Nick Hill 535d598492 Introduce ByteBuf#isContiguous() method (#9735)
Motivation

There's currently no way to determine whether an arbitrary ByteBuf
behaves internally like a "singluar" buffer or a composite one, and this
can be important to know when making decisions about how to manipulate
it in an efficient way.

An example of this is the ByteBuf#discardReadBytes() method which
increases the writable bytes for a contiguous buffer (by readerIndex)
but does not for a composite one.

Unfortunately !(buf instanceof CompositeByteBuf) is not reliable, since
for example this will be true in the case of a sliced CompositeByteBuf
or some third-party composite implementation.

isContiguous was chosen over isComposite since we want to assume "not
contiguous" in the unknown/default case - the doc will it clear that
false does not imply composite.

Modifications

- Add ByteBuf#isContiguous() which returns true by default
- Override the "concrete" ByteBuf impls to return true and ensure
wrapped/derived impls delegate it appropriately
- Include some basic unit tests

Result

Better assumptions/decisions possible when manipulating arbitrary
ByteBufs, for example when combining/cumulating them.
2019-11-06 12:06:25 +01:00
2019-11-06 09:43:25 +01:00
2019-11-06 09:44:29 +01:00
2009-03-04 10:33:09 +00:00
2009-08-28 07:15:49 +00:00

Netty Project

Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.

How to build

For the detailed information about building and developing Netty, please visit the developer guide. This page only gives very basic information.

You require the following to build Netty:

Note that this is build-time requirement. JDK 5 (for 3.x) or 6 (for 4.0+) is enough to run your Netty-based application.

Branches to look

Development of all versions takes place in each branch whose name is identical to <majorVersion>.<minorVersion>. For example, the development of 3.9 and 4.0 resides in the branch '3.9' and the branch '4.0' respectively.

Usage with JDK 9

Netty can be used in modular JDK9 applications as a collection of automatic modules. The module names follow the reverse-DNS style, and are derived from subproject names rather than root packages due to historical reasons. They are listed below:

  • io.netty.all
  • io.netty.buffer
  • io.netty.codec
  • io.netty.codec.dns
  • io.netty.codec.haproxy
  • io.netty.codec.http
  • io.netty.codec.http2
  • io.netty.codec.memcache
  • io.netty.codec.mqtt
  • io.netty.codec.redis
  • io.netty.codec.smtp
  • io.netty.codec.socks
  • io.netty.codec.stomp
  • io.netty.codec.xml
  • io.netty.common
  • io.netty.handler
  • io.netty.handler.proxy
  • io.netty.resolver
  • io.netty.resolver.dns
  • io.netty.transport
  • io.netty.transport.epoll (native omitted - reserved keyword in Java)
  • io.netty.transport.kqueue (native omitted - reserved keyword in Java)
  • io.netty.transport.unix.common (native omitted - reserved keyword in Java)
  • io.netty.transport.rxtx
  • io.netty.transport.sctp
  • io.netty.transport.udt

Automatic modules do not provide any means to declare dependencies, so you need to list each used module separately in your module-info file.

Description
No description provided
Readme 84 MiB
Languages
Java 99.8%
Shell 0.1%