netty5/transport/src/main/java/io/netty/channel/ChannelHandlerAdapter.java
Trustin Lee 085a61a310 Refactor FastThreadLocal to simplify TLV management
Motivation:

When Netty runs in a managed environment such as web application server,
Netty needs to provide an explicit way to remove the thread-local
variables it created to prevent class loader leaks.

FastThreadLocal uses different execution paths for storing a
thread-local variable depending on the type of the current thread.
It increases the complexity of thread-local removal.

Modifications:

- Moved FastThreadLocal and FastThreadLocalThread out of the internal
  package so that a user can use it.
- FastThreadLocal now keeps track of all thread local variables it has
  initialized, and calling FastThreadLocal.removeAll() will remove all
  thread-local variables of the caller thread.
- Added FastThreadLocal.size() for diagnostics and tests
- Introduce InternalThreadLocalMap which is a mixture of hard-wired
  thread local variable fields and extensible indexed variables
- FastThreadLocal now uses InternalThreadLocalMap to implement a
  thread-local variable.
- Added ThreadDeathWatcher.unwatch() so that PooledByteBufAllocator
  tells it to stop watching when its thread-local cache has been freed
  by FastThreadLocal.removeAll().
- Added FastThreadLocalTest to ensure that removeAll() works
- Added microbenchmark for FastThreadLocal and JDK ThreadLocal
- Upgraded to JMH 0.9

Result:

- A user can remove all thread-local variables Netty created, as long as
  he or she did not exit from the current thread. (Note that there's no
  way to remove a thread-local variable from outside of the thread.)
- FastThreadLocal exposes more useful operations such as isSet() because
  we always implement a thread local variable via InternalThreadLocalMap
  instead of falling back to JDK ThreadLocal.
- FastThreadLocalBenchmark shows that this change improves the
  performance of FastThreadLocal even more.
2014-06-19 21:13:55 +09:00

82 lines
2.8 KiB
Java

/*
* Copyright 2013 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.channel;
import io.netty.util.internal.InternalThreadLocalMap;
import java.util.Map;
import java.util.WeakHashMap;
/**
* Skelton implementation of a {@link ChannelHandler}.
*/
public abstract class ChannelHandlerAdapter implements ChannelHandler {
// Not using volatile because it's used only for a sanity check.
boolean added;
/**
* Return {@code true} if the implementation is {@link Sharable} and so can be added
* to different {@link ChannelPipeline}s.
*/
public boolean isSharable() {
/**
* Cache the result of {@link Sharable} annotation detection to workaround a condition. We use a
* {@link ThreadLocal} and {@link WeakHashMap} to eliminate the volatile write/reads. Using different
* {@link WeakHashMap} instances per {@link Thread} is good enough for us and the number of
* {@link Thread}s are quite limited anyway.
*
* See <a href="See https://github.com/netty/netty/issues/2289">#2289</a>.
*/
Class<?> clazz = getClass();
Map<Class<?>, Boolean> cache = InternalThreadLocalMap.get().handlerSharableCache();
Boolean sharable = cache.get(clazz);
if (sharable == null) {
sharable = clazz.isAnnotationPresent(Sharable.class);
cache.put(clazz, sharable);
}
return sharable;
}
/**
* Do nothing by default, sub-classes may override this method.
*/
@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
// NOOP
}
/**
* Do nothing by default, sub-classes may override this method.
*/
@Override
public void handlerRemoved(ChannelHandlerContext ctx) throws Exception {
// NOOP
}
/**
* Calls {@link ChannelHandlerContext#fireExceptionCaught(Throwable)} to forward
* to the next {@link ChannelHandler} in the {@link ChannelPipeline}.
*
* Sub-classes may override this method to change behavior.
*/
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.fireExceptionCaught(cause);
}
}