netty5/src/main/java/org/jboss/netty/handler/codec/compression/ZlibEncoder.java
Trustin Lee eeb98c5f97 * Forked JZlib to support GZIP format
* Added CompressionException to hide ZStreamException
* Better javadoc on compression level
* Better compression level validation
2009-10-21 06:07:26 +00:00

277 lines
10 KiB
Java

/*
* Copyright 2009 Red Hat, Inc.
*
* Red Hat licenses this file to you under the Apache License, version 2.0
* (the "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package org.jboss.netty.handler.codec.compression;
import java.util.concurrent.atomic.AtomicBoolean;
import org.jboss.netty.buffer.ChannelBuffer;
import org.jboss.netty.buffer.ChannelBuffers;
import org.jboss.netty.channel.Channel;
import org.jboss.netty.channel.ChannelEvent;
import org.jboss.netty.channel.ChannelFuture;
import org.jboss.netty.channel.ChannelFutureListener;
import org.jboss.netty.channel.ChannelHandlerContext;
import org.jboss.netty.channel.ChannelPipelineCoverage;
import org.jboss.netty.channel.ChannelStateEvent;
import org.jboss.netty.channel.Channels;
import org.jboss.netty.handler.codec.oneone.OneToOneEncoder;
import org.jboss.netty.util.internal.jzlib.JZlib;
import org.jboss.netty.util.internal.jzlib.ZStream;
/**
* Compresses a {@link ChannelBuffer} using the deflate algorithm.
*
* @author The Netty Project (netty-dev@lists.jboss.org)
* @author Trustin Lee (tlee@redhat.com)
* @version $Rev$, $Date$
*/
@ChannelPipelineCoverage("one")
public class ZlibEncoder extends OneToOneEncoder {
private static final byte[] EMPTY_ARRAY = new byte[0];
private final ZStream z = new ZStream();
private final AtomicBoolean finished = new AtomicBoolean();
// TODO 'do not compress' once option
// TODO support three wrappers - zlib (default), gzip (unsupported by jzlib, but easy to implement), nowrap
// TODO Disallow preset dictionary for gzip
/**
* Creates a new zlib encoder with the default compression level ({@code 6}).
*
* @throws CompressionException if failed to initialize zlib
*/
public ZlibEncoder() {
this(6);
}
/**
* Creates a new zlib encoder with the specified {@code compressionLevel}.
*
* @param compressionLevel
* {@code 1} yields the fastest compression and {@code 9} yields the
* best compression. {@code 0} means no compression. The default
* compression level is {@code 6}.
*
* @throws CompressionException if failed to initialize zlib
*/
public ZlibEncoder(int compressionLevel) {
if (compressionLevel < 0 || compressionLevel > 9) {
throw new IllegalArgumentException("compressionLevel: " + compressionLevel + " (expected: 0-9)");
}
synchronized (z) {
int resultCode = z.deflateInit(compressionLevel, false); // Default: ZLIB format
if (resultCode != JZlib.Z_OK) {
ZlibUtil.fail(z, "initialization failure", resultCode);
}
}
}
/**
* Creates a new zlib encoder with the default compression level ({@code 6})
* and the specified preset dictionary.
*
* @param dictionary the preset dictionary
*
* @throws CompressionException if failed to initialize zlib
*/
public ZlibEncoder(byte[] dictionary) {
this(6, dictionary);
}
/**
* Creates a new zlib encoder with the specified {@code compressionLevel}
* and the specified preset dictionary.
*
* @param compressionLevel
* {@code 1} yields the fastest compression and {@code 9} yields the
* best compression. {@code 0} means no compression. The default
* compression level is {@code 6}.
* @param dictionary the preset dictionary
*
* @throws CompressionException if failed to initialize zlib
*/
public ZlibEncoder(int compressionLevel, byte[] dictionary) {
if (compressionLevel < 0 || compressionLevel > 9) {
throw new IllegalArgumentException("compressionLevel: " + compressionLevel + " (expected: 0-9)");
}
if (dictionary == null) {
throw new NullPointerException("dictionary");
}
synchronized (z) {
int resultCode;
resultCode = z.deflateInit(compressionLevel, false); // Default: ZLIB format
if (resultCode != JZlib.Z_OK) {
ZlibUtil.fail(z, "initialization failure", resultCode);
} else {
resultCode = z.deflateSetDictionary(dictionary, dictionary.length);
if (resultCode != JZlib.Z_OK){
ZlibUtil.fail(z, "failed to set the dictionary", resultCode);
}
}
}
}
public ChannelFuture close(Channel channel) {
return finishEncode(channel.getPipeline().getContext(this), null);
}
public boolean isClosed() {
return finished.get();
}
@Override
protected Object encode(ChannelHandlerContext ctx, Channel channel, Object msg) throws Exception {
if (!(msg instanceof ChannelBuffer) || finished.get()) {
return msg;
}
ChannelBuffer result;
synchronized (z) {
try {
// Configure input.
ChannelBuffer uncompressed = (ChannelBuffer) msg;
byte[] in = new byte[uncompressed.readableBytes()];
uncompressed.readBytes(in);
z.next_in = in;
z.next_in_index = 0;
z.avail_in = in.length;
// Configure output.
byte[] out = new byte[(int) Math.ceil(in.length * 1.001) + 12];
z.next_out = out;
z.next_out_index = 0;
z.avail_out = out.length;
// Note that Z_PARTIAL_FLUSH has been deprecated.
int resultCode = z.deflate(JZlib.Z_SYNC_FLUSH);
if (resultCode != JZlib.Z_OK) {
ZlibUtil.fail(z, "compression failure", resultCode);
}
if (z.next_out_index != 0) {
result = ctx.getChannel().getConfig().getBufferFactory().getBuffer(
uncompressed.order(), out, 0, z.next_out_index);
} else {
result = ChannelBuffers.EMPTY_BUFFER;
}
} finally {
// Deference the external references explicitly to tell the VM that
// the allocated byte arrays are temporary so that the call stack
// can be utilized.
// I'm not sure if the modern VMs do this optimization though.
z.next_in = null;
z.next_out = null;
}
}
return result;
}
@Override
public void handleDownstream(ChannelHandlerContext ctx, ChannelEvent evt)
throws Exception {
if (evt instanceof ChannelStateEvent) {
ChannelStateEvent e = (ChannelStateEvent) evt;
switch (e.getState()) {
case OPEN:
case CONNECTED:
case BOUND:
if (Boolean.FALSE.equals(e.getValue()) || e.getValue() == null) {
finishEncode(ctx, evt);
return;
}
}
}
super.handleDownstream(ctx, evt);
}
private ChannelFuture finishEncode(final ChannelHandlerContext ctx, final ChannelEvent evt) {
if (!finished.compareAndSet(false, true)) {
if (evt != null) {
ctx.sendDownstream(evt);
}
return Channels.succeededFuture(evt.getChannel());
}
ChannelBuffer footer;
ChannelFuture future;
synchronized (z) {
try {
// Configure input.
z.next_in = EMPTY_ARRAY;
z.next_in_index = 0;
z.avail_in = 0;
// Configure output.
byte[] out = new byte[8]; // Minimum room for ADLER32 + ZLIB header
z.next_out = out;
z.next_out_index = 0;
z.avail_out = out.length;
// Write the ADLER32 checksum (stream footer).
int resultCode = z.deflate(JZlib.Z_FINISH);
if (resultCode != JZlib.Z_OK && resultCode != JZlib.Z_STREAM_END) {
future = Channels.failedFuture(
ctx.getChannel(),
ZlibUtil.exception(z, "compression failure", resultCode));
footer = null;
} else if (z.next_out_index != 0) {
future = Channels.future(ctx.getChannel());
footer =
ctx.getChannel().getConfig().getBufferFactory().getBuffer(
out, 0, z.next_out_index);
} else {
// Note that we should never use a SucceededChannelFuture
// here just in case any downstream handler or a sink wants
// to notify a write error.
future = Channels.future(ctx.getChannel());
footer = ChannelBuffers.EMPTY_BUFFER;
}
} finally {
z.deflateEnd();
// Deference the external references explicitly to tell the VM that
// the allocated byte arrays are temporary so that the call stack
// can be utilized.
// I'm not sure if the modern VMs do this optimization though.
z.next_in = null;
z.next_out = null;
}
}
if (footer != null) {
Channels.write(ctx, future, footer);
}
if (evt != null) {
future.addListener(new ChannelFutureListener() {
public void operationComplete(ChannelFuture future) throws Exception {
ctx.sendDownstream(evt);
}
});
}
return future;
}
}