Motivation: EPOLL supports decoupling the timed wakeup mechanism from the selector call. The EPOLL transport takes advantage of this in order to offer more fine grained timer resolution. However we are current calling timerfd_settime on each call to epoll_wait and this is expensive. We don't have to re-arm the timer on every call to epoll_wait and instead only have to arm the timer when a task is scheduled with an earlier expiration than any other existing scheduled task. Modifications: - Before scheduled tasks are added to the task queue, we determine if the new duration is the soonest to expire, and if so update with timerfd_settime. We also drain all the tasks at the end of the event loop to make sure we service any expired tasks and get an accurate next time delay. - EpollEventLoop maintains a volatile variable which represents the next deadline to expire. This variable is modified inside the event loop thread (before calling epoll_wait) and out side the event loop thread (immediately to ensure proper wakeup time). - Execute the task queue before the schedule task priority queue. This means we may delay the processing of scheduled tasks but it ensures we transfer all pending tasks from the task queue to the scheduled priority queue to run the soonest to expire scheduled task first. - Deprecate IORatio on EpollEventLoop, and drain the executor and scheduled queue on each event loop wakeup. Coupling the amount of time we are allowed to drain the executor queue to a proportion of time we process inbound IO may lead to unbounded queue sizes and unpredictable latency. Result: Fixes https://github.com/netty/netty/issues/7829 - In most cases this results in less calls to timerfd_settime - Less event loop wakeups just to check for scheduled tasks executed outside the event loop - More predictable executor queue and scheduled task queue draining - More accurate and responsive scheduled task execution
Netty Project
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.
Links
How to build
For the detailed information about building and developing Netty, please visit the developer guide. This page only gives very basic information.
You require the following to build Netty:
- Latest stable Oracle JDK 7
- Latest stable Apache Maven
- If you are on Linux, you need additional development packages installed on your system, because you'll build the native transport.
Note that this is build-time requirement. JDK 5 (for 3.x) or 6 (for 4.0+) is enough to run your Netty-based application.
Branches to look
Development of all versions takes place in each branch whose name is identical to <majorVersion>.<minorVersion>
. For example, the development of 3.9 and 4.0 resides in the branch '3.9' and the branch '4.0' respectively.
Usage with JDK 9
Netty can be used in modular JDK9 applications as a collection of automatic modules. The module names follow the reverse-DNS style, and are derived from subproject names rather than root packages due to historical reasons. They are listed below:
io.netty.all
io.netty.buffer
io.netty.codec
io.netty.codec.dns
io.netty.codec.haproxy
io.netty.codec.http
io.netty.codec.http2
io.netty.codec.memcache
io.netty.codec.mqtt
io.netty.codec.redis
io.netty.codec.smtp
io.netty.codec.socks
io.netty.codec.stomp
io.netty.codec.xml
io.netty.common
io.netty.handler
io.netty.handler.proxy
io.netty.resolver
io.netty.resolver.dns
io.netty.transport
io.netty.transport.epoll
(native
omitted - reserved keyword in Java)io.netty.transport.kqueue
(native
omitted - reserved keyword in Java)io.netty.transport.unix.common
(native
omitted - reserved keyword in Java)io.netty.transport.rxtx
io.netty.transport.sctp
io.netty.transport.udt
Automatic modules do not provide any means to declare dependencies, so you need to list each used module separately
in your module-info
file.