128403b492
Motivation ByteBuf capacity is automatically increased as needed up to maxCapacity when writing beyond the buffer's current capacity. However there's no way to tell in general whether such an increase will result in a relatively costly internal buffer re-allocation. For unpooled buffers it always does, in pooled cases it depends on the size of the associated chunk of allocated memory, which I don't think is currently exposed in any way. It would sometimes be useful to know where this limit is when making external decisions about whether to reuse or preemptively reallocate. It would also be advantageous to take this limit into account when auto-increasing the capacity during writes, to defer such reallocation until really necessary. Modifications Introduce new AbstractByteBuf.maxFastWritableBytes() method which will return a value >= writableBytes() and <= maxWritableBytes(). Make use of the new method in the sizing decision made by the AbstractByteBuf.ensureWritable(...) methods. Result Less reallocation/copying. |
||
---|---|---|
.github | ||
.mvn | ||
all | ||
bom | ||
buffer | ||
codec | ||
codec-dns | ||
codec-haproxy | ||
codec-http | ||
codec-http2 | ||
codec-memcache | ||
codec-mqtt | ||
codec-redis | ||
codec-smtp | ||
codec-socks | ||
codec-stomp | ||
codec-xml | ||
common | ||
dev-tools | ||
docker | ||
example | ||
handler | ||
handler-proxy | ||
license | ||
microbench | ||
resolver | ||
resolver-dns | ||
tarball | ||
testsuite | ||
testsuite-autobahn | ||
testsuite-http2 | ||
testsuite-native-image | ||
testsuite-osgi | ||
testsuite-shading | ||
transport | ||
transport-native-epoll | ||
transport-native-kqueue | ||
transport-native-unix-common | ||
transport-native-unix-common-tests | ||
transport-rxtx | ||
transport-sctp | ||
transport-udt | ||
.fbprefs | ||
.gitattributes | ||
.gitignore | ||
CONTRIBUTING.md | ||
LICENSE.txt | ||
mvnw | ||
mvnw.cmd | ||
NOTICE.txt | ||
pom.xml | ||
README.md | ||
run-example.sh |
Netty Project
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.
Links
How to build
For the detailed information about building and developing Netty, please visit the developer guide. This page only gives very basic information.
You require the following to build Netty:
- Latest stable Oracle JDK 7
- Latest stable Apache Maven
- If you are on Linux, you need additional development packages installed on your system, because you'll build the native transport.
Note that this is build-time requirement. JDK 5 (for 3.x) or 6 (for 4.0+) is enough to run your Netty-based application.
Branches to look
Development of all versions takes place in each branch whose name is identical to <majorVersion>.<minorVersion>
. For example, the development of 3.9 and 4.0 resides in the branch '3.9' and the branch '4.0' respectively.
Usage with JDK 9
Netty can be used in modular JDK9 applications as a collection of automatic modules. The module names follow the reverse-DNS style, and are derived from subproject names rather than root packages due to historical reasons. They are listed below:
io.netty.all
io.netty.buffer
io.netty.codec
io.netty.codec.dns
io.netty.codec.haproxy
io.netty.codec.http
io.netty.codec.http2
io.netty.codec.memcache
io.netty.codec.mqtt
io.netty.codec.redis
io.netty.codec.smtp
io.netty.codec.socks
io.netty.codec.stomp
io.netty.codec.xml
io.netty.common
io.netty.handler
io.netty.handler.proxy
io.netty.resolver
io.netty.resolver.dns
io.netty.transport
io.netty.transport.epoll
(native
omitted - reserved keyword in Java)io.netty.transport.kqueue
(native
omitted - reserved keyword in Java)io.netty.transport.unix.common
(native
omitted - reserved keyword in Java)io.netty.transport.rxtx
io.netty.transport.sctp
io.netty.transport.udt
Automatic modules do not provide any means to declare dependencies, so you need to list each used module separately
in your module-info
file.