10539f4dc7
Motivation: CompositeByteBuf is a powerful and versatile abstraction, allowing for manipulation of large data without copying bytes. There is still a non-negligible cost to reading/writing however relative to "singular" ByteBufs, and this can be mostly eliminated with some rework of the internals. My use case is message modification/transformation while zero-copy proxying. For example replacing a string within a large message with one of a different length Modifications: - No longer slice added buffers and unwrap added slices - Components store target buf offset relative to position in composite buf - Less allocations, object footprint, pointer indirection, offset arithmetic - Use Component[] rather than ArrayList<Component> - Avoid pointer indirection and duplicate bounds check, more efficient backing array growth - Facilitates optimization when doing bulk-inserts - inserting n ByteBufs behind m is now O(m + n) instead of O(mn) - Avoid unnecessary casting and method call indirection via superclass - Eliminate some duplicate range/ref checks via non-checking versions of toComponentIndex and findComponent - Add simple fast-path for toComponentIndex(0); add racy cache of last-accessed Component to findComponent(int) - Override forEachByte0(...) and forEachByteDesc0(...) methods - Make use of RecyclableArrayList in nioBuffers(int, int) (in line with FasterCompositeByteBuf impl) - Modify addComponents0(boolean,int,Iterable) to use the Iterable directly rather than copy to an array first (and possibly to an ArrayList before that) - Optimize addComponents0(boolean,int,ByteBuf[],int) to not perform repeated array insertions and avoid second loop for offset updates - Simplify other logic in various places, in particular the general pattern used where a sub-range is iterated over - Add benchmarks to demonstrate some improvements While refactoring I also came across a couple of clear bugs. They are fixed in these changes but I will open another PR with unit tests and fixes to the current version. Result: Much faster creation, manipulation, and access; many fewer allocations and smaller footprint. Benchmark results to follow. |
||
---|---|---|
.github | ||
.mvn/wrapper | ||
all | ||
bom | ||
buffer | ||
codec | ||
codec-dns | ||
codec-haproxy | ||
codec-http | ||
codec-http2 | ||
codec-memcache | ||
codec-mqtt | ||
codec-redis | ||
codec-smtp | ||
codec-socks | ||
codec-stomp | ||
codec-xml | ||
common | ||
dev-tools | ||
docker | ||
example | ||
handler | ||
handler-proxy | ||
license | ||
microbench | ||
resolver | ||
resolver-dns | ||
tarball | ||
testsuite | ||
testsuite-autobahn | ||
testsuite-http2 | ||
testsuite-osgi | ||
testsuite-shading | ||
transport | ||
transport-native-epoll | ||
transport-native-kqueue | ||
transport-native-unix-common | ||
transport-native-unix-common-tests | ||
transport-rxtx | ||
transport-sctp | ||
transport-udt | ||
.fbprefs | ||
.gitattributes | ||
.gitignore | ||
CONTRIBUTING.md | ||
LICENSE.txt | ||
mvnw | ||
mvnw.cmd | ||
NOTICE.txt | ||
pom.xml | ||
README.md | ||
run-example.sh |
Netty Project
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.
Links
How to build
For the detailed information about building and developing Netty, please visit the developer guide. This page only gives very basic information.
You require the following to build Netty:
- Latest stable Oracle JDK 7
- Latest stable Apache Maven
- If you are on Linux, you need additional development packages installed on your system, because you'll build the native transport.
Note that this is build-time requirement. JDK 5 (for 3.x) or 6 (for 4.0+) is enough to run your Netty-based application.
Branches to look
Development of all versions takes place in each branch whose name is identical to <majorVersion>.<minorVersion>
. For example, the development of 3.9 and 4.0 resides in the branch '3.9' and the branch '4.0' respectively.
Usage with JDK 9
Netty can be used in modular JDK9 applications as a collection of automatic modules. The module names follow the reverse-DNS style, and are derived from subproject names rather than root packages due to historical reasons. They are listed below:
io.netty.all
io.netty.buffer
io.netty.codec
io.netty.codec.dns
io.netty.codec.haproxy
io.netty.codec.http
io.netty.codec.http2
io.netty.codec.memcache
io.netty.codec.mqtt
io.netty.codec.redis
io.netty.codec.smtp
io.netty.codec.socks
io.netty.codec.stomp
io.netty.codec.xml
io.netty.common
io.netty.handler
io.netty.handler.proxy
io.netty.resolver
io.netty.resolver.dns
io.netty.transport
io.netty.transport.epoll
(native
omitted - reserved keyword in Java)io.netty.transport.kqueue
(native
omitted - reserved keyword in Java)io.netty.transport.unix.common
(native
omitted - reserved keyword in Java)io.netty.transport.rxtx
io.netty.transport.sctp
io.netty.transport.udt
Automatic modules do not provide any means to declare dependencies, so you need to list each used module separately
in your module-info
file.