Scott Mitchell b215794de3
Enforce writeSpinCount to limit resource consumption per socket (#7478)
Motivation:
The writeSpinCount currently loops over the same buffer, gathering
write, file write, or other write operation multiple times but will
continue writing until there is nothing left or the OS doesn't accept
any data for that specific write. However if the OS keeps accepting
writes there is no way to limit how much time we spend on a specific
socket. This can lead to unfair consumption of resources dedicated to a
single socket.
We currently don't limit the amount of bytes we attempt to write per
gathering write. If there are many more bytes pending relative to the
SO_SNDBUF size we will end up building iov arrays with more elements
than can be written, which results in extra iteration, conditionals,
and book keeping.

Modifications:
- writeSpinCount should limit the number of system calls we make to
write data, instead of applying to individual write operations
- IovArray should support a maximum number of bytes
- IovArray should support composite buffers of greater than size 1024
- We should auto-scale the amount of data that we attempt to write per
gathering write operation relative to SO_SNDBUF and how much data is
successfully written
- The non-unsafe path should also support a maximum number of bytes,
and respect the IOV_MAX limit

Result:
Write resource consumption can be bounded and gathering writes have
a limit relative to the amount of data which can actually be accepted
by the socket.
2017-12-07 16:00:52 -08:00
2017-11-20 11:07:50 -08:00
2009-03-04 10:33:09 +00:00
2013-03-11 09:55:43 +09:00
2009-08-28 07:15:49 +00:00
2017-12-04 21:25:59 +01:00

Netty Project

Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.

How to build

For the detailed information about building and developing Netty, please visit the developer guide. This page only gives very basic information.

You require the following to build Netty:

Note that this is build-time requirement. JDK 5 (for 3.x) or 6 (for 4.0+) is enough to run your Netty-based application.

Branches to look

Development of all versions takes place in each branch whose name is identical to <majorVersion>.<minorVersion>. For example, the development of 3.9 and 4.0 resides in the branch '3.9' and the branch '4.0' respectively.

Usage with JDK 9

Netty can be used in modular JDK9 applications as a collection of automatic modules. The module names follow the reverse-DNS style, and are derived from subproject names rather than root packages due to historical reasons. They are listed below:

  • io.netty.buffer
  • io.netty.codec
  • io.netty.codec.dns
  • io.netty.codec.haproxy
  • io.netty.codec.http
  • io.netty.codec.http2
  • io.netty.codec.memcache
  • io.netty.codec.mqtt
  • io.netty.codec.redis
  • io.netty.codec.smtp
  • io.netty.codec.socks
  • io.netty.codec.stomp
  • io.netty.codec.xml
  • io.netty.common
  • io.netty.handler
  • io.netty.handler.proxy
  • io.netty.resolver
  • io.netty.resolver.dns
  • io.netty.transport
  • io.netty.transport.epoll (native omitted - reserved keyword in Java)
  • io.netty.transport.kqueue (native omitted - reserved keyword in Java)
  • io.netty.transport.unix.common (native omitted - reserved keyword in Java)
  • io.netty.transport.rxtx
  • io.netty.transport.sctp
  • io.netty.transport.udt

Automatic modules do not provide any means to declare dependencies, so you need to list each used module separately in your module-info file.

Description
No description provided
Readme 84 MiB
Languages
Java 99.8%
Shell 0.1%