netty5/codec-http/src/main/java/io/netty/handler/codec/http/HttpClientUpgradeHandler.java
Scott Mitchell 9a7a85dbe5 ByteString introduced as AsciiString super class
Motivation:
The usage and code within AsciiString has exceeded the original design scope for this class. Its usage as a binary string is confusing and on the verge of violating interface assumptions in some spots.

Modifications:
- ByteString will be created as a base class to AsciiString. All of the generic byte handling processing will live in ByteString and all the special character encoding will live in AsciiString.

Results:
The AsciiString interface will be clarified. Users of AsciiString can now be clear of the limitations the class imposes while users of the ByteString class don't have to live with those limitations.
2015-04-14 16:35:17 -07:00

273 lines
10 KiB
Java

/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License, version 2.0 (the
* "License"); you may not use this file except in compliance with the License. You may obtain a
* copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package io.netty.handler.codec.http;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelOutboundHandler;
import io.netty.channel.ChannelPromise;
import io.netty.util.AsciiString;
import java.net.SocketAddress;
import java.util.Collection;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Set;
import static io.netty.handler.codec.http.HttpResponseStatus.SWITCHING_PROTOCOLS;
import static io.netty.util.ReferenceCountUtil.release;
/**
* Client-side handler for handling an HTTP upgrade handshake to another protocol. When the first
* HTTP request is sent, this handler will add all appropriate headers to perform an upgrade to the
* new protocol. If the upgrade fails (i.e. response is not 101 Switching Protocols), this handler
* simply removes itself from the pipeline. If the upgrade is successful, upgrades the pipeline to
* the new protocol.
*/
public class HttpClientUpgradeHandler extends HttpObjectAggregator implements ChannelOutboundHandler {
/**
* User events that are fired to notify about upgrade status.
*/
public enum UpgradeEvent {
/**
* The Upgrade request was sent to the server.
*/
UPGRADE_ISSUED,
/**
* The Upgrade to the new protocol was successful.
*/
UPGRADE_SUCCESSFUL,
/**
* The Upgrade was unsuccessful due to the server not issuing
* with a 101 Switching Protocols response.
*/
UPGRADE_REJECTED
}
/**
* The source codec that is used in the pipeline initially.
*/
public interface SourceCodec {
/**
* Removes this codec (i.e. all associated handlers) from the pipeline.
*/
void upgradeFrom(ChannelHandlerContext ctx);
}
/**
* A codec that the source can be upgraded to.
*/
public interface UpgradeCodec {
/**
* Returns the name of the protocol supported by this codec, as indicated by the {@code 'UPGRADE'} header.
*/
String protocol();
/**
* Sets any protocol-specific headers required to the upgrade request. Returns the names of
* all headers that were added. These headers will be used to populate the CONNECTION header.
*/
Collection<String> setUpgradeHeaders(ChannelHandlerContext ctx, HttpRequest upgradeRequest);
/**
* Performs an HTTP protocol upgrade from the source codec. This method is responsible for
* adding all handlers required for the new protocol.
*
* @param ctx the context for the current handler.
* @param upgradeResponse the 101 Switching Protocols response that indicates that the server
* has switched to this protocol.
*/
void upgradeTo(ChannelHandlerContext ctx, FullHttpResponse upgradeResponse) throws Exception;
}
private final SourceCodec sourceCodec;
private final UpgradeCodec upgradeCodec;
private boolean upgradeRequested;
/**
* Constructs the client upgrade handler.
*
* @param sourceCodec the codec that is being used initially.
* @param upgradeCodec the codec that the client would like to upgrade to.
* @param maxContentLength the maximum length of the aggregated content.
*/
public HttpClientUpgradeHandler(SourceCodec sourceCodec, UpgradeCodec upgradeCodec,
int maxContentLength) {
super(maxContentLength);
if (sourceCodec == null) {
throw new NullPointerException("sourceCodec");
}
if (upgradeCodec == null) {
throw new NullPointerException("upgradeCodec");
}
this.sourceCodec = sourceCodec;
this.upgradeCodec = upgradeCodec;
}
@Override
public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) throws Exception {
ctx.bind(localAddress, promise);
}
@Override
public void connect(ChannelHandlerContext ctx, SocketAddress remoteAddress, SocketAddress localAddress,
ChannelPromise promise) throws Exception {
ctx.connect(remoteAddress, localAddress, promise);
}
@Override
public void disconnect(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception {
ctx.disconnect(promise);
}
@Override
public void close(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception {
ctx.close(promise);
}
@Override
public void deregister(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception {
ctx.deregister(promise);
}
@Override
public void read(ChannelHandlerContext ctx) throws Exception {
ctx.read();
}
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise)
throws Exception {
if (!(msg instanceof HttpRequest)) {
ctx.write(msg, promise);
return;
}
if (upgradeRequested) {
promise.setFailure(new IllegalStateException(
"Attempting to write HTTP request with upgrade in progress"));
return;
}
upgradeRequested = true;
setUpgradeRequestHeaders(ctx, (HttpRequest) msg);
// Continue writing the request.
ctx.write(msg, promise);
// Notify that the upgrade request was issued.
ctx.fireUserEventTriggered(UpgradeEvent.UPGRADE_ISSUED);
// Now we wait for the next HTTP response to see if we switch protocols.
}
@Override
public void flush(ChannelHandlerContext ctx) throws Exception {
ctx.flush();
}
@Override
protected void decode(ChannelHandlerContext ctx, HttpObject msg, List<Object> out)
throws Exception {
FullHttpResponse response = null;
try {
if (!upgradeRequested) {
throw new IllegalStateException("Read HTTP response without requesting protocol switch");
}
if (msg instanceof FullHttpResponse) {
response = (FullHttpResponse) msg;
// Need to retain since the base class will release after returning from this method.
response.retain();
out.add(response);
} else {
// Call the base class to handle the aggregation of the full request.
super.decode(ctx, msg, out);
if (out.isEmpty()) {
// The full request hasn't been created yet, still awaiting more data.
return;
}
assert out.size() == 1;
response = (FullHttpResponse) out.get(0);
}
if (!SWITCHING_PROTOCOLS.equals(response.status())) {
// The server does not support the requested protocol, just remove this handler
// and continue processing HTTP.
// NOTE: not releasing the response since we're letting it propagate to the
// next handler.
ctx.fireUserEventTriggered(UpgradeEvent.UPGRADE_REJECTED);
removeThisHandler(ctx);
return;
}
CharSequence upgradeHeader = response.headers().get(HttpHeaderNames.UPGRADE);
if (upgradeHeader == null) {
throw new IllegalStateException(
"Switching Protocols response missing UPGRADE header");
}
if (!AsciiString.equalsIgnoreCase(upgradeCodec.protocol(), upgradeHeader)) {
throw new IllegalStateException(
"Switching Protocols response with unexpected UPGRADE protocol: "
+ upgradeHeader);
}
// Upgrade to the new protocol.
sourceCodec.upgradeFrom(ctx);
upgradeCodec.upgradeTo(ctx, response);
// Notify that the upgrade to the new protocol completed successfully.
ctx.fireUserEventTriggered(UpgradeEvent.UPGRADE_SUCCESSFUL);
// We switched protocols, so we're done with the upgrade response.
// Release it and clear it from the output.
response.release();
out.clear();
removeThisHandler(ctx);
} catch (Throwable t) {
release(response);
ctx.fireExceptionCaught(t);
removeThisHandler(ctx);
}
}
private static void removeThisHandler(ChannelHandlerContext ctx) {
ctx.pipeline().remove(ctx.name());
}
/**
* Adds all upgrade request headers necessary for an upgrade to the supported protocols.
*/
private void setUpgradeRequestHeaders(ChannelHandlerContext ctx, HttpRequest request) {
// Set the UPGRADE header on the request.
request.headers().set(HttpHeaderNames.UPGRADE, upgradeCodec.protocol());
// Add all protocol-specific headers to the request.
Set<String> connectionParts = new LinkedHashSet<String>(2);
connectionParts.addAll(upgradeCodec.setUpgradeHeaders(ctx, request));
// Set the CONNECTION header from the set of all protocol-specific headers that were added.
StringBuilder builder = new StringBuilder();
for (String part : connectionParts) {
builder.append(part);
builder.append(',');
}
builder.append(HttpHeaderNames.UPGRADE);
request.headers().set(HttpHeaderNames.CONNECTION, builder.toString());
}
}