netty5/codec-http2/src/main/java/io/netty/handler/codec/http2/DefaultHttp2FrameWriter.java
nmittler a87c86dc0d Change Http2Settings to use char keys.
Motivation:

Now that we have a CharObjectHashMap, we should change Http2Settings to use it.

Modifications:

Changed Http2Settings to extend CharObjectHashMap rather than IntObjectHashMap.

Result:

Http2Settings uses less memory to store keys.
2015-04-10 11:50:24 -07:00

550 lines
24 KiB
Java

/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License, version 2.0 (the
* "License"); you may not use this file except in compliance with the License. You may obtain a
* copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package io.netty.handler.codec.http2;
import static io.netty.buffer.Unpooled.directBuffer;
import static io.netty.buffer.Unpooled.unmodifiableBuffer;
import static io.netty.buffer.Unpooled.unreleasableBuffer;
import static io.netty.handler.codec.http2.Http2CodecUtil.CONTINUATION_FRAME_HEADER_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.DATA_FRAME_HEADER_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.DEFAULT_MAX_FRAME_SIZE;
import static io.netty.handler.codec.http2.Http2CodecUtil.FRAME_HEADER_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.GO_AWAY_FRAME_HEADER_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.HEADERS_FRAME_HEADER_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.INT_FIELD_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.MAX_UNSIGNED_BYTE;
import static io.netty.handler.codec.http2.Http2CodecUtil.MAX_UNSIGNED_INT;
import static io.netty.handler.codec.http2.Http2CodecUtil.MAX_WEIGHT;
import static io.netty.handler.codec.http2.Http2CodecUtil.MIN_WEIGHT;
import static io.netty.handler.codec.http2.Http2CodecUtil.PRIORITY_ENTRY_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.PRIORITY_FRAME_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.PUSH_PROMISE_FRAME_HEADER_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.RST_STREAM_FRAME_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.SETTING_ENTRY_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.WINDOW_UPDATE_FRAME_LENGTH;
import static io.netty.handler.codec.http2.Http2CodecUtil.isMaxFrameSizeValid;
import static io.netty.handler.codec.http2.Http2CodecUtil.writeFrameHeaderInternal;
import static io.netty.handler.codec.http2.Http2CodecUtil.writeUnsignedInt;
import static io.netty.handler.codec.http2.Http2CodecUtil.writeUnsignedShort;
import static io.netty.handler.codec.http2.Http2Error.FRAME_SIZE_ERROR;
import static io.netty.handler.codec.http2.Http2Exception.connectionError;
import static io.netty.handler.codec.http2.Http2FrameTypes.CONTINUATION;
import static io.netty.handler.codec.http2.Http2FrameTypes.DATA;
import static io.netty.handler.codec.http2.Http2FrameTypes.GO_AWAY;
import static io.netty.handler.codec.http2.Http2FrameTypes.HEADERS;
import static io.netty.handler.codec.http2.Http2FrameTypes.PING;
import static io.netty.handler.codec.http2.Http2FrameTypes.PRIORITY;
import static io.netty.handler.codec.http2.Http2FrameTypes.PUSH_PROMISE;
import static io.netty.handler.codec.http2.Http2FrameTypes.RST_STREAM;
import static io.netty.handler.codec.http2.Http2FrameTypes.SETTINGS;
import static io.netty.handler.codec.http2.Http2FrameTypes.WINDOW_UPDATE;
import static io.netty.util.internal.ObjectUtil.checkNotNull;
import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelPromise;
import io.netty.handler.codec.http2.Http2CodecUtil.SimpleChannelPromiseAggregator;
import io.netty.handler.codec.http2.Http2FrameWriter.Configuration;
import io.netty.util.collection.CharObjectMap;
/**
* A {@link Http2FrameWriter} that supports all frame types defined by the HTTP/2 specification.
*/
public class DefaultHttp2FrameWriter implements Http2FrameWriter, Http2FrameSizePolicy, Configuration {
private static final String STREAM_ID = "Stream ID";
private static final String STREAM_DEPENDENCY = "Stream Dependency";
/**
* This buffer is allocated to the maximum padding size needed, and filled with padding.
* When padding is needed it can be taken as a slice of this buffer. Users should call {@link ByteBuf#retain()}
* before using their slice.
*/
private static final ByteBuf ZERO_BUFFER = unmodifiableBuffer(
unreleasableBuffer(directBuffer(MAX_UNSIGNED_BYTE).writeZero(MAX_UNSIGNED_BYTE)));
private final Http2HeadersEncoder headersEncoder;
private int maxFrameSize;
public DefaultHttp2FrameWriter() {
this(new DefaultHttp2HeadersEncoder());
}
public DefaultHttp2FrameWriter(Http2HeadersEncoder headersEncoder) {
this.headersEncoder = headersEncoder;
maxFrameSize = DEFAULT_MAX_FRAME_SIZE;
}
@Override
public Configuration configuration() {
return this;
}
@Override
public Http2HeaderTable headerTable() {
return headersEncoder.configuration().headerTable();
}
@Override
public Http2FrameSizePolicy frameSizePolicy() {
return this;
}
@Override
public void maxFrameSize(int max) throws Http2Exception {
if (!isMaxFrameSizeValid(max)) {
throw connectionError(FRAME_SIZE_ERROR, "Invalid MAX_FRAME_SIZE specified in sent settings: %d", max);
}
maxFrameSize = max;
}
@Override
public int maxFrameSize() {
return maxFrameSize;
}
@Override
public void close() { }
@Override
public ChannelFuture writeData(ChannelHandlerContext ctx, int streamId, ByteBuf data,
int padding, boolean endStream, ChannelPromise promise) {
boolean releaseData = true;
SimpleChannelPromiseAggregator promiseAggregator =
new SimpleChannelPromiseAggregator(promise, ctx.channel(), ctx.executor());
try {
verifyStreamId(streamId, STREAM_ID);
verifyPadding(padding);
Http2Flags flags = new Http2Flags().paddingPresent(padding > 0).endOfStream(endStream);
int payloadLength = data.readableBytes() + padding + flags.getPaddingPresenceFieldLength();
verifyPayloadLength(payloadLength);
ByteBuf buf = ctx.alloc().buffer(DATA_FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, DATA, flags, streamId);
writePaddingLength(buf, padding);
ctx.write(buf, promiseAggregator.newPromise());
// Write the data.
releaseData = false;
ctx.write(data, promiseAggregator.newPromise());
if (padding > 0) { // Write the required padding.
ctx.write(ZERO_BUFFER.slice(0, padding).retain(), promiseAggregator.newPromise());
}
return promiseAggregator.doneAllocatingPromises();
} catch (Throwable t) {
if (releaseData) {
data.release();
}
return promiseAggregator.setFailure(t);
}
}
@Override
public ChannelFuture writeHeaders(ChannelHandlerContext ctx, int streamId,
Http2Headers headers, int padding, boolean endStream, ChannelPromise promise) {
return writeHeadersInternal(ctx, streamId, headers, padding, endStream,
false, 0, (short) 0, false, promise);
}
@Override
public ChannelFuture writeHeaders(ChannelHandlerContext ctx, int streamId,
Http2Headers headers, int streamDependency, short weight, boolean exclusive,
int padding, boolean endStream, ChannelPromise promise) {
return writeHeadersInternal(ctx, streamId, headers, padding, endStream,
true, streamDependency, weight, exclusive, promise);
}
@Override
public ChannelFuture writePriority(ChannelHandlerContext ctx, int streamId,
int streamDependency, short weight, boolean exclusive, ChannelPromise promise) {
try {
verifyStreamId(streamId, STREAM_ID);
verifyStreamId(streamDependency, STREAM_DEPENDENCY);
verifyWeight(weight);
ByteBuf buf = ctx.alloc().buffer(PRIORITY_FRAME_LENGTH);
writeFrameHeaderInternal(buf, PRIORITY_ENTRY_LENGTH, PRIORITY, new Http2Flags(), streamId);
long word1 = exclusive ? 0x80000000L | streamDependency : streamDependency;
writeUnsignedInt(word1, buf);
// Adjust the weight so that it fits into a single byte on the wire.
buf.writeByte(weight - 1);
return ctx.write(buf, promise);
} catch (Throwable t) {
return promise.setFailure(t);
}
}
@Override
public ChannelFuture writeRstStream(ChannelHandlerContext ctx, int streamId, long errorCode,
ChannelPromise promise) {
try {
verifyStreamId(streamId, STREAM_ID);
verifyErrorCode(errorCode);
ByteBuf buf = ctx.alloc().buffer(RST_STREAM_FRAME_LENGTH);
writeFrameHeaderInternal(buf, INT_FIELD_LENGTH, RST_STREAM, new Http2Flags(), streamId);
writeUnsignedInt(errorCode, buf);
return ctx.write(buf, promise);
} catch (Throwable t) {
return promise.setFailure(t);
}
}
@Override
public ChannelFuture writeSettings(ChannelHandlerContext ctx, Http2Settings settings,
ChannelPromise promise) {
try {
checkNotNull(settings, "settings");
int payloadLength = SETTING_ENTRY_LENGTH * settings.size();
ByteBuf buf = ctx.alloc().buffer(FRAME_HEADER_LENGTH + settings.size() * SETTING_ENTRY_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, SETTINGS, new Http2Flags(), 0);
for (CharObjectMap.Entry<Long> entry : settings.entries()) {
writeUnsignedShort(entry.key(), buf);
writeUnsignedInt(entry.value(), buf);
}
return ctx.write(buf, promise);
} catch (Throwable t) {
return promise.setFailure(t);
}
}
@Override
public ChannelFuture writeSettingsAck(ChannelHandlerContext ctx, ChannelPromise promise) {
try {
ByteBuf buf = ctx.alloc().buffer(FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, 0, SETTINGS, new Http2Flags().ack(true), 0);
return ctx.write(buf, promise);
} catch (Throwable t) {
return promise.setFailure(t);
}
}
@Override
public ChannelFuture writePing(ChannelHandlerContext ctx, boolean ack, ByteBuf data,
ChannelPromise promise) {
boolean releaseData = true;
SimpleChannelPromiseAggregator promiseAggregator =
new SimpleChannelPromiseAggregator(promise, ctx.channel(), ctx.executor());
try {
Http2Flags flags = ack ? new Http2Flags().ack(true) : new Http2Flags();
ByteBuf buf = ctx.alloc().buffer(FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, data.readableBytes(), PING, flags, 0);
ctx.write(buf, promiseAggregator.newPromise());
// Write the debug data.
releaseData = false;
ctx.write(data, promiseAggregator.newPromise());
return promiseAggregator.doneAllocatingPromises();
} catch (Throwable t) {
if (releaseData) {
data.release();
}
return promiseAggregator.setFailure(t);
}
}
@Override
public ChannelFuture writePushPromise(ChannelHandlerContext ctx, int streamId,
int promisedStreamId, Http2Headers headers, int padding, ChannelPromise promise) {
ByteBuf headerBlock = null;
SimpleChannelPromiseAggregator promiseAggregator =
new SimpleChannelPromiseAggregator(promise, ctx.channel(), ctx.executor());
try {
verifyStreamId(streamId, STREAM_ID);
verifyStreamId(promisedStreamId, "Promised Stream ID");
verifyPadding(padding);
// Encode the entire header block into an intermediate buffer.
headerBlock = ctx.alloc().buffer();
headersEncoder.encodeHeaders(headers, headerBlock);
// Read the first fragment (possibly everything).
Http2Flags flags = new Http2Flags().paddingPresent(padding > 0);
// INT_FIELD_LENGTH is for the length of the promisedStreamId
int nonFragmentLength = INT_FIELD_LENGTH + padding + flags.getPaddingPresenceFieldLength();
int maxFragmentLength = maxFrameSize - nonFragmentLength;
ByteBuf fragment =
headerBlock.readSlice(Math.min(headerBlock.readableBytes(), maxFragmentLength)).retain();
flags.endOfHeaders(!headerBlock.isReadable());
int payloadLength = fragment.readableBytes() + nonFragmentLength;
ByteBuf buf = ctx.alloc().buffer(PUSH_PROMISE_FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, PUSH_PROMISE, flags, streamId);
writePaddingLength(buf, padding);
// Write out the promised stream ID.
buf.writeInt(promisedStreamId);
ctx.write(buf, promiseAggregator.newPromise());
// Write the first fragment.
ctx.write(fragment, promiseAggregator.newPromise());
if (padding > 0) { // Write out the padding, if any.
ctx.write(ZERO_BUFFER.slice(0, padding).retain(), promiseAggregator.newPromise());
}
if (!flags.endOfHeaders()) {
writeContinuationFrames(ctx, streamId, headerBlock, padding, promiseAggregator);
}
return promiseAggregator.doneAllocatingPromises();
} catch (Throwable t) {
return promiseAggregator.setFailure(t);
} finally {
if (headerBlock != null) {
headerBlock.release();
}
}
}
@Override
public ChannelFuture writeGoAway(ChannelHandlerContext ctx, int lastStreamId, long errorCode,
ByteBuf debugData, ChannelPromise promise) {
boolean releaseData = true;
SimpleChannelPromiseAggregator promiseAggregator =
new SimpleChannelPromiseAggregator(promise, ctx.channel(), ctx.executor());
try {
verifyStreamOrConnectionId(lastStreamId, "Last Stream ID");
verifyErrorCode(errorCode);
int payloadLength = 8 + debugData.readableBytes();
ByteBuf buf = ctx.alloc().buffer(GO_AWAY_FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, GO_AWAY, new Http2Flags(), 0);
buf.writeInt(lastStreamId);
writeUnsignedInt(errorCode, buf);
ctx.write(buf, promiseAggregator.newPromise());
releaseData = false;
ctx.write(debugData, promiseAggregator.newPromise());
return promiseAggregator.doneAllocatingPromises();
} catch (Throwable t) {
if (releaseData) {
debugData.release();
}
return promiseAggregator.setFailure(t);
}
}
@Override
public ChannelFuture writeWindowUpdate(ChannelHandlerContext ctx, int streamId,
int windowSizeIncrement, ChannelPromise promise) {
try {
verifyStreamOrConnectionId(streamId, STREAM_ID);
verifyWindowSizeIncrement(windowSizeIncrement);
ByteBuf buf = ctx.alloc().buffer(WINDOW_UPDATE_FRAME_LENGTH);
writeFrameHeaderInternal(buf, INT_FIELD_LENGTH, WINDOW_UPDATE, new Http2Flags(), streamId);
buf.writeInt(windowSizeIncrement);
return ctx.write(buf, promise);
} catch (Throwable t) {
return promise.setFailure(t);
}
}
@Override
public ChannelFuture writeFrame(ChannelHandlerContext ctx, byte frameType, int streamId,
Http2Flags flags, ByteBuf payload, ChannelPromise promise) {
boolean releaseData = true;
SimpleChannelPromiseAggregator promiseAggregator =
new SimpleChannelPromiseAggregator(promise, ctx.channel(), ctx.executor());
try {
verifyStreamOrConnectionId(streamId, STREAM_ID);
ByteBuf buf = ctx.alloc().buffer(FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payload.readableBytes(), frameType, flags, streamId);
ctx.write(buf, promiseAggregator.newPromise());
releaseData = false;
ctx.write(payload, promiseAggregator.newPromise());
return promiseAggregator.doneAllocatingPromises();
} catch (Throwable t) {
if (releaseData) {
payload.release();
}
return promiseAggregator.setFailure(t);
}
}
private ChannelFuture writeHeadersInternal(ChannelHandlerContext ctx,
int streamId, Http2Headers headers, int padding, boolean endStream,
boolean hasPriority, int streamDependency, short weight, boolean exclusive, ChannelPromise promise) {
ByteBuf headerBlock = null;
SimpleChannelPromiseAggregator promiseAggregator =
new SimpleChannelPromiseAggregator(promise, ctx.channel(), ctx.executor());
try {
verifyStreamId(streamId, STREAM_ID);
if (hasPriority) {
verifyStreamOrConnectionId(streamDependency, STREAM_DEPENDENCY);
verifyPadding(padding);
verifyWeight(weight);
}
// Encode the entire header block.
headerBlock = ctx.alloc().buffer();
headersEncoder.encodeHeaders(headers, headerBlock);
Http2Flags flags =
new Http2Flags().endOfStream(endStream).priorityPresent(hasPriority).paddingPresent(padding > 0);
// Read the first fragment (possibly everything).
int nonFragmentBytes = padding + flags.getNumPriorityBytes() + flags.getPaddingPresenceFieldLength();
int maxFragmentLength = maxFrameSize - nonFragmentBytes;
ByteBuf fragment =
headerBlock.readSlice(Math.min(headerBlock.readableBytes(), maxFragmentLength)).retain();
// Set the end of headers flag for the first frame.
flags.endOfHeaders(!headerBlock.isReadable());
int payloadLength = fragment.readableBytes() + nonFragmentBytes;
ByteBuf buf = ctx.alloc().buffer(HEADERS_FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, HEADERS, flags, streamId);
writePaddingLength(buf, padding);
if (hasPriority) {
long word1 = exclusive ? 0x80000000L | streamDependency : streamDependency;
writeUnsignedInt(word1, buf);
// Adjust the weight so that it fits into a single byte on the wire.
buf.writeByte(weight - 1);
}
ctx.write(buf, promiseAggregator.newPromise());
// Write the first fragment.
ctx.write(fragment, promiseAggregator.newPromise());
if (padding > 0) { // Write out the padding, if any.
ctx.write(ZERO_BUFFER.slice(0, padding).retain(), promiseAggregator.newPromise());
}
if (!flags.endOfHeaders()) {
writeContinuationFrames(ctx, streamId, headerBlock, padding, promiseAggregator);
}
return promiseAggregator.doneAllocatingPromises();
} catch (Throwable t) {
return promiseAggregator.setFailure(t);
} finally {
if (headerBlock != null) {
headerBlock.release();
}
}
}
/**
* Writes as many continuation frames as needed until {@code padding} and {@code headerBlock} are consumed.
*/
private ChannelFuture writeContinuationFrames(ChannelHandlerContext ctx, int streamId,
ByteBuf headerBlock, int padding, SimpleChannelPromiseAggregator promiseAggregator) {
Http2Flags flags = new Http2Flags().paddingPresent(padding > 0);
int nonFragmentLength = padding + flags.getPaddingPresenceFieldLength();
int maxFragmentLength = maxFrameSize - nonFragmentLength;
// TODO: same padding is applied to all frames, is this desired?
if (maxFragmentLength <= 0) {
return promiseAggregator.setFailure(new IllegalArgumentException(
"Padding [" + padding + "] is too large for max frame size [" + maxFrameSize + "]"));
}
if (headerBlock.isReadable()) {
// The frame header (and padding) only changes on the last frame, so allocate it once and re-use
final ByteBuf paddingBuf = padding > 0 ? ZERO_BUFFER.slice(0, padding) : null;
int fragmentReadableBytes = Math.min(headerBlock.readableBytes(), maxFragmentLength);
int payloadLength = fragmentReadableBytes + nonFragmentLength;
ByteBuf buf = ctx.alloc().buffer(CONTINUATION_FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, CONTINUATION, flags, streamId);
writePaddingLength(buf, padding);
do {
fragmentReadableBytes = Math.min(headerBlock.readableBytes(), maxFragmentLength);
ByteBuf fragment = headerBlock.readSlice(fragmentReadableBytes).retain();
payloadLength = fragmentReadableBytes + nonFragmentLength;
if (headerBlock.isReadable()) {
ctx.write(buf.retain(), promiseAggregator.newPromise());
} else {
// The frame header is different for the last frame, so re-allocate and release the old buffer
flags = flags.endOfHeaders(true);
buf.release();
buf = ctx.alloc().buffer(CONTINUATION_FRAME_HEADER_LENGTH);
writeFrameHeaderInternal(buf, payloadLength, CONTINUATION, flags, streamId);
writePaddingLength(buf, padding);
ctx.write(buf, promiseAggregator.newPromise());
}
ctx.write(fragment, promiseAggregator.newPromise());
// Write out the padding, if any.
if (paddingBuf != null) {
ctx.write(paddingBuf.retain(), promiseAggregator.newPromise());
}
} while(headerBlock.isReadable());
}
return promiseAggregator;
}
private static void writePaddingLength(ByteBuf buf, int paddingLength) {
if (paddingLength > 0) {
// It is assumed that the padding length has been bounds checked before this
buf.writeByte(paddingLength);
}
}
private static void verifyStreamId(int streamId, String argumentName) {
if (streamId <= 0) {
throw new IllegalArgumentException(argumentName + " must be > 0");
}
}
private static void verifyStreamOrConnectionId(int streamId, String argumentName) {
if (streamId < 0) {
throw new IllegalArgumentException(argumentName + " must be >= 0");
}
}
private static void verifyPadding(int padding) {
if (padding < 0 || padding > MAX_UNSIGNED_BYTE) {
throw new IllegalArgumentException("Invalid padding value: " + padding);
}
}
private void verifyPayloadLength(int payloadLength) {
if (payloadLength > maxFrameSize) {
throw new IllegalArgumentException("Total payload length " + payloadLength
+ " exceeds max frame length.");
}
}
private static void verifyWeight(short weight) {
if (weight < MIN_WEIGHT || weight > MAX_WEIGHT) {
throw new IllegalArgumentException("Invalid weight: " + weight);
}
}
private static void verifyErrorCode(long errorCode) {
if (errorCode < 0 || errorCode > MAX_UNSIGNED_INT) {
throw new IllegalArgumentException("Invalid errorCode: " + errorCode);
}
}
private static void verifyWindowSizeIncrement(int windowSizeIncrement) {
if (windowSizeIncrement < 0) {
throw new IllegalArgumentException("WindowSizeIncrement must be >= 0");
}
}
}