = huffmanStageDecoder.currentGroup; currGroup < totalTables; currGroup++) {
// start_huffman_length
if (!reader.hasReadableBits(5)) {
saveStateAndReturn = true;
break;
}
if (currLength < 0) {
currLength = reader.readBits(5);
}
for (currAlpha = huffmanStageDecoder.currentAlpha; currAlpha < alphaSize; currAlpha++) {
// delta_bit_length: 1..40
if (!reader.isReadable()) {
saveStateAndReturn = true;
break loop;
}
while (modifyLength || reader.readBoolean()) { // 0=>next symbol; 1=>alter length
if (!reader.isReadable()) {
modifyLength = true;
saveStateAndReturn = true;
break loop;
}
// 1=>decrement length; 0=>increment length
currLength += reader.readBoolean() ? -1 : 1;
modifyLength = false;
if (!reader.isReadable()) {
saveStateAndReturn = true;
break loop;
}
}
codeLength[currGroup][currAlpha] = (byte) currLength;
}
currLength = -1;
currAlpha = huffmanStageDecoder.currentAlpha = 0;
modifyLength = false;
}
if (saveStateAndReturn) {
// Save state if end of current ByteBuf was reached
huffmanStageDecoder.currentGroup = currGroup;
huffmanStageDecoder.currentLength = currLength;
huffmanStageDecoder.currentAlpha = currAlpha;
huffmanStageDecoder.modifyLength = modifyLength;
return;
}
// Finally create the Huffman tables
huffmanStageDecoder.createHuffmanDecodingTables();
currentState = State.DECODE_HUFFMAN_DATA;
// fall through
case DECODE_HUFFMAN_DATA:
blockDecompressor = this.blockDecompressor;
final int oldReaderIndex = in.readerIndex();
final boolean decoded = blockDecompressor.decodeHuffmanData(this.huffmanStageDecoder);
if (!decoded) {
return;
}
// It used to avoid "Bzip2Decoder.decode() did not read anything but decoded a message" exception.
// Because previous operation may read only a few bits from Bzip2BitReader.bitBuffer and
// don't read incoming ByteBuf.
if (in.readerIndex() == oldReaderIndex && in.isReadable()) {
reader.refill();
}
final int blockLength = blockDecompressor.blockLength();
final ByteBuf uncompressed = ctx.alloc().buffer(blockLength);
boolean success = false;
try {
int uncByte;
while ((uncByte = blockDecompressor.read()) >= 0) {
uncompressed.writeByte(uncByte);
}
int currentBlockCRC = blockDecompressor.checkCRC();
streamCRC = (streamCRC << 1 | streamCRC >>> 31) ^ currentBlockCRC;
ctx.fireChannelRead(uncompressed);
success = true;
} finally {
if (!success) {
uncompressed.release();
}
}
currentState = State.INIT_BLOCK;
break;
case EOF:
in.skipBytes(in.readableBytes());
return;
default:
throw new IllegalStateException();
}
}
}
/**
* Returns {@code true} if and only if the end of the compressed stream
* has been reached.
*/
public boolean isClosed() {
return currentState == State.EOF;
}
}