rocksdb/db/memtablerep_bench.cc

698 lines
24 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#define __STDC_FORMAT_MACROS
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run rocksdb tools\n");
return 1;
}
#else
#include <gflags/gflags.h>
#include <atomic>
#include <iostream>
#include <memory>
#include <thread>
#include <type_traits>
#include <vector>
#include "db/dbformat.h"
#include "db/memtable.h"
#include "db/writebuffer.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/comparator.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/options.h"
#include "rocksdb/slice_transform.h"
#include "util/arena.h"
#include "util/mutexlock.h"
#include "util/stop_watch.h"
#include "util/testutil.h"
using GFLAGS::ParseCommandLineFlags;
using GFLAGS::RegisterFlagValidator;
using GFLAGS::SetUsageMessage;
DEFINE_string(benchmarks, "fillrandom",
"Comma-separated list of benchmarks to run. Options:\n"
"\tfillrandom -- write N random values\n"
"\tfillseq -- write N values in sequential order\n"
"\treadrandom -- read N values in random order\n"
"\treadseq -- scan the DB\n"
"\treadwrite -- 1 thread writes while N - 1 threads "
"do random\n"
"\t reads\n"
"\tseqreadwrite -- 1 thread writes while N - 1 threads "
"do scans\n");
DEFINE_string(memtablerep, "skiplist",
"Which implementation of memtablerep to use. See "
"include/memtablerep.h for\n"
" more details. Options:\n"
"\tskiplist -- backed by a skiplist\n"
"\tvector -- backed by an std::vector\n"
"\thashskiplist -- backed by a hash skip list\n"
"\thashlinklist -- backed by a hash linked list\n"
"\tcuckoo -- backed by a cuckoo hash table");
DEFINE_int64(bucket_count, 1000000,
"bucket_count parameter to pass into NewHashSkiplistRepFactory or "
"NewHashLinkListRepFactory");
DEFINE_int32(
hashskiplist_height, 4,
"skiplist_height parameter to pass into NewHashSkiplistRepFactory");
DEFINE_int32(
hashskiplist_branching_factor, 4,
"branching_factor parameter to pass into NewHashSkiplistRepFactory");
DEFINE_int32(
huge_page_tlb_size, 0,
"huge_page_tlb_size parameter to pass into NewHashLinkListRepFactory");
DEFINE_int32(bucket_entries_logging_threshold, 4096,
"bucket_entries_logging_threshold parameter to pass into "
"NewHashLinkListRepFactory");
DEFINE_bool(if_log_bucket_dist_when_flash, true,
"if_log_bucket_dist_when_flash parameter to pass into "
"NewHashLinkListRepFactory");
DEFINE_int32(
threshold_use_skiplist, 256,
"threshold_use_skiplist parameter to pass into NewHashLinkListRepFactory");
DEFINE_int64(
write_buffer_size, 256,
"write_buffer_size parameter to pass into NewHashCuckooRepFactory");
DEFINE_int64(
average_data_size, 64,
"average_data_size parameter to pass into NewHashCuckooRepFactory");
DEFINE_int64(
hash_function_count, 4,
"hash_function_count parameter to pass into NewHashCuckooRepFactory");
DEFINE_int32(
num_threads, 1,
"Number of concurrent threads to run. If the benchmark includes writes,\n"
"then at most one thread will be a writer");
DEFINE_int32(num_operations, 1000000,
"Number of operations to do for write and random read benchmarks");
DEFINE_int32(num_scans, 10,
"Number of times for each thread to scan the memtablerep for "
"sequential read "
"benchmarks");
DEFINE_int32(item_size, 100, "Number of bytes each item should be");
DEFINE_int32(prefix_length, 8,
"Prefix length to pass into NewFixedPrefixTransform");
/* VectorRep settings */
DEFINE_int64(vectorrep_count, 0,
"Number of entries to reserve on VectorRep initialization");
DEFINE_int64(seed, 0,
"Seed base for random number generators. "
"When 0 it is deterministic.");
namespace rocksdb {
namespace {
struct CallbackVerifyArgs {
bool found;
LookupKey* key;
MemTableRep* table;
InternalKeyComparator* comparator;
};
} // namespace
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
public:
RandomGenerator() {
Random rnd(301);
auto size = (unsigned)std::max(1048576, FLAGS_item_size);
test::RandomString(&rnd, size, &data_);
pos_ = 0;
}
Slice Generate(unsigned int len) {
assert(len <= data_.size());
if (pos_ + len > data_.size()) {
pos_ = 0;
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
enum WriteMode { SEQUENTIAL, RANDOM, UNIQUE_RANDOM };
class KeyGenerator {
public:
KeyGenerator(Random64* rand, WriteMode mode, uint64_t num)
: rand_(rand), mode_(mode), num_(num), next_(0) {
if (mode_ == UNIQUE_RANDOM) {
// NOTE: if memory consumption of this approach becomes a concern,
// we can either break it into pieces and only random shuffle a section
// each time. Alternatively, use a bit map implementation
// (https://reviews.facebook.net/differential/diff/54627/)
values_.resize(num_);
for (uint64_t i = 0; i < num_; ++i) {
values_[i] = i;
}
2015-01-13 12:26:57 -08:00
std::shuffle(
values_.begin(), values_.end(),
std::default_random_engine(static_cast<unsigned int>(FLAGS_seed)));
}
}
uint64_t Next() {
switch (mode_) {
case SEQUENTIAL:
return next_++;
case RANDOM:
return rand_->Next() % num_;
case UNIQUE_RANDOM:
return values_[next_++];
}
assert(false);
return std::numeric_limits<uint64_t>::max();
}
private:
Random64* rand_;
WriteMode mode_;
const uint64_t num_;
uint64_t next_;
std::vector<uint64_t> values_;
};
class BenchmarkThread {
public:
explicit BenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits)
: table_(table),
key_gen_(key_gen),
bytes_written_(bytes_written),
bytes_read_(bytes_read),
sequence_(sequence),
num_ops_(num_ops),
read_hits_(read_hits) {}
virtual void operator()() = 0;
virtual ~BenchmarkThread() {}
protected:
MemTableRep* table_;
KeyGenerator* key_gen_;
uint64_t* bytes_written_;
uint64_t* bytes_read_;
uint64_t* sequence_;
uint64_t num_ops_;
uint64_t* read_hits_;
RandomGenerator generator_;
};
class FillBenchmarkThread : public BenchmarkThread {
public:
FillBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops, uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
void FillOne() {
char* buf = nullptr;
auto internal_key_size = 16;
auto encoded_len =
FLAGS_item_size + VarintLength(internal_key_size) + internal_key_size;
KeyHandle handle = table_->Allocate(encoded_len, &buf);
assert(buf != nullptr);
char* p = EncodeVarint32(buf, internal_key_size);
auto key = key_gen_->Next();
EncodeFixed64(p, key);
p += 8;
EncodeFixed64(p, ++(*sequence_));
p += 8;
Slice bytes = generator_.Generate(FLAGS_item_size);
memcpy(p, bytes.data(), FLAGS_item_size);
p += FLAGS_item_size;
assert(p == buf + encoded_len);
table_->Insert(handle);
*bytes_written_ += encoded_len;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
FillOne();
}
}
};
class ConcurrentFillBenchmarkThread : public FillBenchmarkThread {
public:
ConcurrentFillBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits,
std::atomic_int* threads_done)
: FillBenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
// # of read threads will be total threads - write threads (always 1). Loop
// while all reads complete.
while ((*threads_done_).load() < (FLAGS_num_threads - 1)) {
FillOne();
}
}
private:
std::atomic_int* threads_done_;
};
class ReadBenchmarkThread : public BenchmarkThread {
public:
ReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops, uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
static bool callback(void* arg, const char* entry) {
CallbackVerifyArgs* callback_args = static_cast<CallbackVerifyArgs*>(arg);
assert(callback_args != nullptr);
uint32_t key_length;
const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if ((callback_args->comparator)
->user_comparator()
->Equal(Slice(key_ptr, key_length - 8),
callback_args->key->user_key())) {
callback_args->found = true;
}
return false;
}
void ReadOne() {
std::string user_key;
auto key = key_gen_->Next();
PutFixed64(&user_key, key);
LookupKey lookup_key(user_key, *sequence_);
InternalKeyComparator internal_key_comp(BytewiseComparator());
CallbackVerifyArgs verify_args;
verify_args.found = false;
verify_args.key = &lookup_key;
verify_args.table = table_;
verify_args.comparator = &internal_key_comp;
table_->Get(lookup_key, &verify_args, callback);
if (verify_args.found) {
*bytes_read_ += VarintLength(16) + 16 + FLAGS_item_size;
++*read_hits_;
}
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOne();
}
}
};
class SeqReadBenchmarkThread : public BenchmarkThread {
public:
SeqReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
void ReadOneSeq() {
std::unique_ptr<MemTableRep::Iterator> iter(table_->GetIterator());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
// pretend to read the value
*bytes_read_ += VarintLength(16) + 16 + FLAGS_item_size;
}
++*read_hits_;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
{ ReadOneSeq(); }
}
}
};
class ConcurrentReadBenchmarkThread : public ReadBenchmarkThread {
public:
ConcurrentReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits,
std::atomic_int* threads_done)
: ReadBenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOne();
}
++*threads_done_;
}
private:
std::atomic_int* threads_done_;
};
class SeqConcurrentReadBenchmarkThread : public SeqReadBenchmarkThread {
public:
SeqConcurrentReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written,
uint64_t* bytes_read, uint64_t* sequence,
uint64_t num_ops, uint64_t* read_hits,
std::atomic_int* threads_done)
: SeqReadBenchmarkThread(table, key_gen, bytes_written, bytes_read,
sequence, num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOneSeq();
}
++*threads_done_;
}
private:
std::atomic_int* threads_done_;
};
class Benchmark {
public:
explicit Benchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence, uint32_t num_threads)
: table_(table),
key_gen_(key_gen),
sequence_(sequence),
num_threads_(num_threads) {}
virtual ~Benchmark() {}
virtual void Run() {
std::cout << "Number of threads: " << num_threads_ << std::endl;
std::vector<std::thread> threads;
uint64_t bytes_written = 0;
uint64_t bytes_read = 0;
uint64_t read_hits = 0;
StopWatchNano timer(Env::Default(), true);
RunThreads(&threads, &bytes_written, &bytes_read, true, &read_hits);
auto elapsed_time = static_cast<double>(timer.ElapsedNanos() / 1000);
std::cout << "Elapsed time: " << static_cast<int>(elapsed_time) << " us"
<< std::endl;
if (bytes_written > 0) {
auto MiB_written = static_cast<double>(bytes_written) / (1 << 20);
auto write_throughput = MiB_written / (elapsed_time / 1000000);
std::cout << "Total bytes written: " << MiB_written << " MiB"
<< std::endl;
std::cout << "Write throughput: " << write_throughput << " MiB/s"
<< std::endl;
auto us_per_op = elapsed_time / num_write_ops_per_thread_;
std::cout << "write us/op: " << us_per_op << std::endl;
}
if (bytes_read > 0) {
auto MiB_read = static_cast<double>(bytes_read) / (1 << 20);
auto read_throughput = MiB_read / (elapsed_time / 1000000);
std::cout << "Total bytes read: " << MiB_read << " MiB" << std::endl;
std::cout << "Read throughput: " << read_throughput << " MiB/s"
<< std::endl;
auto us_per_op = elapsed_time / num_read_ops_per_thread_;
std::cout << "read us/op: " << us_per_op << std::endl;
}
}
virtual void RunThreads(std::vector<std::thread>* threads,
uint64_t* bytes_written, uint64_t* bytes_read,
bool write, uint64_t* read_hits) = 0;
protected:
MemTableRep* table_;
KeyGenerator* key_gen_;
uint64_t* sequence_;
uint64_t num_write_ops_per_thread_;
uint64_t num_read_ops_per_thread_;
const uint32_t num_threads_;
};
class FillBenchmark : public Benchmark {
public:
explicit FillBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, 1) {
num_write_ops_per_thread_ = FLAGS_num_operations;
}
void RunThreads(std::vector<std::thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
FillBenchmarkThread(table_, key_gen_, bytes_written, bytes_read, sequence_,
num_write_ops_per_thread_, read_hits)();
}
};
class ReadBenchmark : public Benchmark {
public:
explicit ReadBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ = FLAGS_num_operations / FLAGS_num_threads;
}
void RunThreads(std::vector<std::thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads->emplace_back(
ReadBenchmarkThread(table_, key_gen_, bytes_written, bytes_read,
sequence_, num_read_ops_per_thread_, read_hits));
}
for (auto& thread : *threads) {
thread.join();
}
std::cout << "read hit%: "
<< (static_cast<double>(*read_hits) / FLAGS_num_operations) * 100
<< std::endl;
}
};
class SeqReadBenchmark : public Benchmark {
public:
explicit SeqReadBenchmark(MemTableRep* table, uint64_t* sequence)
: Benchmark(table, nullptr, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ = FLAGS_num_scans;
}
void RunThreads(std::vector<std::thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads->emplace_back(SeqReadBenchmarkThread(
table_, key_gen_, bytes_written, bytes_read, sequence_,
num_read_ops_per_thread_, read_hits));
}
for (auto& thread : *threads) {
thread.join();
}
}
};
template <class ReadThreadType>
class ReadWriteBenchmark : public Benchmark {
public:
explicit ReadWriteBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ =
FLAGS_num_threads <= 1
? 0
: (FLAGS_num_operations / (FLAGS_num_threads - 1));
num_write_ops_per_thread_ = FLAGS_num_operations;
}
void RunThreads(std::vector<std::thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
std::atomic_int threads_done;
threads_done.store(0);
threads->emplace_back(ConcurrentFillBenchmarkThread(
table_, key_gen_, bytes_written, bytes_read, sequence_,
num_write_ops_per_thread_, read_hits, &threads_done));
for (int i = 1; i < FLAGS_num_threads; ++i) {
threads->emplace_back(
ReadThreadType(table_, key_gen_, bytes_written, bytes_read, sequence_,
num_read_ops_per_thread_, read_hits, &threads_done));
}
for (auto& thread : *threads) {
thread.join();
}
}
};
} // namespace rocksdb
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
}
int main(int argc, char** argv) {
rocksdb::port::InstallStackTraceHandler();
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
ParseCommandLineFlags(&argc, &argv, true);
PrintWarnings();
rocksdb::Options options;
std::unique_ptr<rocksdb::MemTableRepFactory> factory;
if (FLAGS_memtablerep == "skiplist") {
factory.reset(new rocksdb::SkipListFactory);
#ifndef ROCKSDB_LITE
} else if (FLAGS_memtablerep == "vector") {
factory.reset(new rocksdb::VectorRepFactory);
} else if (FLAGS_memtablerep == "hashskiplist") {
factory.reset(rocksdb::NewHashSkipListRepFactory(
FLAGS_bucket_count, FLAGS_hashskiplist_height,
FLAGS_hashskiplist_branching_factor));
options.prefix_extractor.reset(
rocksdb::NewFixedPrefixTransform(FLAGS_prefix_length));
} else if (FLAGS_memtablerep == "hashlinklist") {
factory.reset(rocksdb::NewHashLinkListRepFactory(
FLAGS_bucket_count, FLAGS_huge_page_tlb_size,
FLAGS_bucket_entries_logging_threshold,
FLAGS_if_log_bucket_dist_when_flash, FLAGS_threshold_use_skiplist));
options.prefix_extractor.reset(
rocksdb::NewFixedPrefixTransform(FLAGS_prefix_length));
} else if (FLAGS_memtablerep == "cuckoo") {
factory.reset(rocksdb::NewHashCuckooRepFactory(
FLAGS_write_buffer_size, FLAGS_average_data_size,
static_cast<uint32_t>(FLAGS_hash_function_count)));
options.prefix_extractor.reset(
rocksdb::NewFixedPrefixTransform(FLAGS_prefix_length));
#endif // ROCKSDB_LITE
} else {
fprintf(stdout, "Unknown memtablerep: %s\n", FLAGS_memtablerep.c_str());
exit(1);
}
rocksdb::InternalKeyComparator internal_key_comp(
rocksdb::BytewiseComparator());
rocksdb::MemTable::KeyComparator key_comp(internal_key_comp);
rocksdb::Arena arena;
rocksdb::WriteBuffer wb(FLAGS_write_buffer_size);
rocksdb::MemTableAllocator memtable_allocator(&arena, &wb);
uint64_t sequence;
auto createMemtableRep = [&] {
sequence = 0;
return factory->CreateMemTableRep(key_comp, &memtable_allocator,
options.prefix_extractor.get(),
options.info_log.get());
};
std::unique_ptr<rocksdb::MemTableRep> memtablerep;
rocksdb::Random64 rng(FLAGS_seed);
const char* benchmarks = FLAGS_benchmarks.c_str();
while (benchmarks != nullptr) {
std::unique_ptr<rocksdb::KeyGenerator> key_gen;
const char* sep = strchr(benchmarks, ',');
rocksdb::Slice name;
if (sep == nullptr) {
name = benchmarks;
benchmarks = nullptr;
} else {
name = rocksdb::Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
std::unique_ptr<rocksdb::Benchmark> benchmark;
if (name == rocksdb::Slice("fillseq")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::SEQUENTIAL,
FLAGS_num_operations));
benchmark.reset(new rocksdb::FillBenchmark(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("fillrandom")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::UNIQUE_RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::FillBenchmark(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("readrandom")) {
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::ReadBenchmark(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("readseq")) {
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::SEQUENTIAL,
FLAGS_num_operations));
benchmark.reset(
new rocksdb::SeqReadBenchmark(memtablerep.get(), &sequence));
} else if (name == rocksdb::Slice("readwrite")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::ReadWriteBenchmark<
rocksdb::ConcurrentReadBenchmarkThread>(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("seqreadwrite")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::ReadWriteBenchmark<
rocksdb::SeqConcurrentReadBenchmarkThread>(memtablerep.get(),
key_gen.get(), &sequence));
} else {
std::cout << "WARNING: skipping unknown benchmark '" << name.ToString()
<< std::endl;
continue;
}
std::cout << "Running " << name.ToString() << std::endl;
benchmark->Run();
}
return 0;
}
#endif // GFLAGS