rocksdb/third-party/gtest-1.7.0/fused-src/gtest/gtest-all.cc

10262 lines
368 KiB
C++
Raw Normal View History

// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: mheule@google.com (Markus Heule)
//
// Google C++ Testing Framework (Google Test)
//
// Sometimes it's desirable to build Google Test by compiling a single file.
// This file serves this purpose.
// Suppress clang analyzer warnings.
#ifndef __clang_analyzer__
// This line ensures that gtest.h can be compiled on its own, even
// when it's fused.
#include "gtest/gtest.h"
// The following lines pull in the real gtest *.cc files.
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
//
// The Google C++ Testing Framework (Google Test)
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
//
// Utilities for testing Google Test itself and code that uses Google Test
// (e.g. frameworks built on top of Google Test).
#ifndef GTEST_INCLUDE_GTEST_GTEST_SPI_H_
#define GTEST_INCLUDE_GTEST_GTEST_SPI_H_
namespace testing {
// This helper class can be used to mock out Google Test failure reporting
// so that we can test Google Test or code that builds on Google Test.
//
// An object of this class appends a TestPartResult object to the
// TestPartResultArray object given in the constructor whenever a Google Test
// failure is reported. It can either intercept only failures that are
// generated in the same thread that created this object or it can intercept
// all generated failures. The scope of this mock object can be controlled with
// the second argument to the two arguments constructor.
class GTEST_API_ ScopedFakeTestPartResultReporter
: public TestPartResultReporterInterface {
public:
// The two possible mocking modes of this object.
enum InterceptMode {
INTERCEPT_ONLY_CURRENT_THREAD, // Intercepts only thread local failures.
INTERCEPT_ALL_THREADS // Intercepts all failures.
};
// The c'tor sets this object as the test part result reporter used
// by Google Test. The 'result' parameter specifies where to report the
// results. This reporter will only catch failures generated in the current
// thread. DEPRECATED
explicit ScopedFakeTestPartResultReporter(TestPartResultArray* result);
// Same as above, but you can choose the interception scope of this object.
ScopedFakeTestPartResultReporter(InterceptMode intercept_mode,
TestPartResultArray* result);
// The d'tor restores the previous test part result reporter.
virtual ~ScopedFakeTestPartResultReporter();
// Appends the TestPartResult object to the TestPartResultArray
// received in the constructor.
//
// This method is from the TestPartResultReporterInterface
// interface.
virtual void ReportTestPartResult(const TestPartResult& result);
private:
void Init();
const InterceptMode intercept_mode_;
TestPartResultReporterInterface* old_reporter_;
TestPartResultArray* const result_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedFakeTestPartResultReporter);
};
namespace internal {
// A helper class for implementing EXPECT_FATAL_FAILURE() and
// EXPECT_NONFATAL_FAILURE(). Its destructor verifies that the given
// TestPartResultArray contains exactly one failure that has the given
// type and contains the given substring. If that's not the case, a
// non-fatal failure will be generated.
class GTEST_API_ SingleFailureChecker {
public:
// The constructor remembers the arguments.
SingleFailureChecker(const TestPartResultArray* results,
TestPartResult::Type type,
const string& substr);
~SingleFailureChecker();
private:
const TestPartResultArray* const results_;
const TestPartResult::Type type_;
const string substr_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(SingleFailureChecker);
};
} // namespace internal
} // namespace testing
// A set of macros for testing Google Test assertions or code that's expected
// to generate Google Test fatal failures. It verifies that the given
// statement will cause exactly one fatal Google Test failure with 'substr'
// being part of the failure message.
//
// There are two different versions of this macro. EXPECT_FATAL_FAILURE only
// affects and considers failures generated in the current thread and
// EXPECT_FATAL_FAILURE_ON_ALL_THREADS does the same but for all threads.
//
// The verification of the assertion is done correctly even when the statement
// throws an exception or aborts the current function.
//
// Known restrictions:
// - 'statement' cannot reference local non-static variables or
// non-static members of the current object.
// - 'statement' cannot return a value.
// - You cannot stream a failure message to this macro.
//
// Note that even though the implementations of the following two
// macros are much alike, we cannot refactor them to use a common
// helper macro, due to some peculiarity in how the preprocessor
// works. The AcceptsMacroThatExpandsToUnprotectedComma test in
// gtest_unittest.cc will fail to compile if we do that.
#define EXPECT_FATAL_FAILURE(statement, substr) \
do { \
class GTestExpectFatalFailureHelper {\
public:\
static void Execute() { statement; }\
};\
::testing::TestPartResultArray gtest_failures;\
::testing::internal::SingleFailureChecker gtest_checker(\
&gtest_failures, ::testing::TestPartResult::kFatalFailure, (substr));\
{\
::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
::testing::ScopedFakeTestPartResultReporter:: \
INTERCEPT_ONLY_CURRENT_THREAD, &gtest_failures);\
GTestExpectFatalFailureHelper::Execute();\
}\
} while (::testing::internal::AlwaysFalse())
#define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr) \
do { \
class GTestExpectFatalFailureHelper {\
public:\
static void Execute() { statement; }\
};\
::testing::TestPartResultArray gtest_failures;\
::testing::internal::SingleFailureChecker gtest_checker(\
&gtest_failures, ::testing::TestPartResult::kFatalFailure, (substr));\
{\
::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
::testing::ScopedFakeTestPartResultReporter:: \
INTERCEPT_ALL_THREADS, &gtest_failures);\
GTestExpectFatalFailureHelper::Execute();\
}\
} while (::testing::internal::AlwaysFalse())
// A macro for testing Google Test assertions or code that's expected to
// generate Google Test non-fatal failures. It asserts that the given
// statement will cause exactly one non-fatal Google Test failure with 'substr'
// being part of the failure message.
//
// There are two different versions of this macro. EXPECT_NONFATAL_FAILURE only
// affects and considers failures generated in the current thread and
// EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS does the same but for all threads.
//
// 'statement' is allowed to reference local variables and members of
// the current object.
//
// The verification of the assertion is done correctly even when the statement
// throws an exception or aborts the current function.
//
// Known restrictions:
// - You cannot stream a failure message to this macro.
//
// Note that even though the implementations of the following two
// macros are much alike, we cannot refactor them to use a common
// helper macro, due to some peculiarity in how the preprocessor
// works. If we do that, the code won't compile when the user gives
// EXPECT_NONFATAL_FAILURE() a statement that contains a macro that
// expands to code containing an unprotected comma. The
// AcceptsMacroThatExpandsToUnprotectedComma test in gtest_unittest.cc
// catches that.
//
// For the same reason, we have to write
// if (::testing::internal::AlwaysTrue()) { statement; }
// instead of
// GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement)
// to avoid an MSVC warning on unreachable code.
#define EXPECT_NONFATAL_FAILURE(statement, substr) \
do {\
::testing::TestPartResultArray gtest_failures;\
::testing::internal::SingleFailureChecker gtest_checker(\
&gtest_failures, ::testing::TestPartResult::kNonFatalFailure, \
(substr));\
{\
::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
::testing::ScopedFakeTestPartResultReporter:: \
INTERCEPT_ONLY_CURRENT_THREAD, &gtest_failures);\
if (::testing::internal::AlwaysTrue()) { statement; }\
}\
} while (::testing::internal::AlwaysFalse())
#define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr) \
do {\
::testing::TestPartResultArray gtest_failures;\
::testing::internal::SingleFailureChecker gtest_checker(\
&gtest_failures, ::testing::TestPartResult::kNonFatalFailure, \
(substr));\
{\
::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
::testing::ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, \
&gtest_failures);\
if (::testing::internal::AlwaysTrue()) { statement; }\
}\
} while (::testing::internal::AlwaysFalse())
#endif // GTEST_INCLUDE_GTEST_GTEST_SPI_H_
#include <ctype.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <iomanip>
#include <limits>
#include <list>
#include <map>
#include <ostream> // NOLINT
#include <sstream>
#include <vector>
#if GTEST_OS_LINUX
// TODO(kenton@google.com): Use autoconf to detect availability of
// gettimeofday().
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <fcntl.h> // NOLINT
# include <limits.h> // NOLINT
# include <sched.h> // NOLINT
// Declares vsnprintf(). This header is not available on Windows.
# include <strings.h> // NOLINT
# include <sys/mman.h> // NOLINT
# include <sys/time.h> // NOLINT
# include <unistd.h> // NOLINT
# include <string>
#elif GTEST_OS_SYMBIAN
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <sys/time.h> // NOLINT
#elif GTEST_OS_ZOS
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <sys/time.h> // NOLINT
// On z/OS we additionally need strings.h for strcasecmp.
# include <strings.h> // NOLINT
#elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE.
# include <windows.h> // NOLINT
# undef min
#elif GTEST_OS_WINDOWS // We are on Windows proper.
# include <io.h> // NOLINT
# include <sys/timeb.h> // NOLINT
# include <sys/types.h> // NOLINT
# include <sys/stat.h> // NOLINT
# if GTEST_OS_WINDOWS_MINGW
// MinGW has gettimeofday() but not _ftime64().
// TODO(kenton@google.com): Use autoconf to detect availability of
// gettimeofday().
// TODO(kenton@google.com): There are other ways to get the time on
// Windows, like GetTickCount() or GetSystemTimeAsFileTime(). MinGW
// supports these. consider using them instead.
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <sys/time.h> // NOLINT
# endif // GTEST_OS_WINDOWS_MINGW
// cpplint thinks that the header is already included, so we want to
// silence it.
# include <windows.h> // NOLINT
# undef min
#else
// Assume other platforms have gettimeofday().
// TODO(kenton@google.com): Use autoconf to detect availability of
// gettimeofday().
# define GTEST_HAS_GETTIMEOFDAY_ 1
// cpplint thinks that the header is already included, so we want to
// silence it.
# include <sys/time.h> // NOLINT
# include <unistd.h> // NOLINT
#endif // GTEST_OS_LINUX
#if GTEST_HAS_EXCEPTIONS
# include <stdexcept>
#endif
#if GTEST_CAN_STREAM_RESULTS_
# include <arpa/inet.h> // NOLINT
# include <netdb.h> // NOLINT
# include <sys/socket.h> // NOLINT
# include <sys/types.h> // NOLINT
#endif
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick is to
// prevent a user from accidentally including gtest-internal-inl.h in
// his code.
#define GTEST_IMPLEMENTATION_ 1
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Utility functions and classes used by the Google C++ testing framework.
//
// Author: wan@google.com (Zhanyong Wan)
//
// This file contains purely Google Test's internal implementation. Please
// DO NOT #INCLUDE IT IN A USER PROGRAM.
#ifndef GTEST_SRC_GTEST_INTERNAL_INL_H_
#define GTEST_SRC_GTEST_INTERNAL_INL_H_
// GTEST_IMPLEMENTATION_ is defined to 1 iff the current translation unit is
// part of Google Test's implementation; otherwise it's undefined.
#if !GTEST_IMPLEMENTATION_
// If this file is included from the user's code, just say no.
# error "gtest-internal-inl.h is part of Google Test's internal implementation."
# error "It must not be included except by Google Test itself."
#endif // GTEST_IMPLEMENTATION_
#ifndef _WIN32_WCE
# include <errno.h>
#endif // !_WIN32_WCE
#include <stddef.h>
#include <stdlib.h> // For strtoll/_strtoul64/malloc/free.
#include <string.h> // For memmove.
#include <algorithm>
#include <string>
#include <vector>
#if GTEST_CAN_STREAM_RESULTS_
# include <arpa/inet.h> // NOLINT
# include <netdb.h> // NOLINT
#endif
#if GTEST_OS_WINDOWS
# include <windows.h> // NOLINT
#endif // GTEST_OS_WINDOWS
namespace testing {
// Declares the flags.
//
// We don't want the users to modify this flag in the code, but want
// Google Test's own unit tests to be able to access it. Therefore we
// declare it here as opposed to in gtest.h.
GTEST_DECLARE_bool_(death_test_use_fork);
namespace internal {
// The value of GetTestTypeId() as seen from within the Google Test
// library. This is solely for testing GetTestTypeId().
GTEST_API_ extern const TypeId kTestTypeIdInGoogleTest;
// Names of the flags (needed for parsing Google Test flags).
const char kAlsoRunDisabledTestsFlag[] = "also_run_disabled_tests";
const char kBreakOnFailureFlag[] = "break_on_failure";
const char kCatchExceptionsFlag[] = "catch_exceptions";
const char kColorFlag[] = "color";
const char kFilterFlag[] = "filter";
const char kListTestsFlag[] = "list_tests";
const char kOutputFlag[] = "output";
const char kPrintTimeFlag[] = "print_time";
const char kRandomSeedFlag[] = "random_seed";
const char kRepeatFlag[] = "repeat";
const char kShuffleFlag[] = "shuffle";
const char kStackTraceDepthFlag[] = "stack_trace_depth";
const char kStreamResultToFlag[] = "stream_result_to";
const char kThrowOnFailureFlag[] = "throw_on_failure";
// A valid random seed must be in [1, kMaxRandomSeed].
const int kMaxRandomSeed = 99999;
// g_help_flag is true iff the --help flag or an equivalent form is
// specified on the command line.
GTEST_API_ extern bool g_help_flag;
// Returns the current time in milliseconds.
GTEST_API_ TimeInMillis GetTimeInMillis();
// Returns true iff Google Test should use colors in the output.
GTEST_API_ bool ShouldUseColor(bool stdout_is_tty);
// Formats the given time in milliseconds as seconds.
GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms);
// Converts the given time in milliseconds to a date string in the ISO 8601
// format, without the timezone information. N.B.: due to the use the
// non-reentrant localtime() function, this function is not thread safe. Do
// not use it in any code that can be called from multiple threads.
GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms);
// Parses a string for an Int32 flag, in the form of "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
GTEST_API_ bool ParseInt32Flag(
const char* str, const char* flag, Int32* value);
// Returns a random seed in range [1, kMaxRandomSeed] based on the
// given --gtest_random_seed flag value.
inline int GetRandomSeedFromFlag(Int32 random_seed_flag) {
const unsigned int raw_seed = (random_seed_flag == 0) ?
static_cast<unsigned int>(GetTimeInMillis()) :
static_cast<unsigned int>(random_seed_flag);
// Normalizes the actual seed to range [1, kMaxRandomSeed] such that
// it's easy to type.
const int normalized_seed =
static_cast<int>((raw_seed - 1U) %
static_cast<unsigned int>(kMaxRandomSeed)) + 1;
return normalized_seed;
}
// Returns the first valid random seed after 'seed'. The behavior is
// undefined if 'seed' is invalid. The seed after kMaxRandomSeed is
// considered to be 1.
inline int GetNextRandomSeed(int seed) {
GTEST_CHECK_(1 <= seed && seed <= kMaxRandomSeed)
<< "Invalid random seed " << seed << " - must be in [1, "
<< kMaxRandomSeed << "].";
const int next_seed = seed + 1;
return (next_seed > kMaxRandomSeed) ? 1 : next_seed;
}
// This class saves the values of all Google Test flags in its c'tor, and
// restores them in its d'tor.
class GTestFlagSaver {
public:
// The c'tor.
GTestFlagSaver() {
also_run_disabled_tests_ = GTEST_FLAG(also_run_disabled_tests);
break_on_failure_ = GTEST_FLAG(break_on_failure);
catch_exceptions_ = GTEST_FLAG(catch_exceptions);
color_ = GTEST_FLAG(color);
death_test_style_ = GTEST_FLAG(death_test_style);
death_test_use_fork_ = GTEST_FLAG(death_test_use_fork);
filter_ = GTEST_FLAG(filter);
internal_run_death_test_ = GTEST_FLAG(internal_run_death_test);
list_tests_ = GTEST_FLAG(list_tests);
output_ = GTEST_FLAG(output);
print_time_ = GTEST_FLAG(print_time);
random_seed_ = GTEST_FLAG(random_seed);
repeat_ = GTEST_FLAG(repeat);
shuffle_ = GTEST_FLAG(shuffle);
stack_trace_depth_ = GTEST_FLAG(stack_trace_depth);
stream_result_to_ = GTEST_FLAG(stream_result_to);
throw_on_failure_ = GTEST_FLAG(throw_on_failure);
}
// The d'tor is not virtual. DO NOT INHERIT FROM THIS CLASS.
~GTestFlagSaver() {
GTEST_FLAG(also_run_disabled_tests) = also_run_disabled_tests_;
GTEST_FLAG(break_on_failure) = break_on_failure_;
GTEST_FLAG(catch_exceptions) = catch_exceptions_;
GTEST_FLAG(color) = color_;
GTEST_FLAG(death_test_style) = death_test_style_;
GTEST_FLAG(death_test_use_fork) = death_test_use_fork_;
GTEST_FLAG(filter) = filter_;
GTEST_FLAG(internal_run_death_test) = internal_run_death_test_;
GTEST_FLAG(list_tests) = list_tests_;
GTEST_FLAG(output) = output_;
GTEST_FLAG(print_time) = print_time_;
GTEST_FLAG(random_seed) = random_seed_;
GTEST_FLAG(repeat) = repeat_;
GTEST_FLAG(shuffle) = shuffle_;
GTEST_FLAG(stack_trace_depth) = stack_trace_depth_;
GTEST_FLAG(stream_result_to) = stream_result_to_;
GTEST_FLAG(throw_on_failure) = throw_on_failure_;
}
private:
// Fields for saving the original values of flags.
bool also_run_disabled_tests_;
bool break_on_failure_;
bool catch_exceptions_;
std::string color_;
std::string death_test_style_;
bool death_test_use_fork_;
std::string filter_;
std::string internal_run_death_test_;
bool list_tests_;
std::string output_;
bool print_time_;
internal::Int32 random_seed_;
internal::Int32 repeat_;
bool shuffle_;
internal::Int32 stack_trace_depth_;
std::string stream_result_to_;
bool throw_on_failure_;
} GTEST_ATTRIBUTE_UNUSED_;
// Converts a Unicode code point to a narrow string in UTF-8 encoding.
// code_point parameter is of type UInt32 because wchar_t may not be
// wide enough to contain a code point.
// If the code_point is not a valid Unicode code point
// (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted
// to "(Invalid Unicode 0xXXXXXXXX)".
GTEST_API_ std::string CodePointToUtf8(UInt32 code_point);
// Converts a wide string to a narrow string in UTF-8 encoding.
// The wide string is assumed to have the following encoding:
// UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS)
// UTF-32 if sizeof(wchar_t) == 4 (on Linux)
// Parameter str points to a null-terminated wide string.
// Parameter num_chars may additionally limit the number
// of wchar_t characters processed. -1 is used when the entire string
// should be processed.
// If the string contains code points that are not valid Unicode code points
// (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output
// as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding
// and contains invalid UTF-16 surrogate pairs, values in those pairs
// will be encoded as individual Unicode characters from Basic Normal Plane.
GTEST_API_ std::string WideStringToUtf8(const wchar_t* str, int num_chars);
// Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file
// if the variable is present. If a file already exists at this location, this
// function will write over it. If the variable is present, but the file cannot
// be created, prints an error and exits.
void WriteToShardStatusFileIfNeeded();
// Checks whether sharding is enabled by examining the relevant
// environment variable values. If the variables are present,
// but inconsistent (e.g., shard_index >= total_shards), prints
// an error and exits. If in_subprocess_for_death_test, sharding is
// disabled because it must only be applied to the original test
// process. Otherwise, we could filter out death tests we intended to execute.
GTEST_API_ bool ShouldShard(const char* total_shards_str,
const char* shard_index_str,
bool in_subprocess_for_death_test);
// Parses the environment variable var as an Int32. If it is unset,
// returns default_val. If it is not an Int32, prints an error and
// and aborts.
GTEST_API_ Int32 Int32FromEnvOrDie(const char* env_var, Int32 default_val);
// Given the total number of shards, the shard index, and the test id,
// returns true iff the test should be run on this shard. The test id is
// some arbitrary but unique non-negative integer assigned to each test
// method. Assumes that 0 <= shard_index < total_shards.
GTEST_API_ bool ShouldRunTestOnShard(
int total_shards, int shard_index, int test_id);
// STL container utilities.
// Returns the number of elements in the given container that satisfy
// the given predicate.
template <class Container, typename Predicate>
inline int CountIf(const Container& c, Predicate predicate) {
// Implemented as an explicit loop since std::count_if() in libCstd on
// Solaris has a non-standard signature.
int count = 0;
for (typename Container::const_iterator it = c.begin(); it != c.end(); ++it) {
if (predicate(*it))
++count;
}
return count;
}
// Applies a function/functor to each element in the container.
template <class Container, typename Functor>
void ForEach(const Container& c, Functor functor) {
std::for_each(c.begin(), c.end(), functor);
}
// Returns the i-th element of the vector, or default_value if i is not
// in range [0, v.size()).
template <typename E>
inline E GetElementOr(const std::vector<E>& v, int i, E default_value) {
return (i < 0 || i >= static_cast<int>(v.size())) ? default_value : v[i];
}
// Performs an in-place shuffle of a range of the vector's elements.
// 'begin' and 'end' are element indices as an STL-style range;
// i.e. [begin, end) are shuffled, where 'end' == size() means to
// shuffle to the end of the vector.
template <typename E>
void ShuffleRange(internal::Random* random, int begin, int end,
std::vector<E>* v) {
const int size = static_cast<int>(v->size());
GTEST_CHECK_(0 <= begin && begin <= size)
<< "Invalid shuffle range start " << begin << ": must be in range [0, "
<< size << "].";
GTEST_CHECK_(begin <= end && end <= size)
<< "Invalid shuffle range finish " << end << ": must be in range ["
<< begin << ", " << size << "].";
// Fisher-Yates shuffle, from
// http://en.wikipedia.org/wiki/Fisher-Yates_shuffle
for (int range_width = end - begin; range_width >= 2; range_width--) {
const int last_in_range = begin + range_width - 1;
const int selected = begin + random->Generate(range_width);
std::swap((*v)[selected], (*v)[last_in_range]);
}
}
// Performs an in-place shuffle of the vector's elements.
template <typename E>
inline void Shuffle(internal::Random* random, std::vector<E>* v) {
ShuffleRange(random, 0, static_cast<int>(v->size()), v);
}
// A function for deleting an object. Handy for being used as a
// functor.
template <typename T>
static void Delete(T* x) {
delete x;
}
// A predicate that checks the key of a TestProperty against a known key.
//
// TestPropertyKeyIs is copyable.
class TestPropertyKeyIs {
public:
// Constructor.
//
// TestPropertyKeyIs has NO default constructor.
explicit TestPropertyKeyIs(const std::string& key) : key_(key) {}
// Returns true iff the test name of test property matches on key_.
bool operator()(const TestProperty& test_property) const {
return test_property.key() == key_;
}
private:
std::string key_;
};
// Class UnitTestOptions.
//
// This class contains functions for processing options the user
// specifies when running the tests. It has only static members.
//
// In most cases, the user can specify an option using either an
// environment variable or a command line flag. E.g. you can set the
// test filter using either GTEST_FILTER or --gtest_filter. If both
// the variable and the flag are present, the latter overrides the
// former.
class GTEST_API_ UnitTestOptions {
public:
// Functions for processing the gtest_output flag.
// Returns the output format, or "" for normal printed output.
static std::string GetOutputFormat();
// Returns the absolute path of the requested output file, or the
// default (test_detail.xml in the original working directory) if
// none was explicitly specified.
static std::string GetAbsolutePathToOutputFile();
// Functions for processing the gtest_filter flag.
// Returns true iff the wildcard pattern matches the string. The
// first ':' or '\0' character in pattern marks the end of it.
//
// This recursive algorithm isn't very efficient, but is clear and
// works well enough for matching test names, which are short.
static bool PatternMatchesString(const char *pattern, const char *str);
// Returns true iff the user-specified filter matches the test case
// name and the test name.
static bool FilterMatchesTest(const std::string &test_case_name,
const std::string &test_name);
#if GTEST_OS_WINDOWS
// Function for supporting the gtest_catch_exception flag.
// Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the
// given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise.
// This function is useful as an __except condition.
static int GTestShouldProcessSEH(DWORD exception_code);
#endif // GTEST_OS_WINDOWS
// Returns true if "name" matches the ':' separated list of glob-style
// filters in "filter".
static bool MatchesFilter(const std::string& name, const char* filter);
};
// Returns the current application's name, removing directory path if that
// is present. Used by UnitTestOptions::GetOutputFile.
GTEST_API_ FilePath GetCurrentExecutableName();
// The role interface for getting the OS stack trace as a string.
class OsStackTraceGetterInterface {
public:
OsStackTraceGetterInterface() {}
virtual ~OsStackTraceGetterInterface() {}
// Returns the current OS stack trace as an std::string. Parameters:
//
// max_depth - the maximum number of stack frames to be included
// in the trace.
// skip_count - the number of top frames to be skipped; doesn't count
// against max_depth.
virtual string CurrentStackTrace(int max_depth, int skip_count) = 0;
// UponLeavingGTest() should be called immediately before Google Test calls
// user code. It saves some information about the current stack that
// CurrentStackTrace() will use to find and hide Google Test stack frames.
virtual void UponLeavingGTest() = 0;
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetterInterface);
};
// A working implementation of the OsStackTraceGetterInterface interface.
class OsStackTraceGetter : public OsStackTraceGetterInterface {
public:
OsStackTraceGetter() : caller_frame_(NULL) {}
virtual string CurrentStackTrace(int max_depth, int skip_count)
GTEST_LOCK_EXCLUDED_(mutex_);
virtual void UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_);
// This string is inserted in place of stack frames that are part of
// Google Test's implementation.
static const char* const kElidedFramesMarker;
private:
Mutex mutex_; // protects all internal state
// We save the stack frame below the frame that calls user code.
// We do this because the address of the frame immediately below
// the user code changes between the call to UponLeavingGTest()
// and any calls to CurrentStackTrace() from within the user code.
void* caller_frame_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetter);
};
// Information about a Google Test trace point.
struct TraceInfo {
const char* file;
int line;
std::string message;
};
// This is the default global test part result reporter used in UnitTestImpl.
// This class should only be used by UnitTestImpl.
class DefaultGlobalTestPartResultReporter
: public TestPartResultReporterInterface {
public:
explicit DefaultGlobalTestPartResultReporter(UnitTestImpl* unit_test);
// Implements the TestPartResultReporterInterface. Reports the test part
// result in the current test.
virtual void ReportTestPartResult(const TestPartResult& result);
private:
UnitTestImpl* const unit_test_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultGlobalTestPartResultReporter);
};
// This is the default per thread test part result reporter used in
// UnitTestImpl. This class should only be used by UnitTestImpl.
class DefaultPerThreadTestPartResultReporter
: public TestPartResultReporterInterface {
public:
explicit DefaultPerThreadTestPartResultReporter(UnitTestImpl* unit_test);
// Implements the TestPartResultReporterInterface. The implementation just
// delegates to the current global test part result reporter of *unit_test_.
virtual void ReportTestPartResult(const TestPartResult& result);
private:
UnitTestImpl* const unit_test_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultPerThreadTestPartResultReporter);
};
// The private implementation of the UnitTest class. We don't protect
// the methods under a mutex, as this class is not accessible by a
// user and the UnitTest class that delegates work to this class does
// proper locking.
class GTEST_API_ UnitTestImpl {
public:
explicit UnitTestImpl(UnitTest* parent);
virtual ~UnitTestImpl();
// There are two different ways to register your own TestPartResultReporter.
// You can register your own repoter to listen either only for test results
// from the current thread or for results from all threads.
// By default, each per-thread test result repoter just passes a new
// TestPartResult to the global test result reporter, which registers the
// test part result for the currently running test.
// Returns the global test part result reporter.
TestPartResultReporterInterface* GetGlobalTestPartResultReporter();
// Sets the global test part result reporter.
void SetGlobalTestPartResultReporter(
TestPartResultReporterInterface* reporter);
// Returns the test part result reporter for the current thread.
TestPartResultReporterInterface* GetTestPartResultReporterForCurrentThread();
// Sets the test part result reporter for the current thread.
void SetTestPartResultReporterForCurrentThread(
TestPartResultReporterInterface* reporter);
// Gets the number of successful test cases.
int successful_test_case_count() const;
// Gets the number of failed test cases.
int failed_test_case_count() const;
// Gets the number of all test cases.
int total_test_case_count() const;
// Gets the number of all test cases that contain at least one test
// that should run.
int test_case_to_run_count() const;
// Gets the number of successful tests.
int successful_test_count() const;
// Gets the number of failed tests.
int failed_test_count() const;
// Gets the number of disabled tests that will be reported in the XML report.
int reportable_disabled_test_count() const;
// Gets the number of disabled tests.
int disabled_test_count() const;
// Gets the number of tests to be printed in the XML report.
int reportable_test_count() const;
// Gets the number of all tests.
int total_test_count() const;
// Gets the number of tests that should run.
int test_to_run_count() const;
// Gets the time of the test program start, in ms from the start of the
// UNIX epoch.
TimeInMillis start_timestamp() const { return start_timestamp_; }
// Gets the elapsed time, in milliseconds.
TimeInMillis elapsed_time() const { return elapsed_time_; }
// Returns true iff the unit test passed (i.e. all test cases passed).
bool Passed() const { return !Failed(); }
// Returns true iff the unit test failed (i.e. some test case failed
// or something outside of all tests failed).
bool Failed() const {
return failed_test_case_count() > 0 || ad_hoc_test_result()->Failed();
}
// Gets the i-th test case among all the test cases. i can range from 0 to
// total_test_case_count() - 1. If i is not in that range, returns NULL.
const TestCase* GetTestCase(int i) const {
const int index = GetElementOr(test_case_indices_, i, -1);
return index < 0 ? NULL : test_cases_[i];
}
// Gets the i-th test case among all the test cases. i can range from 0 to
// total_test_case_count() - 1. If i is not in that range, returns NULL.
TestCase* GetMutableTestCase(int i) {
const int index = GetElementOr(test_case_indices_, i, -1);
return index < 0 ? NULL : test_cases_[index];
}
// Provides access to the event listener list.
TestEventListeners* listeners() { return &listeners_; }
// Returns the TestResult for the test that's currently running, or
// the TestResult for the ad hoc test if no test is running.
TestResult* current_test_result();
// Returns the TestResult for the ad hoc test.
const TestResult* ad_hoc_test_result() const { return &ad_hoc_test_result_; }
// Sets the OS stack trace getter.
//
// Does nothing if the input and the current OS stack trace getter
// are the same; otherwise, deletes the old getter and makes the
// input the current getter.
void set_os_stack_trace_getter(OsStackTraceGetterInterface* getter);
// Returns the current OS stack trace getter if it is not NULL;
// otherwise, creates an OsStackTraceGetter, makes it the current
// getter, and returns it.
OsStackTraceGetterInterface* os_stack_trace_getter();
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// CurrentOsStackTraceExceptTop(1), Foo() will be included in the
// trace but Bar() and CurrentOsStackTraceExceptTop() won't.
std::string CurrentOsStackTraceExceptTop(int skip_count) GTEST_NO_INLINE_;
// Finds and returns a TestCase with the given name. If one doesn't
// exist, creates one and returns it.
//
// Arguments:
//
// test_case_name: name of the test case
// type_param: the name of the test's type parameter, or NULL if
// this is not a typed or a type-parameterized test.
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
TestCase* GetTestCase(const char* test_case_name,
const char* type_param,
Test::SetUpTestCaseFunc set_up_tc,
Test::TearDownTestCaseFunc tear_down_tc);
// Adds a TestInfo to the unit test.
//
// Arguments:
//
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
// test_info: the TestInfo object
void AddTestInfo(Test::SetUpTestCaseFunc set_up_tc,
Test::TearDownTestCaseFunc tear_down_tc,
TestInfo* test_info) {
// In order to support thread-safe death tests, we need to
// remember the original working directory when the test program
// was first invoked. We cannot do this in RUN_ALL_TESTS(), as
// the user may have changed the current directory before calling
// RUN_ALL_TESTS(). Therefore we capture the current directory in
// AddTestInfo(), which is called to register a TEST or TEST_F
// before main() is reached.
if (original_working_dir_.IsEmpty()) {
original_working_dir_.Set(FilePath::GetCurrentDir());
GTEST_CHECK_(!original_working_dir_.IsEmpty())
<< "Failed to get the current working directory.";
}
GetTestCase(test_info->test_case_name(),
test_info->type_param(),
set_up_tc,
tear_down_tc)->AddTestInfo(test_info);
}
#if GTEST_HAS_PARAM_TEST
// Returns ParameterizedTestCaseRegistry object used to keep track of
// value-parameterized tests and instantiate and register them.
internal::ParameterizedTestCaseRegistry& parameterized_test_registry() {
return parameterized_test_registry_;
}
#endif // GTEST_HAS_PARAM_TEST
// Sets the TestCase object for the test that's currently running.
void set_current_test_case(TestCase* a_current_test_case) {
current_test_case_ = a_current_test_case;
}
// Sets the TestInfo object for the test that's currently running. If
// current_test_info is NULL, the assertion results will be stored in
// ad_hoc_test_result_.
void set_current_test_info(TestInfo* a_current_test_info) {
current_test_info_ = a_current_test_info;
}
// Registers all parameterized tests defined using TEST_P and
// INSTANTIATE_TEST_CASE_P, creating regular tests for each test/parameter
// combination. This method can be called more then once; it has guards
// protecting from registering the tests more then once. If
// value-parameterized tests are disabled, RegisterParameterizedTests is
// present but does nothing.
void RegisterParameterizedTests();
// Runs all tests in this UnitTest object, prints the result, and
// returns true if all tests are successful. If any exception is
// thrown during a test, this test is considered to be failed, but
// the rest of the tests will still be run.
bool RunAllTests();
// Clears the results of all tests, except the ad hoc tests.
void ClearNonAdHocTestResult() {
ForEach(test_cases_, TestCase::ClearTestCaseResult);
}
// Clears the results of ad-hoc test assertions.
void ClearAdHocTestResult() {
ad_hoc_test_result_.Clear();
}
// Adds a TestProperty to the current TestResult object when invoked in a
// context of a test or a test case, or to the global property set. If the
// result already contains a property with the same key, the value will be
// updated.
void RecordProperty(const TestProperty& test_property);
enum ReactionToSharding {
HONOR_SHARDING_PROTOCOL,
IGNORE_SHARDING_PROTOCOL
};
// Matches the full name of each test against the user-specified
// filter to decide whether the test should run, then records the
// result in each TestCase and TestInfo object.
// If shard_tests == HONOR_SHARDING_PROTOCOL, further filters tests
// based on sharding variables in the environment.
// Returns the number of tests that should run.
int FilterTests(ReactionToSharding shard_tests);
// Prints the names of the tests matching the user-specified filter flag.
void ListTestsMatchingFilter();
const TestCase* current_test_case() const { return current_test_case_; }
TestInfo* current_test_info() { return current_test_info_; }
const TestInfo* current_test_info() const { return current_test_info_; }
// Returns the vector of environments that need to be set-up/torn-down
// before/after the tests are run.
std::vector<Environment*>& environments() { return environments_; }
// Getters for the per-thread Google Test trace stack.
std::vector<TraceInfo>& gtest_trace_stack() {
return *(gtest_trace_stack_.pointer());
}
const std::vector<TraceInfo>& gtest_trace_stack() const {
return gtest_trace_stack_.get();
}
#if GTEST_HAS_DEATH_TEST
void InitDeathTestSubprocessControlInfo() {
internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag());
}
// Returns a pointer to the parsed --gtest_internal_run_death_test
// flag, or NULL if that flag was not specified.
// This information is useful only in a death test child process.
// Must not be called before a call to InitGoogleTest.
const InternalRunDeathTestFlag* internal_run_death_test_flag() const {
return internal_run_death_test_flag_.get();
}
// Returns a pointer to the current death test factory.
internal::DeathTestFactory* death_test_factory() {
return death_test_factory_.get();
}
void SuppressTestEventsIfInSubprocess();
friend class ReplaceDeathTestFactory;
#endif // GTEST_HAS_DEATH_TEST
// Initializes the event listener performing XML output as specified by
// UnitTestOptions. Must not be called before InitGoogleTest.
void ConfigureXmlOutput();
#if GTEST_CAN_STREAM_RESULTS_
// Initializes the event listener for streaming test results to a socket.
// Must not be called before InitGoogleTest.
void ConfigureStreamingOutput();
#endif
// Performs initialization dependent upon flag values obtained in
// ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to
// ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest
// this function is also called from RunAllTests. Since this function can be
// called more than once, it has to be idempotent.
void PostFlagParsingInit();
// Gets the random seed used at the start of the current test iteration.
int random_seed() const { return random_seed_; }
// Gets the random number generator.
internal::Random* random() { return &random_; }
// Shuffles all test cases, and the tests within each test case,
// making sure that death tests are still run first.
void ShuffleTests();
// Restores the test cases and tests to their order before the first shuffle.
void UnshuffleTests();
// Returns the value of GTEST_FLAG(catch_exceptions) at the moment
// UnitTest::Run() starts.
bool catch_exceptions() const { return catch_exceptions_; }
private:
friend class ::testing::UnitTest;
// Used by UnitTest::Run() to capture the state of
// GTEST_FLAG(catch_exceptions) at the moment it starts.
void set_catch_exceptions(bool value) { catch_exceptions_ = value; }
// The UnitTest object that owns this implementation object.
UnitTest* const parent_;
// The working directory when the first TEST() or TEST_F() was
// executed.
internal::FilePath original_working_dir_;
// The default test part result reporters.
DefaultGlobalTestPartResultReporter default_global_test_part_result_reporter_;
DefaultPerThreadTestPartResultReporter
default_per_thread_test_part_result_reporter_;
// Points to (but doesn't own) the global test part result reporter.
TestPartResultReporterInterface* global_test_part_result_repoter_;
// Protects read and write access to global_test_part_result_reporter_.
internal::Mutex global_test_part_result_reporter_mutex_;
// Points to (but doesn't own) the per-thread test part result reporter.
internal::ThreadLocal<TestPartResultReporterInterface*>
per_thread_test_part_result_reporter_;
// The vector of environments that need to be set-up/torn-down
// before/after the tests are run.
std::vector<Environment*> environments_;
// The vector of TestCases in their original order. It owns the
// elements in the vector.
std::vector<TestCase*> test_cases_;
// Provides a level of indirection for the test case list to allow
// easy shuffling and restoring the test case order. The i-th
// element of this vector is the index of the i-th test case in the
// shuffled order.
std::vector<int> test_case_indices_;
#if GTEST_HAS_PARAM_TEST
// ParameterizedTestRegistry object used to register value-parameterized
// tests.
internal::ParameterizedTestCaseRegistry parameterized_test_registry_;
// Indicates whether RegisterParameterizedTests() has been called already.
bool parameterized_tests_registered_;
#endif // GTEST_HAS_PARAM_TEST
// Index of the last death test case registered. Initially -1.
int last_death_test_case_;
// This points to the TestCase for the currently running test. It
// changes as Google Test goes through one test case after another.
// When no test is running, this is set to NULL and Google Test
// stores assertion results in ad_hoc_test_result_. Initially NULL.
TestCase* current_test_case_;
// This points to the TestInfo for the currently running test. It
// changes as Google Test goes through one test after another. When
// no test is running, this is set to NULL and Google Test stores
// assertion results in ad_hoc_test_result_. Initially NULL.
TestInfo* current_test_info_;
// Normally, a user only writes assertions inside a TEST or TEST_F,
// or inside a function called by a TEST or TEST_F. Since Google
// Test keeps track of which test is current running, it can
// associate such an assertion with the test it belongs to.
//
// If an assertion is encountered when no TEST or TEST_F is running,
// Google Test attributes the assertion result to an imaginary "ad hoc"
// test, and records the result in ad_hoc_test_result_.
TestResult ad_hoc_test_result_;
// The list of event listeners that can be used to track events inside
// Google Test.
TestEventListeners listeners_;
// The OS stack trace getter. Will be deleted when the UnitTest
// object is destructed. By default, an OsStackTraceGetter is used,
// but the user can set this field to use a custom getter if that is
// desired.
OsStackTraceGetterInterface* os_stack_trace_getter_;
// True iff PostFlagParsingInit() has been called.
bool post_flag_parse_init_performed_;
// The random number seed used at the beginning of the test run.
int random_seed_;
// Our random number generator.
internal::Random random_;
// The time of the test program start, in ms from the start of the
// UNIX epoch.
TimeInMillis start_timestamp_;
// How long the test took to run, in milliseconds.
TimeInMillis elapsed_time_;
#if GTEST_HAS_DEATH_TEST
// The decomposed components of the gtest_internal_run_death_test flag,
// parsed when RUN_ALL_TESTS is called.
internal::scoped_ptr<InternalRunDeathTestFlag> internal_run_death_test_flag_;
internal::scoped_ptr<internal::DeathTestFactory> death_test_factory_;
#endif // GTEST_HAS_DEATH_TEST
// A per-thread stack of traces created by the SCOPED_TRACE() macro.
internal::ThreadLocal<std::vector<TraceInfo> > gtest_trace_stack_;
// The value of GTEST_FLAG(catch_exceptions) at the moment RunAllTests()
// starts.
bool catch_exceptions_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestImpl);
}; // class UnitTestImpl
// Convenience function for accessing the global UnitTest
// implementation object.
inline UnitTestImpl* GetUnitTestImpl() {
return UnitTest::GetInstance()->impl();
}
#if GTEST_USES_SIMPLE_RE
// Internal helper functions for implementing the simple regular
// expression matcher.
GTEST_API_ bool IsInSet(char ch, const char* str);
GTEST_API_ bool IsAsciiDigit(char ch);
GTEST_API_ bool IsAsciiPunct(char ch);
GTEST_API_ bool IsRepeat(char ch);
GTEST_API_ bool IsAsciiWhiteSpace(char ch);
GTEST_API_ bool IsAsciiWordChar(char ch);
GTEST_API_ bool IsValidEscape(char ch);
GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch);
GTEST_API_ bool ValidateRegex(const char* regex);
GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str);
GTEST_API_ bool MatchRepetitionAndRegexAtHead(
bool escaped, char ch, char repeat, const char* regex, const char* str);
GTEST_API_ bool MatchRegexAnywhere(const char* regex, const char* str);
#endif // GTEST_USES_SIMPLE_RE
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test.
GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, char** argv);
GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv);
#if GTEST_HAS_DEATH_TEST
// Returns the message describing the last system error, regardless of the
// platform.
GTEST_API_ std::string GetLastErrnoDescription();
// Attempts to parse a string into a positive integer pointed to by the
// number parameter. Returns true if that is possible.
// GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we can use
// it here.
template <typename Integer>
bool ParseNaturalNumber(const ::std::string& str, Integer* number) {
// Fail fast if the given string does not begin with a digit;
// this bypasses strtoXXX's "optional leading whitespace and plus
// or minus sign" semantics, which are undesirable here.
if (str.empty() || !IsDigit(str[0])) {
return false;
}
errno = 0;
char* end;
// BiggestConvertible is the largest integer type that system-provided
// string-to-number conversion routines can return.
# if GTEST_OS_WINDOWS && !defined(__GNUC__)
// MSVC and C++ Builder define __int64 instead of the standard long long.
typedef unsigned __int64 BiggestConvertible;
const BiggestConvertible parsed = _strtoui64(str.c_str(), &end, 10);
# else
typedef unsigned long long BiggestConvertible; // NOLINT
const BiggestConvertible parsed = strtoull(str.c_str(), &end, 10);
# endif // GTEST_OS_WINDOWS && !defined(__GNUC__)
const bool parse_success = *end == '\0' && errno == 0;
// TODO(vladl@google.com): Convert this to compile time assertion when it is
// available.
GTEST_CHECK_(sizeof(Integer) <= sizeof(parsed));
const Integer result = static_cast<Integer>(parsed);
if (parse_success && static_cast<BiggestConvertible>(result) == parsed) {
*number = result;
return true;
}
return false;
}
#endif // GTEST_HAS_DEATH_TEST
// TestResult contains some private methods that should be hidden from
// Google Test user but are required for testing. This class allow our tests
// to access them.
//
// This class is supplied only for the purpose of testing Google Test's own
// constructs. Do not use it in user tests, either directly or indirectly.
class TestResultAccessor {
public:
static void RecordProperty(TestResult* test_result,
const std::string& xml_element,
const TestProperty& property) {
test_result->RecordProperty(xml_element, property);
}
static void ClearTestPartResults(TestResult* test_result) {
test_result->ClearTestPartResults();
}
static const std::vector<testing::TestPartResult>& test_part_results(
const TestResult& test_result) {
return test_result.test_part_results();
}
};
#if GTEST_CAN_STREAM_RESULTS_
// Streams test results to the given port on the given host machine.
class StreamingListener : public EmptyTestEventListener {
public:
// Abstract base class for writing strings to a socket.
class AbstractSocketWriter {
public:
virtual ~AbstractSocketWriter() {}
// Sends a string to the socket.
virtual void Send(const string& message) = 0;
// Closes the socket.
virtual void CloseConnection() {}
// Sends a string and a newline to the socket.
void SendLn(const string& message) {
Send(message + "\n");
}
};
// Concrete class for actually writing strings to a socket.
class SocketWriter : public AbstractSocketWriter {
public:
SocketWriter(const string& host, const string& port)
: sockfd_(-1), host_name_(host), port_num_(port) {
MakeConnection();
}
virtual ~SocketWriter() {
if (sockfd_ != -1)
CloseConnection();
}
// Sends a string to the socket.
virtual void Send(const string& message) {
GTEST_CHECK_(sockfd_ != -1)
<< "Send() can be called only when there is a connection.";
const int len = static_cast<int>(message.length());
if (write(sockfd_, message.c_str(), len) != len) {
GTEST_LOG_(WARNING)
<< "stream_result_to: failed to stream to "
<< host_name_ << ":" << port_num_;
}
}
private:
// Creates a client socket and connects to the server.
void MakeConnection();
// Closes the socket.
void CloseConnection() {
GTEST_CHECK_(sockfd_ != -1)
<< "CloseConnection() can be called only when there is a connection.";
close(sockfd_);
sockfd_ = -1;
}
int sockfd_; // socket file descriptor
const string host_name_;
const string port_num_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(SocketWriter);
}; // class SocketWriter
// Escapes '=', '&', '%', and '\n' characters in str as "%xx".
static string UrlEncode(const char* str);
StreamingListener(const string& host, const string& port)
: socket_writer_(new SocketWriter(host, port)) { Start(); }
explicit StreamingListener(AbstractSocketWriter* socket_writer)
: socket_writer_(socket_writer) { Start(); }
void OnTestProgramStart(const UnitTest& /* unit_test */) {
SendLn("event=TestProgramStart");
}
void OnTestProgramEnd(const UnitTest& unit_test) {
// Note that Google Test current only report elapsed time for each
// test iteration, not for the entire test program.
SendLn("event=TestProgramEnd&passed=" + FormatBool(unit_test.Passed()));
// Notify the streaming server to stop.
socket_writer_->CloseConnection();
}
void OnTestIterationStart(const UnitTest& /* unit_test */, int iteration) {
SendLn("event=TestIterationStart&iteration=" +
StreamableToString(iteration));
}
void OnTestIterationEnd(const UnitTest& unit_test, int /* iteration */) {
SendLn("event=TestIterationEnd&passed=" +
FormatBool(unit_test.Passed()) + "&elapsed_time=" +
StreamableToString(unit_test.elapsed_time()) + "ms");
}
void OnTestCaseStart(const TestCase& test_case) {
SendLn(std::string("event=TestCaseStart&name=") + test_case.name());
}
void OnTestCaseEnd(const TestCase& test_case) {
SendLn("event=TestCaseEnd&passed=" + FormatBool(test_case.Passed())
+ "&elapsed_time=" + StreamableToString(test_case.elapsed_time())
+ "ms");
}
void OnTestStart(const TestInfo& test_info) {
SendLn(std::string("event=TestStart&name=") + test_info.name());
}
void OnTestEnd(const TestInfo& test_info) {
SendLn("event=TestEnd&passed=" +
FormatBool((test_info.result())->Passed()) +
"&elapsed_time=" +
StreamableToString((test_info.result())->elapsed_time()) + "ms");
}
void OnTestPartResult(const TestPartResult& test_part_result) {
const char* file_name = test_part_result.file_name();
if (file_name == NULL)
file_name = "";
SendLn("event=TestPartResult&file=" + UrlEncode(file_name) +
"&line=" + StreamableToString(test_part_result.line_number()) +
"&message=" + UrlEncode(test_part_result.message()));
}
private:
// Sends the given message and a newline to the socket.
void SendLn(const string& message) { socket_writer_->SendLn(message); }
// Called at the start of streaming to notify the receiver what
// protocol we are using.
void Start() { SendLn("gtest_streaming_protocol_version=1.0"); }
string FormatBool(bool value) { return value ? "1" : "0"; }
const scoped_ptr<AbstractSocketWriter> socket_writer_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener);
}; // class StreamingListener
#endif // GTEST_CAN_STREAM_RESULTS_
} // namespace internal
} // namespace testing
#endif // GTEST_SRC_GTEST_INTERNAL_INL_H_
#undef GTEST_IMPLEMENTATION_
#if GTEST_OS_WINDOWS
# define vsnprintf _vsnprintf
#endif // GTEST_OS_WINDOWS
namespace testing {
using internal::CountIf;
using internal::ForEach;
using internal::GetElementOr;
using internal::Shuffle;
// Constants.
// A test whose test case name or test name matches this filter is
// disabled and not run.
static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*";
// A test case whose name matches this filter is considered a death
// test case and will be run before test cases whose name doesn't
// match this filter.
static const char kDeathTestCaseFilter[] = "*DeathTest:*DeathTest/*";
// A test filter that matches everything.
static const char kUniversalFilter[] = "*";
// The default output file for XML output.
static const char kDefaultOutputFile[] = "test_detail.xml";
// The environment variable name for the test shard index.
static const char kTestShardIndex[] = "GTEST_SHARD_INDEX";
// The environment variable name for the total number of test shards.
static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS";
// The environment variable name for the test shard status file.
static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE";
namespace internal {
// The text used in failure messages to indicate the start of the
// stack trace.
const char kStackTraceMarker[] = "\nStack trace:\n";
// g_help_flag is true iff the --help flag or an equivalent form is
// specified on the command line.
bool g_help_flag = false;
} // namespace internal
static const char* GetDefaultFilter() {
return kUniversalFilter;
}
GTEST_DEFINE_bool_(
also_run_disabled_tests,
internal::BoolFromGTestEnv("also_run_disabled_tests", false),
"Run disabled tests too, in addition to the tests normally being run.");
GTEST_DEFINE_bool_(
break_on_failure,
internal::BoolFromGTestEnv("break_on_failure", false),
"True iff a failed assertion should be a debugger break-point.");
GTEST_DEFINE_bool_(
catch_exceptions,
internal::BoolFromGTestEnv("catch_exceptions", true),
"True iff " GTEST_NAME_
" should catch exceptions and treat them as test failures.");
GTEST_DEFINE_string_(
color,
internal::StringFromGTestEnv("color", "auto"),
"Whether to use colors in the output. Valid values: yes, no, "
"and auto. 'auto' means to use colors if the output is "
"being sent to a terminal and the TERM environment variable "
"is set to a terminal type that supports colors.");
GTEST_DEFINE_string_(
filter,
internal::StringFromGTestEnv("filter", GetDefaultFilter()),
"A colon-separated list of glob (not regex) patterns "
"for filtering the tests to run, optionally followed by a "
"'-' and a : separated list of negative patterns (tests to "
"exclude). A test is run if it matches one of the positive "
"patterns and does not match any of the negative patterns.");
GTEST_DEFINE_bool_(list_tests, false,
"List all tests without running them.");
GTEST_DEFINE_string_(
output,
internal::StringFromGTestEnv("output", ""),
"A format (currently must be \"xml\"), optionally followed "
"by a colon and an output file name or directory. A directory "
"is indicated by a trailing pathname separator. "
"Examples: \"xml:filename.xml\", \"xml::directoryname/\". "
"If a directory is specified, output files will be created "
"within that directory, with file-names based on the test "
"executable's name and, if necessary, made unique by adding "
"digits.");
GTEST_DEFINE_bool_(
print_time,
internal::BoolFromGTestEnv("print_time", true),
"True iff " GTEST_NAME_
" should display elapsed time in text output.");
GTEST_DEFINE_int32_(
random_seed,
internal::Int32FromGTestEnv("random_seed", 0),
"Random number seed to use when shuffling test orders. Must be in range "
"[1, 99999], or 0 to use a seed based on the current time.");
GTEST_DEFINE_int32_(
repeat,
internal::Int32FromGTestEnv("repeat", 1),
"How many times to repeat each test. Specify a negative number "
"for repeating forever. Useful for shaking out flaky tests.");
GTEST_DEFINE_bool_(
show_internal_stack_frames, false,
"True iff " GTEST_NAME_ " should include internal stack frames when "
"printing test failure stack traces.");
GTEST_DEFINE_bool_(
shuffle,
internal::BoolFromGTestEnv("shuffle", false),
"True iff " GTEST_NAME_
" should randomize tests' order on every run.");
GTEST_DEFINE_int32_(
stack_trace_depth,
internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth),
"The maximum number of stack frames to print when an "
"assertion fails. The valid range is 0 through 100, inclusive.");
GTEST_DEFINE_string_(
stream_result_to,
internal::StringFromGTestEnv("stream_result_to", ""),
"This flag specifies the host name and the port number on which to stream "
"test results. Example: \"localhost:555\". The flag is effective only on "
"Linux.");
GTEST_DEFINE_bool_(
throw_on_failure,
internal::BoolFromGTestEnv("throw_on_failure", false),
"When this flag is specified, a failed assertion will throw an exception "
"if exceptions are enabled or exit the program with a non-zero code "
"otherwise.");
namespace internal {
// Generates a random number from [0, range), using a Linear
// Congruential Generator (LCG). Crashes if 'range' is 0 or greater
// than kMaxRange.
UInt32 Random::Generate(UInt32 range) {
// These constants are the same as are used in glibc's rand(3).
state_ = (1103515245U*state_ + 12345U) % kMaxRange;
GTEST_CHECK_(range > 0)
<< "Cannot generate a number in the range [0, 0).";
GTEST_CHECK_(range <= kMaxRange)
<< "Generation of a number in [0, " << range << ") was requested, "
<< "but this can only generate numbers in [0, " << kMaxRange << ").";
// Converting via modulus introduces a bit of downward bias, but
// it's simple, and a linear congruential generator isn't too good
// to begin with.
return state_ % range;
}
// GTestIsInitialized() returns true iff the user has initialized
// Google Test. Useful for catching the user mistake of not initializing
// Google Test before calling RUN_ALL_TESTS().
//
// A user must call testing::InitGoogleTest() to initialize Google
// Test. g_init_gtest_count is set to the number of times
// InitGoogleTest() has been called. We don't protect this variable
// under a mutex as it is only accessed in the main thread.
GTEST_API_ int g_init_gtest_count = 0;
static bool GTestIsInitialized() { return g_init_gtest_count != 0; }
// Iterates over a vector of TestCases, keeping a running sum of the
// results of calling a given int-returning method on each.
// Returns the sum.
static int SumOverTestCaseList(const std::vector<TestCase*>& case_list,
int (TestCase::*method)() const) {
int sum = 0;
for (size_t i = 0; i < case_list.size(); i++) {
sum += (case_list[i]->*method)();
}
return sum;
}
// Returns true iff the test case passed.
static bool TestCasePassed(const TestCase* test_case) {
return test_case->should_run() && test_case->Passed();
}
// Returns true iff the test case failed.
static bool TestCaseFailed(const TestCase* test_case) {
return test_case->should_run() && test_case->Failed();
}
// Returns true iff test_case contains at least one test that should
// run.
static bool ShouldRunTestCase(const TestCase* test_case) {
return test_case->should_run();
}
// AssertHelper constructor.
AssertHelper::AssertHelper(TestPartResult::Type type,
const char* file,
int line,
const char* message)
: data_(new AssertHelperData(type, file, line, message)) {
}
AssertHelper::~AssertHelper() {
delete data_;
}
// Message assignment, for assertion streaming support.
void AssertHelper::operator=(const Message& message) const {
UnitTest::GetInstance()->
AddTestPartResult(data_->type, data_->file, data_->line,
AppendUserMessage(data_->message, message),
UnitTest::GetInstance()->impl()
->CurrentOsStackTraceExceptTop(1)
// Skips the stack frame for this function itself.
); // NOLINT
}
// Mutex for linked pointers.
GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_linked_ptr_mutex);
// Application pathname gotten in InitGoogleTest.
std::string g_executable_path;
// Returns the current application's name, removing directory path if that
// is present.
FilePath GetCurrentExecutableName() {
FilePath result;
#if GTEST_OS_WINDOWS
result.Set(FilePath(g_executable_path).RemoveExtension("exe"));
#else
result.Set(FilePath(g_executable_path));
#endif // GTEST_OS_WINDOWS
return result.RemoveDirectoryName();
}
// Functions for processing the gtest_output flag.
// Returns the output format, or "" for normal printed output.
std::string UnitTestOptions::GetOutputFormat() {
const char* const gtest_output_flag = GTEST_FLAG(output).c_str();
if (gtest_output_flag == NULL) return std::string("");
const char* const colon = strchr(gtest_output_flag, ':');
return (colon == NULL) ?
std::string(gtest_output_flag) :
std::string(gtest_output_flag, colon - gtest_output_flag);
}
// Returns the name of the requested output file, or the default if none
// was explicitly specified.
std::string UnitTestOptions::GetAbsolutePathToOutputFile() {
const char* const gtest_output_flag = GTEST_FLAG(output).c_str();
if (gtest_output_flag == NULL)
return "";
const char* const colon = strchr(gtest_output_flag, ':');
if (colon == NULL)
return internal::FilePath::ConcatPaths(
internal::FilePath(
UnitTest::GetInstance()->original_working_dir()),
internal::FilePath(kDefaultOutputFile)).string();
internal::FilePath output_name(colon + 1);
if (!output_name.IsAbsolutePath())
// TODO(wan@google.com): on Windows \some\path is not an absolute
// path (as its meaning depends on the current drive), yet the
// following logic for turning it into an absolute path is wrong.
// Fix it.
output_name = internal::FilePath::ConcatPaths(
internal::FilePath(UnitTest::GetInstance()->original_working_dir()),
internal::FilePath(colon + 1));
if (!output_name.IsDirectory())
return output_name.string();
internal::FilePath result(internal::FilePath::GenerateUniqueFileName(
output_name, internal::GetCurrentExecutableName(),
GetOutputFormat().c_str()));
return result.string();
}
// Returns true iff the wildcard pattern matches the string. The
// first ':' or '\0' character in pattern marks the end of it.
//
// This recursive algorithm isn't very efficient, but is clear and
// works well enough for matching test names, which are short.
bool UnitTestOptions::PatternMatchesString(const char *pattern,
const char *str) {
switch (*pattern) {
case '\0':
case ':': // Either ':' or '\0' marks the end of the pattern.
return *str == '\0';
case '?': // Matches any single character.
return *str != '\0' && PatternMatchesString(pattern + 1, str + 1);
case '*': // Matches any string (possibly empty) of characters.
return (*str != '\0' && PatternMatchesString(pattern, str + 1)) ||
PatternMatchesString(pattern + 1, str);
default: // Non-special character. Matches itself.
return *pattern == *str &&
PatternMatchesString(pattern + 1, str + 1);
}
}
bool UnitTestOptions::MatchesFilter(
const std::string& name, const char* filter) {
const char *cur_pattern = filter;
for (;;) {
if (PatternMatchesString(cur_pattern, name.c_str())) {
return true;
}
// Finds the next pattern in the filter.
cur_pattern = strchr(cur_pattern, ':');
// Returns if no more pattern can be found.
if (cur_pattern == NULL) {
return false;
}
// Skips the pattern separater (the ':' character).
cur_pattern++;
}
}
// Returns true iff the user-specified filter matches the test case
// name and the test name.
bool UnitTestOptions::FilterMatchesTest(const std::string &test_case_name,
const std::string &test_name) {
const std::string& full_name = test_case_name + "." + test_name.c_str();
// Split --gtest_filter at '-', if there is one, to separate into
// positive filter and negative filter portions
const char* const p = GTEST_FLAG(filter).c_str();
const char* const dash = strchr(p, '-');
std::string positive;
std::string negative;
if (dash == NULL) {
positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter
negative = "";
} else {
positive = std::string(p, dash); // Everything up to the dash
negative = std::string(dash + 1); // Everything after the dash
if (positive.empty()) {
// Treat '-test1' as the same as '*-test1'
positive = kUniversalFilter;
}
}
// A filter is a colon-separated list of patterns. It matches a
// test if any pattern in it matches the test.
return (MatchesFilter(full_name, positive.c_str()) &&
!MatchesFilter(full_name, negative.c_str()));
}
#if GTEST_HAS_SEH
// Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the
// given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise.
// This function is useful as an __except condition.
int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) {
// Google Test should handle a SEH exception if:
// 1. the user wants it to, AND
// 2. this is not a breakpoint exception, AND
// 3. this is not a C++ exception (VC++ implements them via SEH,
// apparently).
//
// SEH exception code for C++ exceptions.
// (see http://support.microsoft.com/kb/185294 for more information).
const DWORD kCxxExceptionCode = 0xe06d7363;
bool should_handle = true;
if (!GTEST_FLAG(catch_exceptions))
should_handle = false;
else if (exception_code == EXCEPTION_BREAKPOINT)
should_handle = false;
else if (exception_code == kCxxExceptionCode)
should_handle = false;
return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH;
}
#endif // GTEST_HAS_SEH
} // namespace internal
// The c'tor sets this object as the test part result reporter used by
// Google Test. The 'result' parameter specifies where to report the
// results. Intercepts only failures from the current thread.
ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
TestPartResultArray* result)
: intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD),
result_(result) {
Init();
}
// The c'tor sets this object as the test part result reporter used by
// Google Test. The 'result' parameter specifies where to report the
// results.
ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
InterceptMode intercept_mode, TestPartResultArray* result)
: intercept_mode_(intercept_mode),
result_(result) {
Init();
}
void ScopedFakeTestPartResultReporter::Init() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
old_reporter_ = impl->GetGlobalTestPartResultReporter();
impl->SetGlobalTestPartResultReporter(this);
} else {
old_reporter_ = impl->GetTestPartResultReporterForCurrentThread();
impl->SetTestPartResultReporterForCurrentThread(this);
}
}
// The d'tor restores the test part result reporter used by Google Test
// before.
ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
impl->SetGlobalTestPartResultReporter(old_reporter_);
} else {
impl->SetTestPartResultReporterForCurrentThread(old_reporter_);
}
}
// Increments the test part result count and remembers the result.
// This method is from the TestPartResultReporterInterface interface.
void ScopedFakeTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
result_->Append(result);
}
namespace internal {
// Returns the type ID of ::testing::Test. We should always call this
// instead of GetTypeId< ::testing::Test>() to get the type ID of
// testing::Test. This is to work around a suspected linker bug when
// using Google Test as a framework on Mac OS X. The bug causes
// GetTypeId< ::testing::Test>() to return different values depending
// on whether the call is from the Google Test framework itself or
// from user test code. GetTestTypeId() is guaranteed to always
// return the same value, as it always calls GetTypeId<>() from the
// gtest.cc, which is within the Google Test framework.
TypeId GetTestTypeId() {
return GetTypeId<Test>();
}
// The value of GetTestTypeId() as seen from within the Google Test
// library. This is solely for testing GetTestTypeId().
extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId();
// This predicate-formatter checks that 'results' contains a test part
// failure of the given type and that the failure message contains the
// given substring.
AssertionResult HasOneFailure(const char* /* results_expr */,
const char* /* type_expr */,
const char* /* substr_expr */,
const TestPartResultArray& results,
TestPartResult::Type type,
const string& substr) {
const std::string expected(type == TestPartResult::kFatalFailure ?
"1 fatal failure" :
"1 non-fatal failure");
Message msg;
if (results.size() != 1) {
msg << "Expected: " << expected << "\n"
<< " Actual: " << results.size() << " failures";
for (int i = 0; i < results.size(); i++) {
msg << "\n" << results.GetTestPartResult(i);
}
return AssertionFailure() << msg;
}
const TestPartResult& r = results.GetTestPartResult(0);
if (r.type() != type) {
return AssertionFailure() << "Expected: " << expected << "\n"
<< " Actual:\n"
<< r;
}
if (strstr(r.message(), substr.c_str()) == NULL) {
return AssertionFailure() << "Expected: " << expected << " containing \""
<< substr << "\"\n"
<< " Actual:\n"
<< r;
}
return AssertionSuccess();
}
// The constructor of SingleFailureChecker remembers where to look up
// test part results, what type of failure we expect, and what
// substring the failure message should contain.
SingleFailureChecker:: SingleFailureChecker(
const TestPartResultArray* results,
TestPartResult::Type type,
const string& substr)
: results_(results),
type_(type),
substr_(substr) {}
// The destructor of SingleFailureChecker verifies that the given
// TestPartResultArray contains exactly one failure that has the given
// type and contains the given substring. If that's not the case, a
// non-fatal failure will be generated.
SingleFailureChecker::~SingleFailureChecker() {
EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_);
}
DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter(
UnitTestImpl* unit_test) : unit_test_(unit_test) {}
void DefaultGlobalTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
unit_test_->current_test_result()->AddTestPartResult(result);
unit_test_->listeners()->repeater()->OnTestPartResult(result);
}
DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter(
UnitTestImpl* unit_test) : unit_test_(unit_test) {}
void DefaultPerThreadTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result);
}
// Returns the global test part result reporter.
TestPartResultReporterInterface*
UnitTestImpl::GetGlobalTestPartResultReporter() {
internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
return global_test_part_result_repoter_;
}
// Sets the global test part result reporter.
void UnitTestImpl::SetGlobalTestPartResultReporter(
TestPartResultReporterInterface* reporter) {
internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
global_test_part_result_repoter_ = reporter;
}
// Returns the test part result reporter for the current thread.
TestPartResultReporterInterface*
UnitTestImpl::GetTestPartResultReporterForCurrentThread() {
return per_thread_test_part_result_reporter_.get();
}
// Sets the test part result reporter for the current thread.
void UnitTestImpl::SetTestPartResultReporterForCurrentThread(
TestPartResultReporterInterface* reporter) {
per_thread_test_part_result_reporter_.set(reporter);
}
// Gets the number of successful test cases.
int UnitTestImpl::successful_test_case_count() const {
return CountIf(test_cases_, TestCasePassed);
}
// Gets the number of failed test cases.
int UnitTestImpl::failed_test_case_count() const {
return CountIf(test_cases_, TestCaseFailed);
}
// Gets the number of all test cases.
int UnitTestImpl::total_test_case_count() const {
return static_cast<int>(test_cases_.size());
}
// Gets the number of all test cases that contain at least one test
// that should run.
int UnitTestImpl::test_case_to_run_count() const {
return CountIf(test_cases_, ShouldRunTestCase);
}
// Gets the number of successful tests.
int UnitTestImpl::successful_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::successful_test_count);
}
// Gets the number of failed tests.
int UnitTestImpl::failed_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::failed_test_count);
}
// Gets the number of disabled tests that will be reported in the XML report.
int UnitTestImpl::reportable_disabled_test_count() const {
return SumOverTestCaseList(test_cases_,
&TestCase::reportable_disabled_test_count);
}
// Gets the number of disabled tests.
int UnitTestImpl::disabled_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::disabled_test_count);
}
// Gets the number of tests to be printed in the XML report.
int UnitTestImpl::reportable_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::reportable_test_count);
}
// Gets the number of all tests.
int UnitTestImpl::total_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::total_test_count);
}
// Gets the number of tests that should run.
int UnitTestImpl::test_to_run_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::test_to_run_count);
}
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// CurrentOsStackTraceExceptTop(1), Foo() will be included in the
// trace but Bar() and CurrentOsStackTraceExceptTop() won't.
std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) {
(void)skip_count;
return "";
}
// Returns the current time in milliseconds.
TimeInMillis GetTimeInMillis() {
#if GTEST_OS_WINDOWS_MOBILE || defined(__BORLANDC__)
// Difference between 1970-01-01 and 1601-01-01 in milliseconds.
// http://analogous.blogspot.com/2005/04/epoch.html
const TimeInMillis kJavaEpochToWinFileTimeDelta =
static_cast<TimeInMillis>(116444736UL) * 100000UL;
const DWORD kTenthMicrosInMilliSecond = 10000;
SYSTEMTIME now_systime;
FILETIME now_filetime;
ULARGE_INTEGER now_int64;
// TODO(kenton@google.com): Shouldn't this just use
// GetSystemTimeAsFileTime()?
GetSystemTime(&now_systime);
if (SystemTimeToFileTime(&now_systime, &now_filetime)) {
now_int64.LowPart = now_filetime.dwLowDateTime;
now_int64.HighPart = now_filetime.dwHighDateTime;
now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) -
kJavaEpochToWinFileTimeDelta;
return now_int64.QuadPart;
}
return 0;
#elif GTEST_OS_WINDOWS && !GTEST_HAS_GETTIMEOFDAY_
__timeb64 now;
// MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996
// (deprecated function) there.
// TODO(kenton@google.com): Use GetTickCount()? Or use
// SystemTimeToFileTime()
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996)
_ftime64(&now);
GTEST_DISABLE_MSC_WARNINGS_POP_()
return static_cast<TimeInMillis>(now.time) * 1000 + now.millitm;
#elif GTEST_HAS_GETTIMEOFDAY_
struct timeval now;
gettimeofday(&now, NULL);
return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;
#else
# error "Don't know how to get the current time on your system."
#endif
}
// Utilities
// class String.
#if GTEST_OS_WINDOWS_MOBILE
// Creates a UTF-16 wide string from the given ANSI string, allocating
// memory using new. The caller is responsible for deleting the return
// value using delete[]. Returns the wide string, or NULL if the
// input is NULL.
LPCWSTR String::AnsiToUtf16(const char* ansi) {
if (!ansi) return NULL;
const int length = strlen(ansi);
const int unicode_length =
MultiByteToWideChar(CP_ACP, 0, ansi, length,
NULL, 0);
WCHAR* unicode = new WCHAR[unicode_length + 1];
MultiByteToWideChar(CP_ACP, 0, ansi, length,
unicode, unicode_length);
unicode[unicode_length] = 0;
return unicode;
}
// Creates an ANSI string from the given wide string, allocating
// memory using new. The caller is responsible for deleting the return
// value using delete[]. Returns the ANSI string, or NULL if the
// input is NULL.
const char* String::Utf16ToAnsi(LPCWSTR utf16_str) {
if (!utf16_str) return NULL;
const int ansi_length =
WideCharToMultiByte(CP_ACP, 0, utf16_str, -1,
NULL, 0, NULL, NULL);
char* ansi = new char[ansi_length + 1];
WideCharToMultiByte(CP_ACP, 0, utf16_str, -1,
ansi, ansi_length, NULL, NULL);
ansi[ansi_length] = 0;
return ansi;
}
#endif // GTEST_OS_WINDOWS_MOBILE
// Compares two C strings. Returns true iff they have the same content.
//
// Unlike strcmp(), this function can handle NULL argument(s). A NULL
// C string is considered different to any non-NULL C string,
// including the empty string.
bool String::CStringEquals(const char * lhs, const char * rhs) {
if ( lhs == NULL ) return rhs == NULL;
if ( rhs == NULL ) return false;
return strcmp(lhs, rhs) == 0;
}
#if GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING
// Converts an array of wide chars to a narrow string using the UTF-8
// encoding, and streams the result to the given Message object.
static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length,
Message* msg) {
for (size_t i = 0; i != length; ) { // NOLINT
if (wstr[i] != L'\0') {
*msg << WideStringToUtf8(wstr + i, static_cast<int>(length - i));
while (i != length && wstr[i] != L'\0')
i++;
} else {
*msg << '\0';
i++;
}
}
}
#endif // GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING
} // namespace internal
// Constructs an empty Message.
// We allocate the stringstream separately because otherwise each use of
// ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's
// stack frame leading to huge stack frames in some cases; gcc does not reuse
// the stack space.
Message::Message() : ss_(new ::std::stringstream) {
// By default, we want there to be enough precision when printing
// a double to a Message.
*ss_ << std::setprecision(std::numeric_limits<double>::digits10 + 2);
}
// These two overloads allow streaming a wide C string to a Message
// using the UTF-8 encoding.
Message& Message::operator <<(const wchar_t* wide_c_str) {
return *this << internal::String::ShowWideCString(wide_c_str);
}
Message& Message::operator <<(wchar_t* wide_c_str) {
return *this << internal::String::ShowWideCString(wide_c_str);
}
#if GTEST_HAS_STD_WSTRING
// Converts the given wide string to a narrow string using the UTF-8
// encoding, and streams the result to this Message object.
Message& Message::operator <<(const ::std::wstring& wstr) {
internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this);
return *this;
}
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_WSTRING
// Converts the given wide string to a narrow string using the UTF-8
// encoding, and streams the result to this Message object.
Message& Message::operator <<(const ::wstring& wstr) {
internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this);
return *this;
}
#endif // GTEST_HAS_GLOBAL_WSTRING
// Gets the text streamed to this object so far as an std::string.
// Each '\0' character in the buffer is replaced with "\\0".
std::string Message::GetString() const {
return internal::StringStreamToString(ss_.get());
}
// AssertionResult constructors.
// Used in EXPECT_TRUE/FALSE(assertion_result).
AssertionResult::AssertionResult(const AssertionResult& other)
: success_(other.success_),
message_(other.message_.get() != NULL ?
new ::std::string(*other.message_) :
static_cast< ::std::string*>(NULL)) {
}
// Swaps two AssertionResults.
void AssertionResult::swap(AssertionResult& other) {
using std::swap;
swap(success_, other.success_);
swap(message_, other.message_);
}
// Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE.
AssertionResult AssertionResult::operator!() const {
AssertionResult negation(!success_);
if (message_.get() != NULL)
negation << *message_;
return negation;
}
// Makes a successful assertion result.
AssertionResult AssertionSuccess() {
return AssertionResult(true);
}
// Makes a failed assertion result.
AssertionResult AssertionFailure() {
return AssertionResult(false);
}
// Makes a failed assertion result with the given failure message.
// Deprecated; use AssertionFailure() << message.
AssertionResult AssertionFailure(const Message& message) {
return AssertionFailure() << message;
}
namespace internal {
namespace edit_distance {
std::vector<EditType> CalculateOptimalEdits(const std::vector<size_t>& left,
const std::vector<size_t>& right) {
std::vector<std::vector<double> > costs(
left.size() + 1, std::vector<double>(right.size() + 1));
std::vector<std::vector<EditType> > best_move(
left.size() + 1, std::vector<EditType>(right.size() + 1));
// Populate for empty right.
for (size_t l_i = 0; l_i < costs.size(); ++l_i) {
costs[l_i][0] = static_cast<double>(l_i);
best_move[l_i][0] = kRemove;
}
// Populate for empty left.
for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) {
costs[0][r_i] = static_cast<double>(r_i);
best_move[0][r_i] = kAdd;
}
for (size_t l_i = 0; l_i < left.size(); ++l_i) {
for (size_t r_i = 0; r_i < right.size(); ++r_i) {
if (left[l_i] == right[r_i]) {
// Found a match. Consume it.
costs[l_i + 1][r_i + 1] = costs[l_i][r_i];
best_move[l_i + 1][r_i + 1] = kMatch;
continue;
}
const double add = costs[l_i + 1][r_i];
const double remove = costs[l_i][r_i + 1];
const double replace = costs[l_i][r_i];
if (add < remove && add < replace) {
costs[l_i + 1][r_i + 1] = add + 1;
best_move[l_i + 1][r_i + 1] = kAdd;
} else if (remove < add && remove < replace) {
costs[l_i + 1][r_i + 1] = remove + 1;
best_move[l_i + 1][r_i + 1] = kRemove;
} else {
// We make replace a little more expensive than add/remove to lower
// their priority.
costs[l_i + 1][r_i + 1] = replace + 1.00001;
best_move[l_i + 1][r_i + 1] = kReplace;
}
}
}
// Reconstruct the best path. We do it in reverse order.
std::vector<EditType> best_path;
for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) {
EditType move = best_move[l_i][r_i];
best_path.push_back(move);
l_i -= move != kAdd;
r_i -= move != kRemove;
}
std::reverse(best_path.begin(), best_path.end());
return best_path;
}
namespace {
// Helper class to convert string into ids with deduplication.
class InternalStrings {
public:
size_t GetId(const std::string& str) {
IdMap::iterator it = ids_.find(str);
if (it != ids_.end()) return it->second;
size_t id = ids_.size();
return ids_[str] = id;
}
private:
typedef std::map<std::string, size_t> IdMap;
IdMap ids_;
};
} // namespace
std::vector<EditType> CalculateOptimalEdits(
const std::vector<std::string>& left,
const std::vector<std::string>& right) {
std::vector<size_t> left_ids, right_ids;
{
InternalStrings intern_table;
for (size_t i = 0; i < left.size(); ++i) {
left_ids.push_back(intern_table.GetId(left[i]));
}
for (size_t i = 0; i < right.size(); ++i) {
right_ids.push_back(intern_table.GetId(right[i]));
}
}
return CalculateOptimalEdits(left_ids, right_ids);
}
namespace {
// Helper class that holds the state for one hunk and prints it out to the
// stream.
// It reorders adds/removes when possible to group all removes before all
// adds. It also adds the hunk header before printint into the stream.
class Hunk {
public:
Hunk(size_t left_start, size_t right_start)
: left_start_(left_start),
right_start_(right_start),
adds_(),
removes_(),
common_() {}
void PushLine(char edit, const char* line) {
switch (edit) {
case ' ':
++common_;
FlushEdits();
hunk_.push_back(std::make_pair(' ', line));
break;
case '-':
++removes_;
hunk_removes_.push_back(std::make_pair('-', line));
break;
case '+':
++adds_;
hunk_adds_.push_back(std::make_pair('+', line));
break;
}
}
void PrintTo(std::ostream* os) {
PrintHeader(os);
FlushEdits();
for (std::list<std::pair<char, const char*> >::const_iterator it =
hunk_.begin();
it != hunk_.end(); ++it) {
*os << it->first << it->second << "\n";
}
}
bool has_edits() const { return adds_ || removes_; }
private:
void FlushEdits() {
hunk_.splice(hunk_.end(), hunk_removes_);
hunk_.splice(hunk_.end(), hunk_adds_);
}
// Print a unified diff header for one hunk.
// The format is
// "@@ -<left_start>,<left_length> +<right_start>,<right_length> @@"
// where the left/right parts are omitted if unnecessary.
void PrintHeader(std::ostream* ss) const {
*ss << "@@ ";
if (removes_) {
*ss << "-" << left_start_ << "," << (removes_ + common_);
}
if (removes_ && adds_) {
*ss << " ";
}
if (adds_) {
*ss << "+" << right_start_ << "," << (adds_ + common_);
}
*ss << " @@\n";
}
size_t left_start_, right_start_;
size_t adds_, removes_, common_;
std::list<std::pair<char, const char*> > hunk_, hunk_adds_, hunk_removes_;
};
} // namespace
// Create a list of diff hunks in Unified diff format.
// Each hunk has a header generated by PrintHeader above plus a body with
// lines prefixed with ' ' for no change, '-' for deletion and '+' for
// addition.
// 'context' represents the desired unchanged prefix/suffix around the diff.
// If two hunks are close enough that their contexts overlap, then they are
// joined into one hunk.
std::string CreateUnifiedDiff(const std::vector<std::string>& left,
const std::vector<std::string>& right,
size_t context) {
const std::vector<EditType> edits = CalculateOptimalEdits(left, right);
size_t l_i = 0, r_i = 0, edit_i = 0;
std::stringstream ss;
while (edit_i < edits.size()) {
// Find first edit.
while (edit_i < edits.size() && edits[edit_i] == kMatch) {
++l_i;
++r_i;
++edit_i;
}
// Find the first line to include in the hunk.
const size_t prefix_context = std::min(l_i, context);
Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1);
for (size_t i = prefix_context; i > 0; --i) {
hunk.PushLine(' ', left[l_i - i].c_str());
}
// Iterate the edits until we found enough suffix for the hunk or the input
// is over.
size_t n_suffix = 0;
for (; edit_i < edits.size(); ++edit_i) {
if (n_suffix >= context) {
// Continue only if the next hunk is very close.
std::vector<EditType>::const_iterator it = edits.begin() + edit_i;
while (it != edits.end() && *it == kMatch) ++it;
if (it == edits.end() || (it - edits.begin()) - edit_i >= context) {
// There is no next edit or it is too far away.
break;
}
}
EditType edit = edits[edit_i];
// Reset count when a non match is found.
n_suffix = edit == kMatch ? n_suffix + 1 : 0;
if (edit == kMatch || edit == kRemove || edit == kReplace) {
hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str());
}
if (edit == kAdd || edit == kReplace) {
hunk.PushLine('+', right[r_i].c_str());
}
// Advance indices, depending on edit type.
l_i += edit != kAdd;
r_i += edit != kRemove;
}
if (!hunk.has_edits()) {
// We are done. We don't want this hunk.
break;
}
hunk.PrintTo(&ss);
}
return ss.str();
}
} // namespace edit_distance
namespace {
// The string representation of the values received in EqFailure() are already
// escaped. Split them on escaped '\n' boundaries. Leave all other escaped
// characters the same.
std::vector<std::string> SplitEscapedString(const std::string& str) {
std::vector<std::string> lines;
size_t start = 0, end = str.size();
if (end > 2 && str[0] == '"' && str[end - 1] == '"') {
++start;
--end;
}
bool escaped = false;
for (size_t i = start; i + 1 < end; ++i) {
if (escaped) {
escaped = false;
if (str[i] == 'n') {
lines.push_back(str.substr(start, i - start - 1));
start = i + 1;
}
} else {
escaped = str[i] == '\\';
}
}
lines.push_back(str.substr(start, end - start));
return lines;
}
} // namespace
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//
// The first four parameters are the expressions used in the assertion
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
// where foo is 5 and bar is 6, we have:
//
// expected_expression: "foo"
// actual_expression: "bar"
// expected_value: "5"
// actual_value: "6"
//
// The ignoring_case parameter is true iff the assertion is a
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
// be inserted into the message.
AssertionResult EqFailure(const char* expected_expression,
const char* actual_expression,
const std::string& expected_value,
const std::string& actual_value,
bool ignoring_case) {
Message msg;
msg << "Value of: " << actual_expression;
if (actual_value != actual_expression) {
msg << "\n Actual: " << actual_value;
}
msg << "\nExpected: " << expected_expression;
if (ignoring_case) {
msg << " (ignoring case)";
}
if (expected_value != expected_expression) {
msg << "\nWhich is: " << expected_value;
}
if (!expected_value.empty() && !actual_value.empty()) {
const std::vector<std::string> expected_lines =
SplitEscapedString(expected_value);
const std::vector<std::string> actual_lines =
SplitEscapedString(actual_value);
if (expected_lines.size() > 1 || actual_lines.size() > 1) {
msg << "\nWith diff:\n"
<< edit_distance::CreateUnifiedDiff(expected_lines, actual_lines);
}
}
return AssertionFailure() << msg;
}
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
std::string GetBoolAssertionFailureMessage(
const AssertionResult& assertion_result,
const char* expression_text,
const char* actual_predicate_value,
const char* expected_predicate_value) {
const char* actual_message = assertion_result.message();
Message msg;
msg << "Value of: " << expression_text
<< "\n Actual: " << actual_predicate_value;
if (actual_message[0] != '\0')
msg << " (" << actual_message << ")";
msg << "\nExpected: " << expected_predicate_value;
return msg.GetString();
}
// Helper function for implementing ASSERT_NEAR.
AssertionResult DoubleNearPredFormat(const char* expr1,
const char* expr2,
const char* abs_error_expr,
double val1,
double val2,
double abs_error) {
const double diff = fabs(val1 - val2);
if (diff <= abs_error) return AssertionSuccess();
// TODO(wan): do not print the value of an expression if it's
// already a literal.
return AssertionFailure()
<< "The difference between " << expr1 << " and " << expr2
<< " is " << diff << ", which exceeds " << abs_error_expr << ", where\n"
<< expr1 << " evaluates to " << val1 << ",\n"
<< expr2 << " evaluates to " << val2 << ", and\n"
<< abs_error_expr << " evaluates to " << abs_error << ".";
}
// Helper template for implementing FloatLE() and DoubleLE().
template <typename RawType>
AssertionResult FloatingPointLE(const char* expr1,
const char* expr2,
RawType val1,
RawType val2) {
// Returns success if val1 is less than val2,
if (val1 < val2) {
return AssertionSuccess();
}
// or if val1 is almost equal to val2.
const FloatingPoint<RawType> lhs(val1), rhs(val2);
if (lhs.AlmostEquals(rhs)) {
return AssertionSuccess();
}
// Note that the above two checks will both fail if either val1 or
// val2 is NaN, as the IEEE floating-point standard requires that
// any predicate involving a NaN must return false.
::std::stringstream val1_ss;
val1_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
<< val1;
::std::stringstream val2_ss;
val2_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
<< val2;
return AssertionFailure()
<< "Expected: (" << expr1 << ") <= (" << expr2 << ")\n"
<< " Actual: " << StringStreamToString(&val1_ss) << " vs "
<< StringStreamToString(&val2_ss);
}
} // namespace internal
// Asserts that val1 is less than, or almost equal to, val2. Fails
// otherwise. In particular, it fails if either val1 or val2 is NaN.
AssertionResult FloatLE(const char* expr1, const char* expr2,
float val1, float val2) {
return internal::FloatingPointLE<float>(expr1, expr2, val1, val2);
}
// Asserts that val1 is less than, or almost equal to, val2. Fails
// otherwise. In particular, it fails if either val1 or val2 is NaN.
AssertionResult DoubleLE(const char* expr1, const char* expr2,
double val1, double val2) {
return internal::FloatingPointLE<double>(expr1, expr2, val1, val2);
}
namespace internal {
// The helper function for {ASSERT|EXPECT}_EQ with int or enum
// arguments.
AssertionResult CmpHelperEQ(const char* expected_expression,
const char* actual_expression,
BiggestInt expected,
BiggestInt actual) {
if (expected == actual) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
FormatForComparisonFailureMessage(expected, actual),
FormatForComparisonFailureMessage(actual, expected),
false);
}
// A macro for implementing the helper functions needed to implement
// ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here
// just to avoid copy-and-paste of similar code.
#define GTEST_IMPL_CMP_HELPER_(op_name, op)\
AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \
BiggestInt val1, BiggestInt val2) {\
if (val1 op val2) {\
return AssertionSuccess();\
} else {\
return AssertionFailure() \
<< "Expected: (" << expr1 << ") " #op " (" << expr2\
<< "), actual: " << FormatForComparisonFailureMessage(val1, val2)\
<< " vs " << FormatForComparisonFailureMessage(val2, val1);\
}\
}
// Implements the helper function for {ASSERT|EXPECT}_NE with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(NE, !=)
// Implements the helper function for {ASSERT|EXPECT}_LE with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(LE, <=)
// Implements the helper function for {ASSERT|EXPECT}_LT with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(LT, < )
// Implements the helper function for {ASSERT|EXPECT}_GE with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(GE, >=)
// Implements the helper function for {ASSERT|EXPECT}_GT with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(GT, > )
#undef GTEST_IMPL_CMP_HELPER_
// The helper function for {ASSERT|EXPECT}_STREQ.
AssertionResult CmpHelperSTREQ(const char* expected_expression,
const char* actual_expression,
const char* expected,
const char* actual) {
if (String::CStringEquals(expected, actual)) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
PrintToString(expected),
PrintToString(actual),
false);
}
// The helper function for {ASSERT|EXPECT}_STRCASEEQ.
AssertionResult CmpHelperSTRCASEEQ(const char* expected_expression,
const char* actual_expression,
const char* expected,
const char* actual) {
if (String::CaseInsensitiveCStringEquals(expected, actual)) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
PrintToString(expected),
PrintToString(actual),
true);
}
// The helper function for {ASSERT|EXPECT}_STRNE.
AssertionResult CmpHelperSTRNE(const char* s1_expression,
const char* s2_expression,
const char* s1,
const char* s2) {
if (!String::CStringEquals(s1, s2)) {
return AssertionSuccess();
} else {
return AssertionFailure() << "Expected: (" << s1_expression << ") != ("
<< s2_expression << "), actual: \""
<< s1 << "\" vs \"" << s2 << "\"";
}
}
// The helper function for {ASSERT|EXPECT}_STRCASENE.
AssertionResult CmpHelperSTRCASENE(const char* s1_expression,
const char* s2_expression,
const char* s1,
const char* s2) {
if (!String::CaseInsensitiveCStringEquals(s1, s2)) {
return AssertionSuccess();
} else {
return AssertionFailure()
<< "Expected: (" << s1_expression << ") != ("
<< s2_expression << ") (ignoring case), actual: \""
<< s1 << "\" vs \"" << s2 << "\"";
}
}
} // namespace internal
namespace {
// Helper functions for implementing IsSubString() and IsNotSubstring().
// This group of overloaded functions return true iff needle is a
// substring of haystack. NULL is considered a substring of itself
// only.
bool IsSubstringPred(const char* needle, const char* haystack) {
if (needle == NULL || haystack == NULL)
return needle == haystack;
return strstr(haystack, needle) != NULL;
}
bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) {
if (needle == NULL || haystack == NULL)
return needle == haystack;
return wcsstr(haystack, needle) != NULL;
}
// StringType here can be either ::std::string or ::std::wstring.
template <typename StringType>
bool IsSubstringPred(const StringType& needle,
const StringType& haystack) {
return haystack.find(needle) != StringType::npos;
}
// This function implements either IsSubstring() or IsNotSubstring(),
// depending on the value of the expected_to_be_substring parameter.
// StringType here can be const char*, const wchar_t*, ::std::string,
// or ::std::wstring.
template <typename StringType>
AssertionResult IsSubstringImpl(
bool expected_to_be_substring,
const char* needle_expr, const char* haystack_expr,
const StringType& needle, const StringType& haystack) {
if (IsSubstringPred(needle, haystack) == expected_to_be_substring)
return AssertionSuccess();
const bool is_wide_string = sizeof(needle[0]) > 1;
const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
return AssertionFailure()
<< "Value of: " << needle_expr << "\n"
<< " Actual: " << begin_string_quote << needle << "\"\n"
<< "Expected: " << (expected_to_be_substring ? "" : "not ")
<< "a substring of " << haystack_expr << "\n"
<< "Which is: " << begin_string_quote << haystack << "\"";
}
} // namespace
// IsSubstring() and IsNotSubstring() check whether needle is a
// substring of haystack (NULL is considered a substring of itself
// only), and return an appropriate error message when they fail.
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const char* needle, const char* haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const wchar_t* needle, const wchar_t* haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const char* needle, const char* haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const wchar_t* needle, const wchar_t* haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::string& needle, const ::std::string& haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::string& needle, const ::std::string& haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
#if GTEST_HAS_STD_WSTRING
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::wstring& needle, const ::std::wstring& haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::wstring& needle, const ::std::wstring& haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
#endif // GTEST_HAS_STD_WSTRING
namespace internal {
#if GTEST_OS_WINDOWS
namespace {
// Helper function for IsHRESULT{SuccessFailure} predicates
AssertionResult HRESULTFailureHelper(const char* expr,
const char* expected,
long hr) { // NOLINT
# if GTEST_OS_WINDOWS_MOBILE
// Windows CE doesn't support FormatMessage.
const char error_text[] = "";
# else
// Looks up the human-readable system message for the HRESULT code
// and since we're not passing any params to FormatMessage, we don't
// want inserts expanded.
const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS;
const DWORD kBufSize = 4096;
// Gets the system's human readable message string for this HRESULT.
char error_text[kBufSize] = { '\0' };
DWORD message_length = ::FormatMessageA(kFlags,
0, // no source, we're asking system
hr, // the error
0, // no line width restrictions
error_text, // output buffer
kBufSize, // buf size
NULL); // no arguments for inserts
// Trims tailing white space (FormatMessage leaves a trailing CR-LF)
for (; message_length && IsSpace(error_text[message_length - 1]);
--message_length) {
error_text[message_length - 1] = '\0';
}
# endif // GTEST_OS_WINDOWS_MOBILE
const std::string error_hex("0x" + String::FormatHexInt(hr));
return ::testing::AssertionFailure()
<< "Expected: " << expr << " " << expected << ".\n"
<< " Actual: " << error_hex << " " << error_text << "\n";
}
} // namespace
AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT
if (SUCCEEDED(hr)) {
return AssertionSuccess();
}
return HRESULTFailureHelper(expr, "succeeds", hr);
}
AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT
if (FAILED(hr)) {
return AssertionSuccess();
}
return HRESULTFailureHelper(expr, "fails", hr);
}
#endif // GTEST_OS_WINDOWS
// Utility functions for encoding Unicode text (wide strings) in
// UTF-8.
// A Unicode code-point can have upto 21 bits, and is encoded in UTF-8
// like this:
//
// Code-point length Encoding
// 0 - 7 bits 0xxxxxxx
// 8 - 11 bits 110xxxxx 10xxxxxx
// 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx
// 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// The maximum code-point a one-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint1 = (static_cast<UInt32>(1) << 7) - 1;
// The maximum code-point a two-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint2 = (static_cast<UInt32>(1) << (5 + 6)) - 1;
// The maximum code-point a three-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint3 = (static_cast<UInt32>(1) << (4 + 2*6)) - 1;
// The maximum code-point a four-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint4 = (static_cast<UInt32>(1) << (3 + 3*6)) - 1;
// Chops off the n lowest bits from a bit pattern. Returns the n
// lowest bits. As a side effect, the original bit pattern will be
// shifted to the right by n bits.
inline UInt32 ChopLowBits(UInt32* bits, int n) {
const UInt32 low_bits = *bits & ((static_cast<UInt32>(1) << n) - 1);
*bits >>= n;
return low_bits;
}
// Converts a Unicode code point to a narrow string in UTF-8 encoding.
// code_point parameter is of type UInt32 because wchar_t may not be
// wide enough to contain a code point.
// If the code_point is not a valid Unicode code point
// (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted
// to "(Invalid Unicode 0xXXXXXXXX)".
std::string CodePointToUtf8(UInt32 code_point) {
if (code_point > kMaxCodePoint4) {
return "(Invalid Unicode 0x" + String::FormatHexInt(code_point) + ")";
}
char str[5]; // Big enough for the largest valid code point.
if (code_point <= kMaxCodePoint1) {
str[1] = '\0';
str[0] = static_cast<char>(code_point); // 0xxxxxxx
} else if (code_point <= kMaxCodePoint2) {
str[2] = '\0';
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xC0 | code_point); // 110xxxxx
} else if (code_point <= kMaxCodePoint3) {
str[3] = '\0';
str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xE0 | code_point); // 1110xxxx
} else { // code_point <= kMaxCodePoint4
str[4] = '\0';
str[3] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xF0 | code_point); // 11110xxx
}
return str;
}
// The following two functions only make sense if the the system
// uses UTF-16 for wide string encoding. All supported systems
// with 16 bit wchar_t (Windows, Cygwin, Symbian OS) do use UTF-16.
// Determines if the arguments constitute UTF-16 surrogate pair
// and thus should be combined into a single Unicode code point
// using CreateCodePointFromUtf16SurrogatePair.
inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) {
return sizeof(wchar_t) == 2 &&
(first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00;
}
// Creates a Unicode code point from UTF16 surrogate pair.
inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first,
wchar_t second) {
const UInt32 mask = (1 << 10) - 1;
return (sizeof(wchar_t) == 2) ?
(((first & mask) << 10) | (second & mask)) + 0x10000 :
// This function should not be called when the condition is
// false, but we provide a sensible default in case it is.
static_cast<UInt32>(first);
}
// Converts a wide string to a narrow string in UTF-8 encoding.
// The wide string is assumed to have the following encoding:
// UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS)
// UTF-32 if sizeof(wchar_t) == 4 (on Linux)
// Parameter str points to a null-terminated wide string.
// Parameter num_chars may additionally limit the number
// of wchar_t characters processed. -1 is used when the entire string
// should be processed.
// If the string contains code points that are not valid Unicode code points
// (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output
// as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding
// and contains invalid UTF-16 surrogate pairs, values in those pairs
// will be encoded as individual Unicode characters from Basic Normal Plane.
std::string WideStringToUtf8(const wchar_t* str, int num_chars) {
if (num_chars == -1)
num_chars = static_cast<int>(wcslen(str));
::std::stringstream stream;
for (int i = 0; i < num_chars; ++i) {
UInt32 unicode_code_point;
if (str[i] == L'\0') {
break;
} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i],
str[i + 1]);
i++;
} else {
unicode_code_point = static_cast<UInt32>(str[i]);
}
stream << CodePointToUtf8(unicode_code_point);
}
return StringStreamToString(&stream);
}
// Converts a wide C string to an std::string using the UTF-8 encoding.
// NULL will be converted to "(null)".
std::string String::ShowWideCString(const wchar_t * wide_c_str) {
if (wide_c_str == NULL) return "(null)";
return internal::WideStringToUtf8(wide_c_str, -1);
}
// Compares two wide C strings. Returns true iff they have the same
// content.
//
// Unlike wcscmp(), this function can handle NULL argument(s). A NULL
// C string is considered different to any non-NULL C string,
// including the empty string.
bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) {
if (lhs == NULL) return rhs == NULL;
if (rhs == NULL) return false;
return wcscmp(lhs, rhs) == 0;
}
// Helper function for *_STREQ on wide strings.
AssertionResult CmpHelperSTREQ(const char* expected_expression,
const char* actual_expression,
const wchar_t* expected,
const wchar_t* actual) {
if (String::WideCStringEquals(expected, actual)) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
PrintToString(expected),
PrintToString(actual),
false);
}
// Helper function for *_STRNE on wide strings.
AssertionResult CmpHelperSTRNE(const char* s1_expression,
const char* s2_expression,
const wchar_t* s1,
const wchar_t* s2) {
if (!String::WideCStringEquals(s1, s2)) {
return AssertionSuccess();
}
return AssertionFailure() << "Expected: (" << s1_expression << ") != ("
<< s2_expression << "), actual: "
<< PrintToString(s1)
<< " vs " << PrintToString(s2);
}
// Compares two C strings, ignoring case. Returns true iff they have
// the same content.
//
// Unlike strcasecmp(), this function can handle NULL argument(s). A
// NULL C string is considered different to any non-NULL C string,
// including the empty string.
bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) {
if (lhs == NULL)
return rhs == NULL;
if (rhs == NULL)
return false;
return posix::StrCaseCmp(lhs, rhs) == 0;
}
// Compares two wide C strings, ignoring case. Returns true iff they
// have the same content.
//
// Unlike wcscasecmp(), this function can handle NULL argument(s).
// A NULL C string is considered different to any non-NULL wide C string,
// including the empty string.
// NB: The implementations on different platforms slightly differ.
// On windows, this method uses _wcsicmp which compares according to LC_CTYPE
// environment variable. On GNU platform this method uses wcscasecmp
// which compares according to LC_CTYPE category of the current locale.
// On MacOS X, it uses towlower, which also uses LC_CTYPE category of the
// current locale.
bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs,
const wchar_t* rhs) {
if (lhs == NULL) return rhs == NULL;
if (rhs == NULL) return false;
#if GTEST_OS_WINDOWS
return _wcsicmp(lhs, rhs) == 0;
#elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID
return wcscasecmp(lhs, rhs) == 0;
#else
// Android, Mac OS X and Cygwin don't define wcscasecmp.
// Other unknown OSes may not define it either.
wint_t left, right;
do {
left = towlower(*lhs++);
right = towlower(*rhs++);
} while (left && left == right);
return left == right;
#endif // OS selector
}
// Returns true iff str ends with the given suffix, ignoring case.
// Any string is considered to end with an empty suffix.
bool String::EndsWithCaseInsensitive(
const std::string& str, const std::string& suffix) {
const size_t str_len = str.length();
const size_t suffix_len = suffix.length();
return (str_len >= suffix_len) &&
CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len,
suffix.c_str());
}
// Formats an int value as "%02d".
std::string String::FormatIntWidth2(int value) {
std::stringstream ss;
ss << std::setfill('0') << std::setw(2) << value;
return ss.str();
}
// Formats an int value as "%X".
std::string String::FormatHexInt(int value) {
std::stringstream ss;
ss << std::hex << std::uppercase << value;
return ss.str();
}
// Formats a byte as "%02X".
std::string String::FormatByte(unsigned char value) {
std::stringstream ss;
ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase
<< static_cast<unsigned int>(value);
return ss.str();
}
// Converts the buffer in a stringstream to an std::string, converting NUL
// bytes to "\\0" along the way.
std::string StringStreamToString(::std::stringstream* ss) {
const ::std::string& str = ss->str();
const char* const start = str.c_str();
const char* const end = start + str.length();
std::string result;
result.reserve(2 * (end - start));
for (const char* ch = start; ch != end; ++ch) {
if (*ch == '\0') {
result += "\\0"; // Replaces NUL with "\\0";
} else {
result += *ch;
}
}
return result;
}
// Appends the user-supplied message to the Google-Test-generated message.
std::string AppendUserMessage(const std::string& gtest_msg,
const Message& user_msg) {
// Appends the user message if it's non-empty.
const std::string user_msg_string = user_msg.GetString();
if (user_msg_string.empty()) {
return gtest_msg;
}
return gtest_msg + "\n" + user_msg_string;
}
} // namespace internal
// class TestResult
// Creates an empty TestResult.
TestResult::TestResult()
: death_test_count_(0),
elapsed_time_(0) {
}
// D'tor.
TestResult::~TestResult() {
}
// Returns the i-th test part result among all the results. i can
// range from 0 to total_part_count() - 1. If i is not in that range,
// aborts the program.
const TestPartResult& TestResult::GetTestPartResult(int i) const {
if (i < 0 || i >= total_part_count())
internal::posix::Abort();
return test_part_results_.at(i);
}
// Returns the i-th test property. i can range from 0 to
// test_property_count() - 1. If i is not in that range, aborts the
// program.
const TestProperty& TestResult::GetTestProperty(int i) const {
if (i < 0 || i >= test_property_count())
internal::posix::Abort();
return test_properties_.at(i);
}
// Clears the test part results.
void TestResult::ClearTestPartResults() {
test_part_results_.clear();
}
// Adds a test part result to the list.
void TestResult::AddTestPartResult(const TestPartResult& test_part_result) {
test_part_results_.push_back(test_part_result);
}
// Adds a test property to the list. If a property with the same key as the
// supplied property is already represented, the value of this test_property
// replaces the old value for that key.
void TestResult::RecordProperty(const std::string& xml_element,
const TestProperty& test_property) {
if (!ValidateTestProperty(xml_element, test_property)) {
return;
}
internal::MutexLock lock(&test_properites_mutex_);
const std::vector<TestProperty>::iterator property_with_matching_key =
std::find_if(test_properties_.begin(), test_properties_.end(),
internal::TestPropertyKeyIs(test_property.key()));
if (property_with_matching_key == test_properties_.end()) {
test_properties_.push_back(test_property);
return;
}
property_with_matching_key->SetValue(test_property.value());
}
// The list of reserved attributes used in the <testsuites> element of XML
// output.
static const char* const kReservedTestSuitesAttributes[] = {
"disabled",
"errors",
"failures",
"name",
"random_seed",
"tests",
"time",
"timestamp"
};
// The list of reserved attributes used in the <testsuite> element of XML
// output.
static const char* const kReservedTestSuiteAttributes[] = {
"disabled",
"errors",
"failures",
"name",
"tests",
"time"
};
// The list of reserved attributes used in the <testcase> element of XML output.
static const char* const kReservedTestCaseAttributes[] = {
"classname",
"name",
"status",
"time",
"type_param",
"value_param"
};
template <int kSize>
std::vector<std::string> ArrayAsVector(const char* const (&array)[kSize]) {
return std::vector<std::string>(array, array + kSize);
}
static std::vector<std::string> GetReservedAttributesForElement(
const std::string& xml_element) {
if (xml_element == "testsuites") {
return ArrayAsVector(kReservedTestSuitesAttributes);
} else if (xml_element == "testsuite") {
return ArrayAsVector(kReservedTestSuiteAttributes);
} else if (xml_element == "testcase") {
return ArrayAsVector(kReservedTestCaseAttributes);
} else {
GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element;
}
// This code is unreachable but some compilers may not realizes that.
return std::vector<std::string>();
}
static std::string FormatWordList(const std::vector<std::string>& words) {
Message word_list;
for (size_t i = 0; i < words.size(); ++i) {
if (i > 0 && words.size() > 2) {
word_list << ", ";
}
if (i == words.size() - 1) {
word_list << "and ";
}
word_list << "'" << words[i] << "'";
}
return word_list.GetString();
}
bool ValidateTestPropertyName(const std::string& property_name,
const std::vector<std::string>& reserved_names) {
if (std::find(reserved_names.begin(), reserved_names.end(), property_name) !=
reserved_names.end()) {
ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name
<< " (" << FormatWordList(reserved_names)
<< " are reserved by " << GTEST_NAME_ << ")";
return false;
}
return true;
}
// Adds a failure if the key is a reserved attribute of the element named
// xml_element. Returns true if the property is valid.
bool TestResult::ValidateTestProperty(const std::string& xml_element,
const TestProperty& test_property) {
return ValidateTestPropertyName(test_property.key(),
GetReservedAttributesForElement(xml_element));
}
// Clears the object.
void TestResult::Clear() {
test_part_results_.clear();
test_properties_.clear();
death_test_count_ = 0;
elapsed_time_ = 0;
}
// Returns true iff the test failed.
bool TestResult::Failed() const {
for (int i = 0; i < total_part_count(); ++i) {
if (GetTestPartResult(i).failed())
return true;
}
return false;
}
// Returns true iff the test part fatally failed.
static bool TestPartFatallyFailed(const TestPartResult& result) {
return result.fatally_failed();
}
// Returns true iff the test fatally failed.
bool TestResult::HasFatalFailure() const {
return CountIf(test_part_results_, TestPartFatallyFailed) > 0;
}
// Returns true iff the test part non-fatally failed.
static bool TestPartNonfatallyFailed(const TestPartResult& result) {
return result.nonfatally_failed();
}
// Returns true iff the test has a non-fatal failure.
bool TestResult::HasNonfatalFailure() const {
return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0;
}
// Gets the number of all test parts. This is the sum of the number
// of successful test parts and the number of failed test parts.
int TestResult::total_part_count() const {
return static_cast<int>(test_part_results_.size());
}
// Returns the number of the test properties.
int TestResult::test_property_count() const {
return static_cast<int>(test_properties_.size());
}
// class Test
// Creates a Test object.
// The c'tor saves the values of all Google Test flags.
Test::Test()
: gtest_flag_saver_(new internal::GTestFlagSaver) {
}
// The d'tor restores the values of all Google Test flags.
Test::~Test() {
delete gtest_flag_saver_;
}
// Sets up the test fixture.
//
// A sub-class may override this.
void Test::SetUp() {
}
// Tears down the test fixture.
//
// A sub-class may override this.
void Test::TearDown() {
}
// Allows user supplied key value pairs to be recorded for later output.
void Test::RecordProperty(const std::string& key, const std::string& value) {
UnitTest::GetInstance()->RecordProperty(key, value);
}
// Allows user supplied key value pairs to be recorded for later output.
void Test::RecordProperty(const std::string& key, int value) {
Message value_message;
value_message << value;
RecordProperty(key, value_message.GetString().c_str());
}
namespace internal {
void ReportFailureInUnknownLocation(TestPartResult::Type result_type,
const std::string& message) {
// This function is a friend of UnitTest and as such has access to
// AddTestPartResult.
UnitTest::GetInstance()->AddTestPartResult(
result_type,
NULL, // No info about the source file where the exception occurred.
-1, // We have no info on which line caused the exception.
message,
""); // No stack trace, either.
}
} // namespace internal
// Google Test requires all tests in the same test case to use the same test
// fixture class. This function checks if the current test has the
// same fixture class as the first test in the current test case. If
// yes, it returns true; otherwise it generates a Google Test failure and
// returns false.
bool Test::HasSameFixtureClass() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
const TestCase* const test_case = impl->current_test_case();
// Info about the first test in the current test case.
const TestInfo* const first_test_info = test_case->test_info_list()[0];
const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_;
const char* const first_test_name = first_test_info->name();
// Info about the current test.
const TestInfo* const this_test_info = impl->current_test_info();
const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_;
const char* const this_test_name = this_test_info->name();
if (this_fixture_id != first_fixture_id) {
// Is the first test defined using TEST?
const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId();
// Is this test defined using TEST?
const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId();
if (first_is_TEST || this_is_TEST) {
// Both TEST and TEST_F appear in same test case, which is incorrect.
// Tell the user how to fix this.
// Gets the name of the TEST and the name of the TEST_F. Note
// that first_is_TEST and this_is_TEST cannot both be true, as
// the fixture IDs are different for the two tests.
const char* const TEST_name =
first_is_TEST ? first_test_name : this_test_name;
const char* const TEST_F_name =
first_is_TEST ? this_test_name : first_test_name;
ADD_FAILURE()
<< "All tests in the same test case must use the same test fixture\n"
<< "class, so mixing TEST_F and TEST in the same test case is\n"
<< "illegal. In test case " << this_test_info->test_case_name()
<< ",\n"
<< "test " << TEST_F_name << " is defined using TEST_F but\n"
<< "test " << TEST_name << " is defined using TEST. You probably\n"
<< "want to change the TEST to TEST_F or move it to another test\n"
<< "case.";
} else {
// Two fixture classes with the same name appear in two different
// namespaces, which is not allowed. Tell the user how to fix this.
ADD_FAILURE()
<< "All tests in the same test case must use the same test fixture\n"
<< "class. However, in test case "
<< this_test_info->test_case_name() << ",\n"
<< "you defined test " << first_test_name
<< " and test " << this_test_name << "\n"
<< "using two different test fixture classes. This can happen if\n"
<< "the two classes are from different namespaces or translation\n"
<< "units and have the same name. You should probably rename one\n"
<< "of the classes to put the tests into different test cases.";
}
return false;
}
return true;
}
#if GTEST_HAS_SEH
// Adds an "exception thrown" fatal failure to the current test. This
// function returns its result via an output parameter pointer because VC++
// prohibits creation of objects with destructors on stack in functions
// using __try (see error C2712).
static std::string* FormatSehExceptionMessage(DWORD exception_code,
const char* location) {
Message message;
message << "SEH exception with code 0x" << std::setbase(16) <<
exception_code << std::setbase(10) << " thrown in " << location << ".";
return new std::string(message.GetString());
}
#endif // GTEST_HAS_SEH
namespace internal {
#if GTEST_HAS_EXCEPTIONS
// Adds an "exception thrown" fatal failure to the current test.
static std::string FormatCxxExceptionMessage(const char* description,
const char* location) {
Message message;
if (description != NULL) {
message << "C++ exception with description \"" << description << "\"";
} else {
message << "Unknown C++ exception";
}
message << " thrown in " << location << ".";
return message.GetString();
}
static std::string PrintTestPartResultToString(
const TestPartResult& test_part_result);
GoogleTestFailureException::GoogleTestFailureException(
const TestPartResult& failure)
: ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {}
#endif // GTEST_HAS_EXCEPTIONS
// We put these helper functions in the internal namespace as IBM's xlC
// compiler rejects the code if they were declared static.
// Runs the given method and handles SEH exceptions it throws, when
// SEH is supported; returns the 0-value for type Result in case of an
// SEH exception. (Microsoft compilers cannot handle SEH and C++
// exceptions in the same function. Therefore, we provide a separate
// wrapper function for handling SEH exceptions.)
template <class T, typename Result>
Result HandleSehExceptionsInMethodIfSupported(
T* object, Result (T::*method)(), const char* location) {
#if GTEST_HAS_SEH
__try {
return (object->*method)();
} __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT
GetExceptionCode())) {
// We create the exception message on the heap because VC++ prohibits
// creation of objects with destructors on stack in functions using __try
// (see error C2712).
std::string* exception_message = FormatSehExceptionMessage(
GetExceptionCode(), location);
internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure,
*exception_message);
delete exception_message;
return static_cast<Result>(0);
}
#else
(void)location;
return (object->*method)();
#endif // GTEST_HAS_SEH
}
// Runs the given method and catches and reports C++ and/or SEH-style
// exceptions, if they are supported; returns the 0-value for type
// Result in case of an SEH exception.
template <class T, typename Result>
Result HandleExceptionsInMethodIfSupported(
T* object, Result (T::*method)(), const char* location) {
// NOTE: The user code can affect the way in which Google Test handles
// exceptions by setting GTEST_FLAG(catch_exceptions), but only before
// RUN_ALL_TESTS() starts. It is technically possible to check the flag
// after the exception is caught and either report or re-throw the
// exception based on the flag's value:
//
// try {
// // Perform the test method.
// } catch (...) {
// if (GTEST_FLAG(catch_exceptions))
// // Report the exception as failure.
// else
// throw; // Re-throws the original exception.
// }
//
// However, the purpose of this flag is to allow the program to drop into
// the debugger when the exception is thrown. On most platforms, once the
// control enters the catch block, the exception origin information is
// lost and the debugger will stop the program at the point of the
// re-throw in this function -- instead of at the point of the original
// throw statement in the code under test. For this reason, we perform
// the check early, sacrificing the ability to affect Google Test's
// exception handling in the method where the exception is thrown.
if (internal::GetUnitTestImpl()->catch_exceptions()) {
#if GTEST_HAS_EXCEPTIONS
try {
return HandleSehExceptionsInMethodIfSupported(object, method, location);
} catch (const internal::GoogleTestFailureException&) { // NOLINT
// This exception type can only be thrown by a failed Google
// Test assertion with the intention of letting another testing
// framework catch it. Therefore we just re-throw it.
throw;
} catch (const std::exception& e) { // NOLINT
internal::ReportFailureInUnknownLocation(
TestPartResult::kFatalFailure,
FormatCxxExceptionMessage(e.what(), location));
} catch (...) { // NOLINT
internal::ReportFailureInUnknownLocation(
TestPartResult::kFatalFailure,
FormatCxxExceptionMessage(NULL, location));
}
return static_cast<Result>(0);
#else
return HandleSehExceptionsInMethodIfSupported(object, method, location);
#endif // GTEST_HAS_EXCEPTIONS
} else {
return (object->*method)();
}
}
} // namespace internal
// Runs the test and updates the test result.
void Test::Run() {
if (!HasSameFixtureClass()) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()");
// We will run the test only if SetUp() was successful.
if (!HasFatalFailure()) {
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &Test::TestBody, "the test body");
}
// However, we want to clean up as much as possible. Hence we will
// always call TearDown(), even if SetUp() or the test body has
// failed.
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &Test::TearDown, "TearDown()");
}
// Returns true iff the current test has a fatal failure.
bool Test::HasFatalFailure() {
return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure();
}
// Returns true iff the current test has a non-fatal failure.
bool Test::HasNonfatalFailure() {
return internal::GetUnitTestImpl()->current_test_result()->
HasNonfatalFailure();
}
// class TestInfo
// Constructs a TestInfo object. It assumes ownership of the test factory
// object.
TestInfo::TestInfo(const std::string& a_test_case_name,
const std::string& a_name,
const char* a_type_param,
const char* a_value_param,
internal::TypeId fixture_class_id,
internal::TestFactoryBase* factory)
: test_case_name_(a_test_case_name),
name_(a_name),
type_param_(a_type_param ? new std::string(a_type_param) : NULL),
value_param_(a_value_param ? new std::string(a_value_param) : NULL),
fixture_class_id_(fixture_class_id),
should_run_(false),
is_disabled_(false),
matches_filter_(false),
factory_(factory),
result_() {}
// Destructs a TestInfo object.
TestInfo::~TestInfo() { delete factory_; }
namespace internal {
// Creates a new TestInfo object and registers it with Google Test;
// returns the created object.
//
// Arguments:
//
// test_case_name: name of the test case
// name: name of the test
// type_param: the name of the test's type parameter, or NULL if
// this is not a typed or a type-parameterized test.
// value_param: text representation of the test's value parameter,
// or NULL if this is not a value-parameterized test.
// fixture_class_id: ID of the test fixture class
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
// factory: pointer to the factory that creates a test object.
// The newly created TestInfo instance will assume
// ownership of the factory object.
TestInfo* MakeAndRegisterTestInfo(
const char* test_case_name,
const char* name,
const char* type_param,
const char* value_param,
TypeId fixture_class_id,
SetUpTestCaseFunc set_up_tc,
TearDownTestCaseFunc tear_down_tc,
TestFactoryBase* factory) {
TestInfo* const test_info =
new TestInfo(test_case_name, name, type_param, value_param,
fixture_class_id, factory);
GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info);
return test_info;
}
#if GTEST_HAS_PARAM_TEST
void ReportInvalidTestCaseType(const char* test_case_name,
const char* file, int line) {
Message errors;
errors
<< "Attempted redefinition of test case " << test_case_name << ".\n"
<< "All tests in the same test case must use the same test fixture\n"
<< "class. However, in test case " << test_case_name << ", you tried\n"
<< "to define a test using a fixture class different from the one\n"
<< "used earlier. This can happen if the two fixture classes are\n"
<< "from different namespaces and have the same name. You should\n"
<< "probably rename one of the classes to put the tests into different\n"
<< "test cases.";
fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(),
errors.GetString().c_str());
}
#endif // GTEST_HAS_PARAM_TEST
} // namespace internal
namespace {
// A predicate that checks the test name of a TestInfo against a known
// value.
//
// This is used for implementation of the TestCase class only. We put
// it in the anonymous namespace to prevent polluting the outer
// namespace.
//
// TestNameIs is copyable.
class TestNameIs {
public:
// Constructor.
//
// TestNameIs has NO default constructor.
explicit TestNameIs(const char* name)
: name_(name) {}
// Returns true iff the test name of test_info matches name_.
bool operator()(const TestInfo * test_info) const {
return test_info && test_info->name() == name_;
}
private:
std::string name_;
};
} // namespace
namespace internal {
// This method expands all parameterized tests registered with macros TEST_P
// and INSTANTIATE_TEST_CASE_P into regular tests and registers those.
// This will be done just once during the program runtime.
void UnitTestImpl::RegisterParameterizedTests() {
#if GTEST_HAS_PARAM_TEST
if (!parameterized_tests_registered_) {
parameterized_test_registry_.RegisterTests();
parameterized_tests_registered_ = true;
}
#endif
}
} // namespace internal
// Creates the test object, runs it, records its result, and then
// deletes it.
void TestInfo::Run() {
if (!should_run_) return;
// Tells UnitTest where to store test result.
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_info(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
// Notifies the unit test event listeners that a test is about to start.
repeater->OnTestStart(*this);
const TimeInMillis start = internal::GetTimeInMillis();
impl->os_stack_trace_getter()->UponLeavingGTest();
// Creates the test object.
Test* const test = internal::HandleExceptionsInMethodIfSupported(
factory_, &internal::TestFactoryBase::CreateTest,
"the test fixture's constructor");
// Runs the test only if the test object was created and its
// constructor didn't generate a fatal failure.
if ((test != NULL) && !Test::HasFatalFailure()) {
// This doesn't throw as all user code that can throw are wrapped into
// exception handling code.
test->Run();
}
// Deletes the test object.
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
test, &Test::DeleteSelf_, "the test fixture's destructor");
result_.set_elapsed_time(internal::GetTimeInMillis() - start);
// Notifies the unit test event listener that a test has just finished.
repeater->OnTestEnd(*this);
// Tells UnitTest to stop associating assertion results to this
// test.
impl->set_current_test_info(NULL);
}
// class TestCase
// Gets the number of successful tests in this test case.
int TestCase::successful_test_count() const {
return CountIf(test_info_list_, TestPassed);
}
// Gets the number of failed tests in this test case.
int TestCase::failed_test_count() const {
return CountIf(test_info_list_, TestFailed);
}
// Gets the number of disabled tests that will be reported in the XML report.
int TestCase::reportable_disabled_test_count() const {
return CountIf(test_info_list_, TestReportableDisabled);
}
// Gets the number of disabled tests in this test case.
int TestCase::disabled_test_count() const {
return CountIf(test_info_list_, TestDisabled);
}
// Gets the number of tests to be printed in the XML report.
int TestCase::reportable_test_count() const {
return CountIf(test_info_list_, TestReportable);
}
// Get the number of tests in this test case that should run.
int TestCase::test_to_run_count() const {
return CountIf(test_info_list_, ShouldRunTest);
}
// Gets the number of all tests.
int TestCase::total_test_count() const {
return static_cast<int>(test_info_list_.size());
}
// Creates a TestCase with the given name.
//
// Arguments:
//
// name: name of the test case
// a_type_param: the name of the test case's type parameter, or NULL if
// this is not a typed or a type-parameterized test case.
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
TestCase::TestCase(const char* a_name, const char* a_type_param,
Test::SetUpTestCaseFunc set_up_tc,
Test::TearDownTestCaseFunc tear_down_tc)
: name_(a_name),
type_param_(a_type_param ? new std::string(a_type_param) : NULL),
set_up_tc_(set_up_tc),
tear_down_tc_(tear_down_tc),
should_run_(false),
elapsed_time_(0) {
}
// Destructor of TestCase.
TestCase::~TestCase() {
// Deletes every Test in the collection.
ForEach(test_info_list_, internal::Delete<TestInfo>);
}
// Returns the i-th test among all the tests. i can range from 0 to
// total_test_count() - 1. If i is not in that range, returns NULL.
const TestInfo* TestCase::GetTestInfo(int i) const {
const int index = GetElementOr(test_indices_, i, -1);
return index < 0 ? NULL : test_info_list_[index];
}
// Returns the i-th test among all the tests. i can range from 0 to
// total_test_count() - 1. If i is not in that range, returns NULL.
TestInfo* TestCase::GetMutableTestInfo(int i) {
const int index = GetElementOr(test_indices_, i, -1);
return index < 0 ? NULL : test_info_list_[index];
}
// Adds a test to this test case. Will delete the test upon
// destruction of the TestCase object.
void TestCase::AddTestInfo(TestInfo * test_info) {
test_info_list_.push_back(test_info);
test_indices_.push_back(static_cast<int>(test_indices_.size()));
}
// Runs every test in this TestCase.
void TestCase::Run() {
if (!should_run_) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_case(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
repeater->OnTestCaseStart(*this);
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &TestCase::RunSetUpTestCase, "SetUpTestCase()");
const internal::TimeInMillis start = internal::GetTimeInMillis();
for (int i = 0; i < total_test_count(); i++) {
GetMutableTestInfo(i)->Run();
}
elapsed_time_ = internal::GetTimeInMillis() - start;
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &TestCase::RunTearDownTestCase, "TearDownTestCase()");
repeater->OnTestCaseEnd(*this);
impl->set_current_test_case(NULL);
}
// Clears the results of all tests in this test case.
void TestCase::ClearResult() {
ad_hoc_test_result_.Clear();
ForEach(test_info_list_, TestInfo::ClearTestResult);
}
// Shuffles the tests in this test case.
void TestCase::ShuffleTests(internal::Random* random) {
Shuffle(random, &test_indices_);
}
// Restores the test order to before the first shuffle.
void TestCase::UnshuffleTests() {
for (size_t i = 0; i < test_indices_.size(); i++) {
test_indices_[i] = static_cast<int>(i);
}
}
// Formats a countable noun. Depending on its quantity, either the
// singular form or the plural form is used. e.g.
//
// FormatCountableNoun(1, "formula", "formuli") returns "1 formula".
// FormatCountableNoun(5, "book", "books") returns "5 books".
static std::string FormatCountableNoun(int count,
const char * singular_form,
const char * plural_form) {
return internal::StreamableToString(count) + " " +
(count == 1 ? singular_form : plural_form);
}
// Formats the count of tests.
static std::string FormatTestCount(int test_count) {
return FormatCountableNoun(test_count, "test", "tests");
}
// Formats the count of test cases.
static std::string FormatTestCaseCount(int test_case_count) {
return FormatCountableNoun(test_case_count, "test case", "test cases");
}
// Converts a TestPartResult::Type enum to human-friendly string
// representation. Both kNonFatalFailure and kFatalFailure are translated
// to "Failure", as the user usually doesn't care about the difference
// between the two when viewing the test result.
static const char * TestPartResultTypeToString(TestPartResult::Type type) {
switch (type) {
case TestPartResult::kSuccess:
return "Success";
case TestPartResult::kNonFatalFailure:
case TestPartResult::kFatalFailure:
#ifdef _MSC_VER
return "error: ";
#else
return "Failure\n";
#endif
default:
return "Unknown result type";
}
}
namespace internal {
// Prints a TestPartResult to an std::string.
static std::string PrintTestPartResultToString(
const TestPartResult& test_part_result) {
return (Message()
<< internal::FormatFileLocation(test_part_result.file_name(),
test_part_result.line_number())
<< " " << TestPartResultTypeToString(test_part_result.type())
<< test_part_result.message()).GetString();
}
// Prints a TestPartResult.
static void PrintTestPartResult(const TestPartResult& test_part_result) {
const std::string& result =
PrintTestPartResultToString(test_part_result);
printf("%s\n", result.c_str());
fflush(stdout);
// If the test program runs in Visual Studio or a debugger, the
// following statements add the test part result message to the Output
// window such that the user can double-click on it to jump to the
// corresponding source code location; otherwise they do nothing.
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// We don't call OutputDebugString*() on Windows Mobile, as printing
// to stdout is done by OutputDebugString() there already - we don't
// want the same message printed twice.
::OutputDebugStringA(result.c_str());
::OutputDebugStringA("\n");
#endif
}
// class PrettyUnitTestResultPrinter
enum GTestColor {
COLOR_DEFAULT,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW
};
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \
!GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
// Returns the character attribute for the given color.
WORD GetColorAttribute(GTestColor color) {
switch (color) {
case COLOR_RED: return FOREGROUND_RED;
case COLOR_GREEN: return FOREGROUND_GREEN;
case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN;
default: return 0;
}
}
#else
// Returns the ANSI color code for the given color. COLOR_DEFAULT is
// an invalid input.
const char* GetAnsiColorCode(GTestColor color) {
switch (color) {
case COLOR_RED: return "1";
case COLOR_GREEN: return "2";
case COLOR_YELLOW: return "3";
default: return NULL;
};
}
#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// Returns true iff Google Test should use colors in the output.
bool ShouldUseColor(bool stdout_is_tty) {
const char* const gtest_color = GTEST_FLAG(color).c_str();
if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) {
#if GTEST_OS_WINDOWS
// On Windows the TERM variable is usually not set, but the
// console there does support colors.
return stdout_is_tty;
#else
// On non-Windows platforms, we rely on the TERM variable.
const char* const term = posix::GetEnv("TERM");
const bool term_supports_color =
String::CStringEquals(term, "xterm") ||
String::CStringEquals(term, "xterm-color") ||
String::CStringEquals(term, "xterm-256color") ||
String::CStringEquals(term, "screen") ||
String::CStringEquals(term, "screen-256color") ||
String::CStringEquals(term, "linux") ||
String::CStringEquals(term, "cygwin");
return stdout_is_tty && term_supports_color;
#endif // GTEST_OS_WINDOWS
}
return String::CaseInsensitiveCStringEquals(gtest_color, "yes") ||
String::CaseInsensitiveCStringEquals(gtest_color, "true") ||
String::CaseInsensitiveCStringEquals(gtest_color, "t") ||
String::CStringEquals(gtest_color, "1");
// We take "yes", "true", "t", and "1" as meaning "yes". If the
// value is neither one of these nor "auto", we treat it as "no" to
// be conservative.
}
// Helpers for printing colored strings to stdout. Note that on Windows, we
// cannot simply emit special characters and have the terminal change colors.
// This routine must actually emit the characters rather than return a string
// that would be colored when printed, as can be done on Linux.
void ColoredPrintf(GTestColor color, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS || \
GTEST_OS_IOS || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT
const bool use_color = AlwaysFalse();
#else
static const bool in_color_mode =
ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0);
const bool use_color = in_color_mode && (color != COLOR_DEFAULT);
#endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS
// The '!= 0' comparison is necessary to satisfy MSVC 7.1.
if (!use_color) {
vprintf(fmt, args);
va_end(args);
return;
}
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \
!GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
// Gets the current text color.
CONSOLE_SCREEN_BUFFER_INFO buffer_info;
GetConsoleScreenBufferInfo(stdout_handle, &buffer_info);
const WORD old_color_attrs = buffer_info.wAttributes;
// We need to flush the stream buffers into the console before each
// SetConsoleTextAttribute call lest it affect the text that is already
// printed but has not yet reached the console.
fflush(stdout);
SetConsoleTextAttribute(stdout_handle,
GetColorAttribute(color) | FOREGROUND_INTENSITY);
vprintf(fmt, args);
fflush(stdout);
// Restores the text color.
SetConsoleTextAttribute(stdout_handle, old_color_attrs);
#else
printf("\033[0;3%sm", GetAnsiColorCode(color));
vprintf(fmt, args);
printf("\033[m"); // Resets the terminal to default.
#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
va_end(args);
}
// Text printed in Google Test's text output and --gunit_list_tests
// output to label the type parameter and value parameter for a test.
static const char kTypeParamLabel[] = "TypeParam";
static const char kValueParamLabel[] = "GetParam()";
void PrintFullTestCommentIfPresent(const TestInfo& test_info) {
const char* const type_param = test_info.type_param();
const char* const value_param = test_info.value_param();
if (type_param != NULL || value_param != NULL) {
printf(", where ");
if (type_param != NULL) {
printf("%s = %s", kTypeParamLabel, type_param);
if (value_param != NULL)
printf(" and ");
}
if (value_param != NULL) {
printf("%s = %s", kValueParamLabel, value_param);
}
}
}
// This class implements the TestEventListener interface.
//
// Class PrettyUnitTestResultPrinter is copyable.
class PrettyUnitTestResultPrinter : public TestEventListener {
public:
PrettyUnitTestResultPrinter() {}
static void PrintTestName(const char * test_case, const char * test) {
printf("%s.%s", test_case, test);
}
// The following methods override what's in the TestEventListener class.
virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {}
virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration);
virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test);
virtual void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) {}
virtual void OnTestCaseStart(const TestCase& test_case);
virtual void OnTestStart(const TestInfo& test_info);
virtual void OnTestPartResult(const TestPartResult& result);
virtual void OnTestEnd(const TestInfo& test_info);
virtual void OnTestCaseEnd(const TestCase& test_case);
virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test);
virtual void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) {}
virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration);
virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {}
private:
static void PrintFailedTests(const UnitTest& unit_test);
};
// Fired before each iteration of tests starts.
void PrettyUnitTestResultPrinter::OnTestIterationStart(
const UnitTest& unit_test, int iteration) {
if (GTEST_FLAG(repeat) != 1)
printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1);
const char* const filter = GTEST_FLAG(filter).c_str();
// Prints the filter if it's not *. This reminds the user that some
// tests may be skipped.
if (!String::CStringEquals(filter, kUniversalFilter)) {
ColoredPrintf(COLOR_YELLOW,
"Note: %s filter = %s\n", GTEST_NAME_, filter);
}
if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) {
const Int32 shard_index = Int32FromEnvOrDie(kTestShardIndex, -1);
ColoredPrintf(COLOR_YELLOW,
"Note: This is test shard %d of %s.\n",
static_cast<int>(shard_index) + 1,
internal::posix::GetEnv(kTestTotalShards));
}
if (GTEST_FLAG(shuffle)) {
ColoredPrintf(COLOR_YELLOW,
"Note: Randomizing tests' orders with a seed of %d .\n",
unit_test.random_seed());
}
ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("Running %s from %s.\n",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str());
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart(
const UnitTest& /*unit_test*/) {
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("Global test environment set-up.\n");
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) {
const std::string counts =
FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("%s from %s", counts.c_str(), test_case.name());
if (test_case.type_param() == NULL) {
printf("\n");
} else {
printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param());
}
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) {
ColoredPrintf(COLOR_GREEN, "[ RUN ] ");
PrintTestName(test_info.test_case_name(), test_info.name());
printf("\n");
fflush(stdout);
}
// Called after an assertion failure.
void PrettyUnitTestResultPrinter::OnTestPartResult(
const TestPartResult& result) {
// If the test part succeeded, we don't need to do anything.
if (result.type() == TestPartResult::kSuccess)
return;
// Print failure message from the assertion (e.g. expected this and got that).
PrintTestPartResult(result);
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) {
if (test_info.result()->Passed()) {
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
} else {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
}
PrintTestName(test_info.test_case_name(), test_info.name());
if (test_info.result()->Failed())
PrintFullTestCommentIfPresent(test_info);
if (GTEST_FLAG(print_time)) {
printf(" (%s ms)\n", internal::StreamableToString(
test_info.result()->elapsed_time()).c_str());
} else {
printf("\n");
}
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) {
if (!GTEST_FLAG(print_time)) return;
const std::string counts =
FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("%s from %s (%s ms total)\n\n",
counts.c_str(), test_case.name(),
internal::StreamableToString(test_case.elapsed_time()).c_str());
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart(
const UnitTest& /*unit_test*/) {
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("Global test environment tear-down\n");
fflush(stdout);
}
// Internal helper for printing the list of failed tests.
void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) {
const int failed_test_count = unit_test.failed_test_count();
if (failed_test_count == 0) {
return;
}
for (int i = 0; i < unit_test.total_test_case_count(); ++i) {
const TestCase& test_case = *unit_test.GetTestCase(i);
if (!test_case.should_run() || (test_case.failed_test_count() == 0)) {
continue;
}
for (int j = 0; j < test_case.total_test_count(); ++j) {
const TestInfo& test_info = *test_case.GetTestInfo(j);
if (!test_info.should_run() || test_info.result()->Passed()) {
continue;
}
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s.%s", test_case.name(), test_info.name());
PrintFullTestCommentIfPresent(test_info);
printf("\n");
}
}
}
void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("%s from %s ran.",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str());
if (GTEST_FLAG(print_time)) {
printf(" (%s ms total)",
internal::StreamableToString(unit_test.elapsed_time()).c_str());
}
printf("\n");
ColoredPrintf(COLOR_GREEN, "[ PASSED ] ");
printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str());
int num_failures = unit_test.failed_test_count();
if (!unit_test.Passed()) {
const int failed_test_count = unit_test.failed_test_count();
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str());
PrintFailedTests(unit_test);
printf("\n%2d FAILED %s\n", num_failures,
num_failures == 1 ? "TEST" : "TESTS");
}
int num_disabled = unit_test.reportable_disabled_test_count();
if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) {
if (!num_failures) {
printf("\n"); // Add a spacer if no FAILURE banner is displayed.
}
ColoredPrintf(COLOR_YELLOW,
" YOU HAVE %d DISABLED %s\n\n",
num_disabled,
num_disabled == 1 ? "TEST" : "TESTS");
}
// Ensure that Google Test output is printed before, e.g., heapchecker output.
fflush(stdout);
}
// End PrettyUnitTestResultPrinter
// class TestEventRepeater
//
// This class forwards events to other event listeners.
class TestEventRepeater : public TestEventListener {
public:
TestEventRepeater() : forwarding_enabled_(true) {}
virtual ~TestEventRepeater();
void Append(TestEventListener *listener);
TestEventListener* Release(TestEventListener* listener);
// Controls whether events will be forwarded to listeners_. Set to false
// in death test child processes.
bool forwarding_enabled() const { return forwarding_enabled_; }
void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; }
virtual void OnTestProgramStart(const UnitTest& unit_test);
virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration);
virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test);
virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test);
virtual void OnTestCaseStart(const TestCase& test_case);
virtual void OnTestStart(const TestInfo& test_info);
virtual void OnTestPartResult(const TestPartResult& result);
virtual void OnTestEnd(const TestInfo& test_info);
virtual void OnTestCaseEnd(const TestCase& test_case);
virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test);
virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test);
virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration);
virtual void OnTestProgramEnd(const UnitTest& unit_test);
private:
// Controls whether events will be forwarded to listeners_. Set to false
// in death test child processes.
bool forwarding_enabled_;
// The list of listeners that receive events.
std::vector<TestEventListener*> listeners_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater);
};
TestEventRepeater::~TestEventRepeater() {
ForEach(listeners_, Delete<TestEventListener>);
}
void TestEventRepeater::Append(TestEventListener *listener) {
listeners_.push_back(listener);
}
// TODO(vladl@google.com): Factor the search functionality into Vector::Find.
TestEventListener* TestEventRepeater::Release(TestEventListener *listener) {
for (size_t i = 0; i < listeners_.size(); ++i) {
if (listeners_[i] == listener) {
listeners_.erase(listeners_.begin() + i);
return listener;
}
}
return NULL;
}
// Since most methods are very similar, use macros to reduce boilerplate.
// This defines a member that forwards the call to all listeners.
#define GTEST_REPEATER_METHOD_(Name, Type) \
void TestEventRepeater::Name(const Type& parameter) { \
if (forwarding_enabled_) { \
for (size_t i = 0; i < listeners_.size(); i++) { \
listeners_[i]->Name(parameter); \
} \
} \
}
// This defines a member that forwards the call to all listeners in reverse
// order.
#define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \
void TestEventRepeater::Name(const Type& parameter) { \
if (forwarding_enabled_) { \
for (int i = static_cast<int>(listeners_.size()) - 1; i >= 0; i--) { \
listeners_[i]->Name(parameter); \
} \
} \
}
GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest)
GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest)
GTEST_REPEATER_METHOD_(OnTestCaseStart, TestCase)
GTEST_REPEATER_METHOD_(OnTestStart, TestInfo)
GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult)
GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo)
GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestCase)
GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest)
#undef GTEST_REPEATER_METHOD_
#undef GTEST_REVERSE_REPEATER_METHOD_
void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test,
int iteration) {
if (forwarding_enabled_) {
for (size_t i = 0; i < listeners_.size(); i++) {
listeners_[i]->OnTestIterationStart(unit_test, iteration);
}
}
}
void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test,
int iteration) {
if (forwarding_enabled_) {
for (int i = static_cast<int>(listeners_.size()) - 1; i >= 0; i--) {
listeners_[i]->OnTestIterationEnd(unit_test, iteration);
}
}
}
// End TestEventRepeater
// This class generates an XML output file.
class XmlUnitTestResultPrinter : public EmptyTestEventListener {
public:
explicit XmlUnitTestResultPrinter(const char* output_file);
virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration);
private:
// Is c a whitespace character that is normalized to a space character
// when it appears in an XML attribute value?
static bool IsNormalizableWhitespace(char c) {
return c == 0x9 || c == 0xA || c == 0xD;
}
// May c appear in a well-formed XML document?
static bool IsValidXmlCharacter(char c) {
return IsNormalizableWhitespace(c) || c >= 0x20;
}
// Returns an XML-escaped copy of the input string str. If
// is_attribute is true, the text is meant to appear as an attribute
// value, and normalizable whitespace is preserved by replacing it
// with character references.
static std::string EscapeXml(const std::string& str, bool is_attribute);
// Returns the given string with all characters invalid in XML removed.
static std::string RemoveInvalidXmlCharacters(const std::string& str);
// Convenience wrapper around EscapeXml when str is an attribute value.
static std::string EscapeXmlAttribute(const std::string& str) {
return EscapeXml(str, true);
}
// Convenience wrapper around EscapeXml when str is not an attribute value.
static std::string EscapeXmlText(const char* str) {
return EscapeXml(str, false);
}
// Verifies that the given attribute belongs to the given element and
// streams the attribute as XML.
static void OutputXmlAttribute(std::ostream* stream,
const std::string& element_name,
const std::string& name,
const std::string& value);
// Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
static void OutputXmlCDataSection(::std::ostream* stream, const char* data);
// Streams an XML representation of a TestInfo object.
static void OutputXmlTestInfo(::std::ostream* stream,
const char* test_case_name,
const TestInfo& test_info);
// Prints an XML representation of a TestCase object
static void PrintXmlTestCase(::std::ostream* stream,
const TestCase& test_case);
// Prints an XML summary of unit_test to output stream out.
static void PrintXmlUnitTest(::std::ostream* stream,
const UnitTest& unit_test);
// Produces a string representing the test properties in a result as space
// delimited XML attributes based on the property key="value" pairs.
// When the std::string is not empty, it includes a space at the beginning,
// to delimit this attribute from prior attributes.
static std::string TestPropertiesAsXmlAttributes(const TestResult& result);
// The output file.
const std::string output_file_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter);
};
// Creates a new XmlUnitTestResultPrinter.
XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file)
: output_file_(output_file) {
if (output_file_.c_str() == NULL || output_file_.empty()) {
fprintf(stderr, "XML output file may not be null\n");
fflush(stderr);
exit(EXIT_FAILURE);
}
}
// Called after the unit test ends.
void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
FILE* xmlout = NULL;
FilePath output_file(output_file_);
FilePath output_dir(output_file.RemoveFileName());
if (output_dir.CreateDirectoriesRecursively()) {
xmlout = posix::FOpen(output_file_.c_str(), "w");
}
if (xmlout == NULL) {
// TODO(wan): report the reason of the failure.
//
// We don't do it for now as:
//
// 1. There is no urgent need for it.
// 2. It's a bit involved to make the errno variable thread-safe on
// all three operating systems (Linux, Windows, and Mac OS).
// 3. To interpret the meaning of errno in a thread-safe way,
// we need the strerror_r() function, which is not available on
// Windows.
fprintf(stderr,
"Unable to open file \"%s\"\n",
output_file_.c_str());
fflush(stderr);
exit(EXIT_FAILURE);
}
std::stringstream stream;
PrintXmlUnitTest(&stream, unit_test);
fprintf(xmlout, "%s", StringStreamToString(&stream).c_str());
fclose(xmlout);
}
// Returns an XML-escaped copy of the input string str. If is_attribute
// is true, the text is meant to appear as an attribute value, and
// normalizable whitespace is preserved by replacing it with character
// references.
//
// Invalid XML characters in str, if any, are stripped from the output.
// It is expected that most, if not all, of the text processed by this
// module will consist of ordinary English text.
// If this module is ever modified to produce version 1.1 XML output,
// most invalid characters can be retained using character references.
// TODO(wan): It might be nice to have a minimally invasive, human-readable
// escaping scheme for invalid characters, rather than dropping them.
std::string XmlUnitTestResultPrinter::EscapeXml(
const std::string& str, bool is_attribute) {
Message m;
for (size_t i = 0; i < str.size(); ++i) {
const char ch = str[i];
switch (ch) {
case '<':
m << "&lt;";
break;
case '>':
m << "&gt;";
break;
case '&':
m << "&amp;";
break;
case '\'':
if (is_attribute)
m << "&apos;";
else
m << '\'';
break;
case '"':
if (is_attribute)
m << "&quot;";
else
m << '"';
break;
default:
if (IsValidXmlCharacter(ch)) {
if (is_attribute && IsNormalizableWhitespace(ch))
m << "&#x" << String::FormatByte(static_cast<unsigned char>(ch))
<< ";";
else
m << ch;
}
break;
}
}
return m.GetString();
}
// Returns the given string with all characters invalid in XML removed.
// Currently invalid characters are dropped from the string. An
// alternative is to replace them with certain characters such as . or ?.
std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters(
const std::string& str) {
std::string output;
output.reserve(str.size());
for (std::string::const_iterator it = str.begin(); it != str.end(); ++it)
if (IsValidXmlCharacter(*it))
output.push_back(*it);
return output;
}
// The following routines generate an XML representation of a UnitTest
// object.
//
// This is how Google Test concepts map to the DTD:
//
// <testsuites name="AllTests"> <-- corresponds to a UnitTest object
// <testsuite name="testcase-name"> <-- corresponds to a TestCase object
// <testcase name="test-name"> <-- corresponds to a TestInfo object
// <failure message="...">...</failure>
// <failure message="...">...</failure>
// <failure message="...">...</failure>
// <-- individual assertion failures
// </testcase>
// </testsuite>
// </testsuites>
// Formats the given time in milliseconds as seconds.
std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) {
::std::stringstream ss;
ss << ms/1000.0;
return ss.str();
}
static bool PortableLocaltime(time_t seconds, struct tm* out) {
#if defined(_MSC_VER)
return localtime_s(out, &seconds) == 0;
#elif defined(__MINGW32__) || defined(__MINGW64__)
// MINGW <time.h> provides neither localtime_r nor localtime_s, but uses
// Windows' localtime(), which has a thread-local tm buffer.
struct tm* tm_ptr = localtime(&seconds); // NOLINT
if (tm_ptr == NULL)
return false;
*out = *tm_ptr;
return true;
#else
return localtime_r(&seconds, out) != NULL;
#endif
}
// Converts the given epoch time in milliseconds to a date string in the ISO
// 8601 format, without the timezone information.
std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) {
struct tm time_struct;
if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct))
return "";
// YYYY-MM-DDThh:mm:ss
return StreamableToString(time_struct.tm_year + 1900) + "-" +
String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" +
String::FormatIntWidth2(time_struct.tm_mday) + "T" +
String::FormatIntWidth2(time_struct.tm_hour) + ":" +
String::FormatIntWidth2(time_struct.tm_min) + ":" +
String::FormatIntWidth2(time_struct.tm_sec);
}
// Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream,
const char* data) {
const char* segment = data;
*stream << "<![CDATA[";
for (;;) {
const char* const next_segment = strstr(segment, "]]>");
if (next_segment != NULL) {
stream->write(
segment, static_cast<std::streamsize>(next_segment - segment));
*stream << "]]>]]&gt;<![CDATA[";
segment = next_segment + strlen("]]>");
} else {
*stream << segment;
break;
}
}
*stream << "]]>";
}
void XmlUnitTestResultPrinter::OutputXmlAttribute(
std::ostream* stream,
const std::string& element_name,
const std::string& name,
const std::string& value) {
const std::vector<std::string>& allowed_names =
GetReservedAttributesForElement(element_name);
GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
allowed_names.end())
<< "Attribute " << name << " is not allowed for element <" << element_name
<< ">.";
*stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\"";
}
// Prints an XML representation of a TestInfo object.
// TODO(wan): There is also value in printing properties with the plain printer.
void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream,
const char* test_case_name,
const TestInfo& test_info) {
const TestResult& result = *test_info.result();
const std::string kTestcase = "testcase";
*stream << " <testcase";
OutputXmlAttribute(stream, kTestcase, "name", test_info.name());
if (test_info.value_param() != NULL) {
OutputXmlAttribute(stream, kTestcase, "value_param",
test_info.value_param());
}
if (test_info.type_param() != NULL) {
OutputXmlAttribute(stream, kTestcase, "type_param", test_info.type_param());
}
OutputXmlAttribute(stream, kTestcase, "status",
test_info.should_run() ? "run" : "notrun");
OutputXmlAttribute(stream, kTestcase, "time",
FormatTimeInMillisAsSeconds(result.elapsed_time()));
OutputXmlAttribute(stream, kTestcase, "classname", test_case_name);
*stream << TestPropertiesAsXmlAttributes(result);
int failures = 0;
for (int i = 0; i < result.total_part_count(); ++i) {
const TestPartResult& part = result.GetTestPartResult(i);
if (part.failed()) {
if (++failures == 1) {
*stream << ">\n";
}
const string location = internal::FormatCompilerIndependentFileLocation(
part.file_name(), part.line_number());
const string summary = location + "\n" + part.summary();
*stream << " <failure message=\""
<< EscapeXmlAttribute(summary.c_str())
<< "\" type=\"\">";
const string detail = location + "\n" + part.message();
OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str());
*stream << "</failure>\n";
}
}
if (failures == 0)
*stream << " />\n";
else
*stream << " </testcase>\n";
}
// Prints an XML representation of a TestCase object
void XmlUnitTestResultPrinter::PrintXmlTestCase(std::ostream* stream,
const TestCase& test_case) {
const std::string kTestsuite = "testsuite";
*stream << " <" << kTestsuite;
OutputXmlAttribute(stream, kTestsuite, "name", test_case.name());
OutputXmlAttribute(stream, kTestsuite, "tests",
StreamableToString(test_case.reportable_test_count()));
OutputXmlAttribute(stream, kTestsuite, "failures",
StreamableToString(test_case.failed_test_count()));
OutputXmlAttribute(
stream, kTestsuite, "disabled",
StreamableToString(test_case.reportable_disabled_test_count()));
OutputXmlAttribute(stream, kTestsuite, "errors", "0");
OutputXmlAttribute(stream, kTestsuite, "time",
FormatTimeInMillisAsSeconds(test_case.elapsed_time()));
*stream << TestPropertiesAsXmlAttributes(test_case.ad_hoc_test_result())
<< ">\n";
for (int i = 0; i < test_case.total_test_count(); ++i) {
if (test_case.GetTestInfo(i)->is_reportable())
OutputXmlTestInfo(stream, test_case.name(), *test_case.GetTestInfo(i));
}
*stream << " </" << kTestsuite << ">\n";
}
// Prints an XML summary of unit_test to output stream out.
void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream,
const UnitTest& unit_test) {
const std::string kTestsuites = "testsuites";
*stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
*stream << "<" << kTestsuites;
OutputXmlAttribute(stream, kTestsuites, "tests",
StreamableToString(unit_test.reportable_test_count()));
OutputXmlAttribute(stream, kTestsuites, "failures",
StreamableToString(unit_test.failed_test_count()));
OutputXmlAttribute(
stream, kTestsuites, "disabled",
StreamableToString(unit_test.reportable_disabled_test_count()));
OutputXmlAttribute(stream, kTestsuites, "errors", "0");
OutputXmlAttribute(
stream, kTestsuites, "timestamp",
FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp()));
OutputXmlAttribute(stream, kTestsuites, "time",
FormatTimeInMillisAsSeconds(unit_test.elapsed_time()));
if (GTEST_FLAG(shuffle)) {
OutputXmlAttribute(stream, kTestsuites, "random_seed",
StreamableToString(unit_test.random_seed()));
}
*stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result());
OutputXmlAttribute(stream, kTestsuites, "name", "AllTests");
*stream << ">\n";
for (int i = 0; i < unit_test.total_test_case_count(); ++i) {
if (unit_test.GetTestCase(i)->reportable_test_count() > 0)
PrintXmlTestCase(stream, *unit_test.GetTestCase(i));
}
*stream << "</" << kTestsuites << ">\n";
}
// Produces a string representing the test properties in a result as space
// delimited XML attributes based on the property key="value" pairs.
std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes(
const TestResult& result) {
Message attributes;
for (int i = 0; i < result.test_property_count(); ++i) {
const TestProperty& property = result.GetTestProperty(i);
attributes << " " << property.key() << "="
<< "\"" << EscapeXmlAttribute(property.value()) << "\"";
}
return attributes.GetString();
}
// End XmlUnitTestResultPrinter
#if GTEST_CAN_STREAM_RESULTS_
// Checks if str contains '=', '&', '%' or '\n' characters. If yes,
// replaces them by "%xx" where xx is their hexadecimal value. For
// example, replaces "=" with "%3D". This algorithm is O(strlen(str))
// in both time and space -- important as the input str may contain an
// arbitrarily long test failure message and stack trace.
string StreamingListener::UrlEncode(const char* str) {
string result;
result.reserve(strlen(str) + 1);
for (char ch = *str; ch != '\0'; ch = *++str) {
switch (ch) {
case '%':
case '=':
case '&':
case '\n':
result.append("%" + String::FormatByte(static_cast<unsigned char>(ch)));
break;
default:
result.push_back(ch);
break;
}
}
return result;
}
void StreamingListener::SocketWriter::MakeConnection() {
GTEST_CHECK_(sockfd_ == -1)
<< "MakeConnection() can't be called when there is already a connection.";
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses.
hints.ai_socktype = SOCK_STREAM;
addrinfo* servinfo = NULL;
// Use the getaddrinfo() to get a linked list of IP addresses for
// the given host name.
const int error_num = getaddrinfo(
host_name_.c_str(), port_num_.c_str(), &hints, &servinfo);
if (error_num != 0) {
GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: "
<< gai_strerror(error_num);
}
// Loop through all the results and connect to the first we can.
for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != NULL;
cur_addr = cur_addr->ai_next) {
sockfd_ = socket(
cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol);
if (sockfd_ != -1) {
// Connect the client socket to the server socket.
if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) {
close(sockfd_);
sockfd_ = -1;
}
}
}
freeaddrinfo(servinfo); // all done with this structure
if (sockfd_ == -1) {
GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to "
<< host_name_ << ":" << port_num_;
}
}
// End of class Streaming Listener
#endif // GTEST_CAN_STREAM_RESULTS__
// Class ScopedTrace
// Pushes the given source file location and message onto a per-thread
// trace stack maintained by Google Test.
ScopedTrace::ScopedTrace(const char* file, int line, const Message& message)
GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) {
TraceInfo trace;
trace.file = file;
trace.line = line;
trace.message = message.GetString();
UnitTest::GetInstance()->PushGTestTrace(trace);
}
// Pops the info pushed by the c'tor.
ScopedTrace::~ScopedTrace()
GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) {
UnitTest::GetInstance()->PopGTestTrace();
}
// class OsStackTraceGetter
// Returns the current OS stack trace as an std::string. Parameters:
//
// max_depth - the maximum number of stack frames to be included
// in the trace.
// skip_count - the number of top frames to be skipped; doesn't count
// against max_depth.
//
string OsStackTraceGetter::CurrentStackTrace(int /* max_depth */,
int /* skip_count */)
GTEST_LOCK_EXCLUDED_(mutex_) {
return "";
}
void OsStackTraceGetter::UponLeavingGTest()
GTEST_LOCK_EXCLUDED_(mutex_) {
}
const char* const
OsStackTraceGetter::kElidedFramesMarker =
"... " GTEST_NAME_ " internal frames ...";
// A helper class that creates the premature-exit file in its
// constructor and deletes the file in its destructor.
class ScopedPrematureExitFile {
public:
explicit ScopedPrematureExitFile(const char* premature_exit_filepath)
: premature_exit_filepath_(premature_exit_filepath) {
// If a path to the premature-exit file is specified...
if (premature_exit_filepath != NULL && *premature_exit_filepath != '\0') {
// create the file with a single "0" character in it. I/O
// errors are ignored as there's nothing better we can do and we
// don't want to fail the test because of this.
FILE* pfile = posix::FOpen(premature_exit_filepath, "w");
fwrite("0", 1, 1, pfile);
fclose(pfile);
}
}
~ScopedPrematureExitFile() {
if (premature_exit_filepath_ != NULL && *premature_exit_filepath_ != '\0') {
remove(premature_exit_filepath_);
}
}
private:
const char* const premature_exit_filepath_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile);
};
} // namespace internal
// class TestEventListeners
TestEventListeners::TestEventListeners()
: repeater_(new internal::TestEventRepeater()),
default_result_printer_(NULL),
default_xml_generator_(NULL) {
}
TestEventListeners::~TestEventListeners() { delete repeater_; }
// Returns the standard listener responsible for the default console
// output. Can be removed from the listeners list to shut down default
// console output. Note that removing this object from the listener list
// with Release transfers its ownership to the user.
void TestEventListeners::Append(TestEventListener* listener) {
repeater_->Append(listener);
}
// Removes the given event listener from the list and returns it. It then
// becomes the caller's responsibility to delete the listener. Returns
// NULL if the listener is not found in the list.
TestEventListener* TestEventListeners::Release(TestEventListener* listener) {
if (listener == default_result_printer_)
default_result_printer_ = NULL;
else if (listener == default_xml_generator_)
default_xml_generator_ = NULL;
return repeater_->Release(listener);
}
// Returns repeater that broadcasts the TestEventListener events to all
// subscribers.
TestEventListener* TestEventListeners::repeater() { return repeater_; }
// Sets the default_result_printer attribute to the provided listener.
// The listener is also added to the listener list and previous
// default_result_printer is removed from it and deleted. The listener can
// also be NULL in which case it will not be added to the list. Does
// nothing if the previous and the current listener objects are the same.
void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) {
if (default_result_printer_ != listener) {
// It is an error to pass this method a listener that is already in the
// list.
delete Release(default_result_printer_);
default_result_printer_ = listener;
if (listener != NULL)
Append(listener);
}
}
// Sets the default_xml_generator attribute to the provided listener. The
// listener is also added to the listener list and previous
// default_xml_generator is removed from it and deleted. The listener can
// also be NULL in which case it will not be added to the list. Does
// nothing if the previous and the current listener objects are the same.
void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) {
if (default_xml_generator_ != listener) {
// It is an error to pass this method a listener that is already in the
// list.
delete Release(default_xml_generator_);
default_xml_generator_ = listener;
if (listener != NULL)
Append(listener);
}
}
// Controls whether events will be forwarded by the repeater to the
// listeners in the list.
bool TestEventListeners::EventForwardingEnabled() const {
return repeater_->forwarding_enabled();
}
void TestEventListeners::SuppressEventForwarding() {
repeater_->set_forwarding_enabled(false);
}
// class UnitTest
// Gets the singleton UnitTest object. The first time this method is
// called, a UnitTest object is constructed and returned. Consecutive
// calls will return the same object.
//
// We don't protect this under mutex_ as a user is not supposed to
// call this before main() starts, from which point on the return
// value will never change.
UnitTest* UnitTest::GetInstance() {
// When compiled with MSVC 7.1 in optimized mode, destroying the
// UnitTest object upon exiting the program messes up the exit code,
// causing successful tests to appear failed. We have to use a
// different implementation in this case to bypass the compiler bug.
// This implementation makes the compiler happy, at the cost of
// leaking the UnitTest object.
// CodeGear C++Builder insists on a public destructor for the
// default implementation. Use this implementation to keep good OO
// design with private destructor.
#if (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__)
static UnitTest* const instance = new UnitTest;
return instance;
#else
static UnitTest instance;
return &instance;
#endif // (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__)
}
// Gets the number of successful test cases.
int UnitTest::successful_test_case_count() const {
return impl()->successful_test_case_count();
}
// Gets the number of failed test cases.
int UnitTest::failed_test_case_count() const {
return impl()->failed_test_case_count();
}
// Gets the number of all test cases.
int UnitTest::total_test_case_count() const {
return impl()->total_test_case_count();
}
// Gets the number of all test cases that contain at least one test
// that should run.
int UnitTest::test_case_to_run_count() const {
return impl()->test_case_to_run_count();
}
// Gets the number of successful tests.
int UnitTest::successful_test_count() const {
return impl()->successful_test_count();
}
// Gets the number of failed tests.
int UnitTest::failed_test_count() const { return impl()->failed_test_count(); }
// Gets the number of disabled tests that will be reported in the XML report.
int UnitTest::reportable_disabled_test_count() const {
return impl()->reportable_disabled_test_count();
}
// Gets the number of disabled tests.
int UnitTest::disabled_test_count() const {
return impl()->disabled_test_count();
}
// Gets the number of tests to be printed in the XML report.
int UnitTest::reportable_test_count() const {
return impl()->reportable_test_count();
}
// Gets the number of all tests.
int UnitTest::total_test_count() const { return impl()->total_test_count(); }
// Gets the number of tests that should run.
int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); }
// Gets the time of the test program start, in ms from the start of the
// UNIX epoch.
internal::TimeInMillis UnitTest::start_timestamp() const {
return impl()->start_timestamp();
}
// Gets the elapsed time, in milliseconds.
internal::TimeInMillis UnitTest::elapsed_time() const {
return impl()->elapsed_time();
}
// Returns true iff the unit test passed (i.e. all test cases passed).
bool UnitTest::Passed() const { return impl()->Passed(); }
// Returns true iff the unit test failed (i.e. some test case failed
// or something outside of all tests failed).
bool UnitTest::Failed() const { return impl()->Failed(); }
// Gets the i-th test case among all the test cases. i can range from 0 to
// total_test_case_count() - 1. If i is not in that range, returns NULL.
const TestCase* UnitTest::GetTestCase(int i) const {
return impl()->GetTestCase(i);
}
// Returns the TestResult containing information on test failures and
// properties logged outside of individual test cases.
const TestResult& UnitTest::ad_hoc_test_result() const {
return *impl()->ad_hoc_test_result();
}
// Gets the i-th test case among all the test cases. i can range from 0 to
// total_test_case_count() - 1. If i is not in that range, returns NULL.
TestCase* UnitTest::GetMutableTestCase(int i) {
return impl()->GetMutableTestCase(i);
}
// Returns the list of event listeners that can be used to track events
// inside Google Test.
TestEventListeners& UnitTest::listeners() {
return *impl()->listeners();
}
// Registers and returns a global test environment. When a test
// program is run, all global test environments will be set-up in the
// order they were registered. After all tests in the program have
// finished, all global test environments will be torn-down in the
// *reverse* order they were registered.
//
// The UnitTest object takes ownership of the given environment.
//
// We don't protect this under mutex_, as we only support calling it
// from the main thread.
Environment* UnitTest::AddEnvironment(Environment* env) {
if (env == NULL) {
return NULL;
}
impl_->environments().push_back(env);
return env;
}
// Adds a TestPartResult to the current TestResult object. All Google Test
// assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call
// this to report their results. The user code should use the
// assertion macros instead of calling this directly.
void UnitTest::AddTestPartResult(
TestPartResult::Type result_type,
const char* file_name,
int line_number,
const std::string& message,
const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) {
Message msg;
msg << message;
internal::MutexLock lock(&mutex_);
if (impl_->gtest_trace_stack().size() > 0) {
msg << "\n" << GTEST_NAME_ << " trace:";
for (int i = static_cast<int>(impl_->gtest_trace_stack().size());
i > 0; --i) {
const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1];
msg << "\n" << internal::FormatFileLocation(trace.file, trace.line)
<< " " << trace.message;
}
}
if (os_stack_trace.c_str() != NULL && !os_stack_trace.empty()) {
msg << internal::kStackTraceMarker << os_stack_trace;
}
const TestPartResult result =
TestPartResult(result_type, file_name, line_number,
msg.GetString().c_str());
impl_->GetTestPartResultReporterForCurrentThread()->
ReportTestPartResult(result);
if (result_type != TestPartResult::kSuccess) {
// gtest_break_on_failure takes precedence over
// gtest_throw_on_failure. This allows a user to set the latter
// in the code (perhaps in order to use Google Test assertions
// with another testing framework) and specify the former on the
// command line for debugging.
if (GTEST_FLAG(break_on_failure)) {
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
// Using DebugBreak on Windows allows gtest to still break into a debugger
// when a failure happens and both the --gtest_break_on_failure and
// the --gtest_catch_exceptions flags are specified.
DebugBreak();
#else
// Dereference NULL through a volatile pointer to prevent the compiler
// from removing. We use this rather than abort() or __builtin_trap() for
// portability: Symbian doesn't implement abort() well, and some debuggers
// don't correctly trap abort().
*static_cast<volatile int*>(NULL) = 1;
#endif // GTEST_OS_WINDOWS
} else if (GTEST_FLAG(throw_on_failure)) {
#if GTEST_HAS_EXCEPTIONS
throw internal::GoogleTestFailureException(result);
#else
// We cannot call abort() as it generates a pop-up in debug mode
// that cannot be suppressed in VC 7.1 or below.
exit(1);
#endif
}
}
}
// Adds a TestProperty to the current TestResult object when invoked from
// inside a test, to current TestCase's ad_hoc_test_result_ when invoked
// from SetUpTestCase or TearDownTestCase, or to the global property set
// when invoked elsewhere. If the result already contains a property with
// the same key, the value will be updated.
void UnitTest::RecordProperty(const std::string& key,
const std::string& value) {
impl_->RecordProperty(TestProperty(key, value));
}
// Runs all tests in this UnitTest object and prints the result.
// Returns 0 if successful, or 1 otherwise.
//
// We don't protect this under mutex_, as we only support calling it
// from the main thread.
int UnitTest::Run() {
const bool in_death_test_child_process =
internal::GTEST_FLAG(internal_run_death_test).length() > 0;
// Google Test implements this protocol for catching that a test
// program exits before returning control to Google Test:
//
// 1. Upon start, Google Test creates a file whose absolute path
// is specified by the environment variable
// TEST_PREMATURE_EXIT_FILE.
// 2. When Google Test has finished its work, it deletes the file.
//
// This allows a test runner to set TEST_PREMATURE_EXIT_FILE before
// running a Google-Test-based test program and check the existence
// of the file at the end of the test execution to see if it has
// exited prematurely.
// If we are in the child process of a death test, don't
// create/delete the premature exit file, as doing so is unnecessary
// and will confuse the parent process. Otherwise, create/delete
// the file upon entering/leaving this function. If the program
// somehow exits before this function has a chance to return, the
// premature-exit file will be left undeleted, causing a test runner
// that understands the premature-exit-file protocol to report the
// test as having failed.
const internal::ScopedPrematureExitFile premature_exit_file(
in_death_test_child_process ?
NULL : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE"));
// Captures the value of GTEST_FLAG(catch_exceptions). This value will be
// used for the duration of the program.
impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions));
#if GTEST_HAS_SEH
// Either the user wants Google Test to catch exceptions thrown by the
// tests or this is executing in the context of death test child
// process. In either case the user does not want to see pop-up dialogs
// about crashes - they are expected.
if (impl()->catch_exceptions() || in_death_test_child_process) {
# if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
// SetErrorMode doesn't exist on CE.
SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT |
SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX);
# endif // !GTEST_OS_WINDOWS_MOBILE
# if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE
// Death test children can be terminated with _abort(). On Windows,
// _abort() can show a dialog with a warning message. This forces the
// abort message to go to stderr instead.
_set_error_mode(_OUT_TO_STDERR);
# endif
# if _MSC_VER >= 1400 && !GTEST_OS_WINDOWS_MOBILE
// In the debug version, Visual Studio pops up a separate dialog
// offering a choice to debug the aborted program. We need to suppress
// this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement
// executed. Google Test will notify the user of any unexpected
// failure via stderr.
//
// VC++ doesn't define _set_abort_behavior() prior to the version 8.0.
// Users of prior VC versions shall suffer the agony and pain of
// clicking through the countless debug dialogs.
// TODO(vladl@google.com): find a way to suppress the abort dialog() in the
// debug mode when compiled with VC 7.1 or lower.
if (!GTEST_FLAG(break_on_failure))
_set_abort_behavior(
0x0, // Clear the following flags:
_WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump.
# endif
}
#endif // GTEST_HAS_SEH
return internal::HandleExceptionsInMethodIfSupported(
impl(),
&internal::UnitTestImpl::RunAllTests,
"auxiliary test code (environments or event listeners)") ? 0 : 1;
}
// Returns the working directory when the first TEST() or TEST_F() was
// executed.
const char* UnitTest::original_working_dir() const {
return impl_->original_working_dir_.c_str();
}
// Returns the TestCase object for the test that's currently running,
// or NULL if no test is running.
const TestCase* UnitTest::current_test_case() const
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
return impl_->current_test_case();
}
// Returns the TestInfo object for the test that's currently running,
// or NULL if no test is running.
const TestInfo* UnitTest::current_test_info() const
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
return impl_->current_test_info();
}
// Returns the random seed used at the start of the current test run.
int UnitTest::random_seed() const { return impl_->random_seed(); }
#if GTEST_HAS_PARAM_TEST
// Returns ParameterizedTestCaseRegistry object used to keep track of
// value-parameterized tests and instantiate and register them.
internal::ParameterizedTestCaseRegistry&
UnitTest::parameterized_test_registry()
GTEST_LOCK_EXCLUDED_(mutex_) {
return impl_->parameterized_test_registry();
}
#endif // GTEST_HAS_PARAM_TEST
// Creates an empty UnitTest.
UnitTest::UnitTest() {
impl_ = new internal::UnitTestImpl(this);
}
// Destructor of UnitTest.
UnitTest::~UnitTest() {
delete impl_;
}
// Pushes a trace defined by SCOPED_TRACE() on to the per-thread
// Google Test trace stack.
void UnitTest::PushGTestTrace(const internal::TraceInfo& trace)
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
impl_->gtest_trace_stack().push_back(trace);
}
// Pops a trace from the per-thread Google Test trace stack.
void UnitTest::PopGTestTrace()
GTEST_LOCK_EXCLUDED_(mutex_) {
internal::MutexLock lock(&mutex_);
impl_->gtest_trace_stack().pop_back();
}
namespace internal {
UnitTestImpl::UnitTestImpl(UnitTest* parent)
: parent_(parent),
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */)
default_global_test_part_result_reporter_(this),
default_per_thread_test_part_result_reporter_(this),
GTEST_DISABLE_MSC_WARNINGS_POP_()
global_test_part_result_repoter_(
&default_global_test_part_result_reporter_),
per_thread_test_part_result_reporter_(
&default_per_thread_test_part_result_reporter_),
#if GTEST_HAS_PARAM_TEST
parameterized_test_registry_(),
parameterized_tests_registered_(false),
#endif // GTEST_HAS_PARAM_TEST
last_death_test_case_(-1),
current_test_case_(NULL),
current_test_info_(NULL),
ad_hoc_test_result_(),
os_stack_trace_getter_(NULL),
post_flag_parse_init_performed_(false),
random_seed_(0), // Will be overridden by the flag before first use.
random_(0), // Will be reseeded before first use.
start_timestamp_(0),
elapsed_time_(0),
#if GTEST_HAS_DEATH_TEST
death_test_factory_(new DefaultDeathTestFactory),
#endif
// Will be overridden by the flag before first use.
catch_exceptions_(false) {
listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter);
}
UnitTestImpl::~UnitTestImpl() {
// Deletes every TestCase.
ForEach(test_cases_, internal::Delete<TestCase>);
// Deletes every Environment.
ForEach(environments_, internal::Delete<Environment>);
delete os_stack_trace_getter_;
}
// Adds a TestProperty to the current TestResult object when invoked in a
// context of a test, to current test case's ad_hoc_test_result when invoke
// from SetUpTestCase/TearDownTestCase, or to the global property set
// otherwise. If the result already contains a property with the same key,
// the value will be updated.
void UnitTestImpl::RecordProperty(const TestProperty& test_property) {
std::string xml_element;
TestResult* test_result; // TestResult appropriate for property recording.
if (current_test_info_ != NULL) {
xml_element = "testcase";
test_result = &(current_test_info_->result_);
} else if (current_test_case_ != NULL) {
xml_element = "testsuite";
test_result = &(current_test_case_->ad_hoc_test_result_);
} else {
xml_element = "testsuites";
test_result = &ad_hoc_test_result_;
}
test_result->RecordProperty(xml_element, test_property);
}
#if GTEST_HAS_DEATH_TEST
// Disables event forwarding if the control is currently in a death test
// subprocess. Must not be called before InitGoogleTest.
void UnitTestImpl::SuppressTestEventsIfInSubprocess() {
if (internal_run_death_test_flag_.get() != NULL)
listeners()->SuppressEventForwarding();
}
#endif // GTEST_HAS_DEATH_TEST
// Initializes event listeners performing XML output as specified by
// UnitTestOptions. Must not be called before InitGoogleTest.
void UnitTestImpl::ConfigureXmlOutput() {
const std::string& output_format = UnitTestOptions::GetOutputFormat();
if (output_format == "xml") {
listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str()));
} else if (output_format != "") {
printf("WARNING: unrecognized output format \"%s\" ignored.\n",
output_format.c_str());
fflush(stdout);
}
}
#if GTEST_CAN_STREAM_RESULTS_
// Initializes event listeners for streaming test results in string form.
// Must not be called before InitGoogleTest.
void UnitTestImpl::ConfigureStreamingOutput() {
const std::string& target = GTEST_FLAG(stream_result_to);
if (!target.empty()) {
const size_t pos = target.find(':');
if (pos != std::string::npos) {
listeners()->Append(new StreamingListener(target.substr(0, pos),
target.substr(pos+1)));
} else {
printf("WARNING: unrecognized streaming target \"%s\" ignored.\n",
target.c_str());
fflush(stdout);
}
}
}
#endif // GTEST_CAN_STREAM_RESULTS_
// Performs initialization dependent upon flag values obtained in
// ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to
// ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest
// this function is also called from RunAllTests. Since this function can be
// called more than once, it has to be idempotent.
void UnitTestImpl::PostFlagParsingInit() {
// Ensures that this function does not execute more than once.
if (!post_flag_parse_init_performed_) {
post_flag_parse_init_performed_ = true;
#if GTEST_HAS_DEATH_TEST
InitDeathTestSubprocessControlInfo();
SuppressTestEventsIfInSubprocess();
#endif // GTEST_HAS_DEATH_TEST
// Registers parameterized tests. This makes parameterized tests
// available to the UnitTest reflection API without running
// RUN_ALL_TESTS.
RegisterParameterizedTests();
// Configures listeners for XML output. This makes it possible for users
// to shut down the default XML output before invoking RUN_ALL_TESTS.
ConfigureXmlOutput();
#if GTEST_CAN_STREAM_RESULTS_
// Configures listeners for streaming test results to the specified server.
ConfigureStreamingOutput();
#endif // GTEST_CAN_STREAM_RESULTS_
}
}
// A predicate that checks the name of a TestCase against a known
// value.
//
// This is used for implementation of the UnitTest class only. We put
// it in the anonymous namespace to prevent polluting the outer
// namespace.
//
// TestCaseNameIs is copyable.
class TestCaseNameIs {
public:
// Constructor.
explicit TestCaseNameIs(const std::string& name)
: name_(name) {}
// Returns true iff the name of test_case matches name_.
bool operator()(const TestCase* test_case) const {
return test_case != NULL && strcmp(test_case->name(), name_.c_str()) == 0;
}
private:
std::string name_;
};
// Finds and returns a TestCase with the given name. If one doesn't
// exist, creates one and returns it. It's the CALLER'S
// RESPONSIBILITY to ensure that this function is only called WHEN THE
// TESTS ARE NOT SHUFFLED.
//
// Arguments:
//
// test_case_name: name of the test case
// type_param: the name of the test case's type parameter, or NULL if
// this is not a typed or a type-parameterized test case.
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
TestCase* UnitTestImpl::GetTestCase(const char* test_case_name,
const char* type_param,
Test::SetUpTestCaseFunc set_up_tc,
Test::TearDownTestCaseFunc tear_down_tc) {
// Can we find a TestCase with the given name?
const std::vector<TestCase*>::const_iterator test_case =
std::find_if(test_cases_.begin(), test_cases_.end(),
TestCaseNameIs(test_case_name));
if (test_case != test_cases_.end())
return *test_case;
// No. Let's create one.
TestCase* const new_test_case =
new TestCase(test_case_name, type_param, set_up_tc, tear_down_tc);
// Is this a death test case?
if (internal::UnitTestOptions::MatchesFilter(test_case_name,
kDeathTestCaseFilter)) {
// Yes. Inserts the test case after the last death test case
// defined so far. This only works when the test cases haven't
// been shuffled. Otherwise we may end up running a death test
// after a non-death test.
++last_death_test_case_;
test_cases_.insert(test_cases_.begin() + last_death_test_case_,
new_test_case);
} else {
// No. Appends to the end of the list.
test_cases_.push_back(new_test_case);
}
test_case_indices_.push_back(static_cast<int>(test_case_indices_.size()));
return new_test_case;
}
// Helpers for setting up / tearing down the given environment. They
// are for use in the ForEach() function.
static void SetUpEnvironment(Environment* env) { env->SetUp(); }
static void TearDownEnvironment(Environment* env) { env->TearDown(); }
// Runs all tests in this UnitTest object, prints the result, and
// returns true if all tests are successful. If any exception is
// thrown during a test, the test is considered to be failed, but the
// rest of the tests will still be run.
//
// When parameterized tests are enabled, it expands and registers
// parameterized tests first in RegisterParameterizedTests().
// All other functions called from RunAllTests() may safely assume that
// parameterized tests are ready to be counted and run.
bool UnitTestImpl::RunAllTests() {
// Makes sure InitGoogleTest() was called.
if (!GTestIsInitialized()) {
printf("%s",
"\nThis test program did NOT call ::testing::InitGoogleTest "
"before calling RUN_ALL_TESTS(). Please fix it.\n");
return false;
}
// Do not run any test if the --help flag was specified.
if (g_help_flag)
return true;
// Repeats the call to the post-flag parsing initialization in case the
// user didn't call InitGoogleTest.
PostFlagParsingInit();
// Even if sharding is not on, test runners may want to use the
// GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding
// protocol.
internal::WriteToShardStatusFileIfNeeded();
// True iff we are in a subprocess for running a thread-safe-style
// death test.
bool in_subprocess_for_death_test = false;
#if GTEST_HAS_DEATH_TEST
in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != NULL);
#endif // GTEST_HAS_DEATH_TEST
const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex,
in_subprocess_for_death_test);
// Compares the full test names with the filter to decide which
// tests to run.
const bool has_tests_to_run = FilterTests(should_shard
? HONOR_SHARDING_PROTOCOL
: IGNORE_SHARDING_PROTOCOL) > 0;
// Lists the tests and exits if the --gtest_list_tests flag was specified.
if (GTEST_FLAG(list_tests)) {
// This must be called *after* FilterTests() has been called.
ListTestsMatchingFilter();
return true;
}
random_seed_ = GTEST_FLAG(shuffle) ?
GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0;
// True iff at least one test has failed.
bool failed = false;
TestEventListener* repeater = listeners()->repeater();
start_timestamp_ = GetTimeInMillis();
repeater->OnTestProgramStart(*parent_);
// How many times to repeat the tests? We don't want to repeat them
// when we are inside the subprocess of a death test.
const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat);
// Repeats forever if the repeat count is negative.
const bool forever = repeat < 0;
for (int i = 0; forever || i != repeat; i++) {
// We want to preserve failures generated by ad-hoc test
// assertions executed before RUN_ALL_TESTS().
ClearNonAdHocTestResult();
const TimeInMillis start = GetTimeInMillis();
// Shuffles test cases and tests if requested.
if (has_tests_to_run && GTEST_FLAG(shuffle)) {
random()->Reseed(random_seed_);
// This should be done before calling OnTestIterationStart(),
// such that a test event listener can see the actual test order
// in the event.
ShuffleTests();
}
// Tells the unit test event listeners that the tests are about to start.
repeater->OnTestIterationStart(*parent_, i);
// Runs each test case if there is at least one test to run.
if (has_tests_to_run) {
// Sets up all environments beforehand.
repeater->OnEnvironmentsSetUpStart(*parent_);
ForEach(environments_, SetUpEnvironment);
repeater->OnEnvironmentsSetUpEnd(*parent_);
// Runs the tests only if there was no fatal failure during global
// set-up.
if (!Test::HasFatalFailure()) {
for (int test_index = 0; test_index < total_test_case_count();
test_index++) {
GetMutableTestCase(test_index)->Run();
}
}
// Tears down all environments in reverse order afterwards.
repeater->OnEnvironmentsTearDownStart(*parent_);
std::for_each(environments_.rbegin(), environments_.rend(),
TearDownEnvironment);
repeater->OnEnvironmentsTearDownEnd(*parent_);
}
elapsed_time_ = GetTimeInMillis() - start;
// Tells the unit test event listener that the tests have just finished.
repeater->OnTestIterationEnd(*parent_, i);
// Gets the result and clears it.
if (!Passed()) {
failed = true;
}
// Restores the original test order after the iteration. This
// allows the user to quickly repro a failure that happens in the
// N-th iteration without repeating the first (N - 1) iterations.
// This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in
// case the user somehow changes the value of the flag somewhere
// (it's always safe to unshuffle the tests).
UnshuffleTests();
if (GTEST_FLAG(shuffle)) {
// Picks a new random seed for each iteration.
random_seed_ = GetNextRandomSeed(random_seed_);
}
}
repeater->OnTestProgramEnd(*parent_);
return !failed;
}
// Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file
// if the variable is present. If a file already exists at this location, this
// function will write over it. If the variable is present, but the file cannot
// be created, prints an error and exits.
void WriteToShardStatusFileIfNeeded() {
const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile);
if (test_shard_file != NULL) {
FILE* const file = posix::FOpen(test_shard_file, "w");
if (file == NULL) {
ColoredPrintf(COLOR_RED,
"Could not write to the test shard status file \"%s\" "
"specified by the %s environment variable.\n",
test_shard_file, kTestShardStatusFile);
fflush(stdout);
exit(EXIT_FAILURE);
}
fclose(file);
}
}
// Checks whether sharding is enabled by examining the relevant
// environment variable values. If the variables are present,
// but inconsistent (i.e., shard_index >= total_shards), prints
// an error and exits. If in_subprocess_for_death_test, sharding is
// disabled because it must only be applied to the original test
// process. Otherwise, we could filter out death tests we intended to execute.
bool ShouldShard(const char* total_shards_env,
const char* shard_index_env,
bool in_subprocess_for_death_test) {
if (in_subprocess_for_death_test) {
return false;
}
const Int32 total_shards = Int32FromEnvOrDie(total_shards_env, -1);
const Int32 shard_index = Int32FromEnvOrDie(shard_index_env, -1);
if (total_shards == -1 && shard_index == -1) {
return false;
} else if (total_shards == -1 && shard_index != -1) {
const Message msg = Message()
<< "Invalid environment variables: you have "
<< kTestShardIndex << " = " << shard_index
<< ", but have left " << kTestTotalShards << " unset.\n";
ColoredPrintf(COLOR_RED, msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
} else if (total_shards != -1 && shard_index == -1) {
const Message msg = Message()
<< "Invalid environment variables: you have "
<< kTestTotalShards << " = " << total_shards
<< ", but have left " << kTestShardIndex << " unset.\n";
ColoredPrintf(COLOR_RED, msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
} else if (shard_index < 0 || shard_index >= total_shards) {
const Message msg = Message()
<< "Invalid environment variables: we require 0 <= "
<< kTestShardIndex << " < " << kTestTotalShards
<< ", but you have " << kTestShardIndex << "=" << shard_index
<< ", " << kTestTotalShards << "=" << total_shards << ".\n";
ColoredPrintf(COLOR_RED, msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
}
return total_shards > 1;
}
// Parses the environment variable var as an Int32. If it is unset,
// returns default_val. If it is not an Int32, prints an error
// and aborts.
Int32 Int32FromEnvOrDie(const char* var, Int32 default_val) {
const char* str_val = posix::GetEnv(var);
if (str_val == NULL) {
return default_val;
}
Int32 result;
if (!ParseInt32(Message() << "The value of environment variable " << var,
str_val, &result)) {
exit(EXIT_FAILURE);
}
return result;
}
// Given the total number of shards, the shard index, and the test id,
// returns true iff the test should be run on this shard. The test id is
// some arbitrary but unique non-negative integer assigned to each test
// method. Assumes that 0 <= shard_index < total_shards.
bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) {
return (test_id % total_shards) == shard_index;
}
// Compares the name of each test with the user-specified filter to
// decide whether the test should be run, then records the result in
// each TestCase and TestInfo object.
// If shard_tests == true, further filters tests based on sharding
// variables in the environment - see
// http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide.
// Returns the number of tests that should run.
int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) {
const Int32 total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ?
Int32FromEnvOrDie(kTestTotalShards, -1) : -1;
const Int32 shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ?
Int32FromEnvOrDie(kTestShardIndex, -1) : -1;
// num_runnable_tests are the number of tests that will
// run across all shards (i.e., match filter and are not disabled).
// num_selected_tests are the number of tests to be run on
// this shard.
int num_runnable_tests = 0;
int num_selected_tests = 0;
for (size_t i = 0; i < test_cases_.size(); i++) {
TestCase* const test_case = test_cases_[i];
const std::string &test_case_name = test_case->name();
test_case->set_should_run(false);
for (size_t j = 0; j < test_case->test_info_list().size(); j++) {
TestInfo* const test_info = test_case->test_info_list()[j];
const std::string test_name(test_info->name());
// A test is disabled if test case name or test name matches
// kDisableTestFilter.
const bool is_disabled =
internal::UnitTestOptions::MatchesFilter(test_case_name,
kDisableTestFilter) ||
internal::UnitTestOptions::MatchesFilter(test_name,
kDisableTestFilter);
test_info->is_disabled_ = is_disabled;
const bool matches_filter =
internal::UnitTestOptions::FilterMatchesTest(test_case_name,
test_name);
test_info->matches_filter_ = matches_filter;
const bool is_runnable =
(GTEST_FLAG(also_run_disabled_tests) || !is_disabled) &&
matches_filter;
const bool is_selected = is_runnable &&
(shard_tests == IGNORE_SHARDING_PROTOCOL ||
ShouldRunTestOnShard(total_shards, shard_index,
num_runnable_tests));
num_runnable_tests += is_runnable;
num_selected_tests += is_selected;
test_info->should_run_ = is_selected;
test_case->set_should_run(test_case->should_run() || is_selected);
}
}
return num_selected_tests;
}
// Prints the given C-string on a single line by replacing all '\n'
// characters with string "\\n". If the output takes more than
// max_length characters, only prints the first max_length characters
// and "...".
static void PrintOnOneLine(const char* str, int max_length) {
if (str != NULL) {
for (int i = 0; *str != '\0'; ++str) {
if (i >= max_length) {
printf("...");
break;
}
if (*str == '\n') {
printf("\\n");
i += 2;
} else {
printf("%c", *str);
++i;
}
}
}
}
// Prints the names of the tests matching the user-specified filter flag.
void UnitTestImpl::ListTestsMatchingFilter() {
// Print at most this many characters for each type/value parameter.
const int kMaxParamLength = 250;
for (size_t i = 0; i < test_cases_.size(); i++) {
const TestCase* const test_case = test_cases_[i];
bool printed_test_case_name = false;
for (size_t j = 0; j < test_case->test_info_list().size(); j++) {
const TestInfo* const test_info =
test_case->test_info_list()[j];
if (test_info->matches_filter_) {
if (!printed_test_case_name) {
printed_test_case_name = true;
printf("%s.", test_case->name());
if (test_case->type_param() != NULL) {
printf(" # %s = ", kTypeParamLabel);
// We print the type parameter on a single line to make
// the output easy to parse by a program.
PrintOnOneLine(test_case->type_param(), kMaxParamLength);
}
printf("\n");
}
printf(" %s", test_info->name());
if (test_info->value_param() != NULL) {
printf(" # %s = ", kValueParamLabel);
// We print the value parameter on a single line to make the
// output easy to parse by a program.
PrintOnOneLine(test_info->value_param(), kMaxParamLength);
}
printf("\n");
}
}
}
fflush(stdout);
}
// Sets the OS stack trace getter.
//
// Does nothing if the input and the current OS stack trace getter are
// the same; otherwise, deletes the old getter and makes the input the
// current getter.
void UnitTestImpl::set_os_stack_trace_getter(
OsStackTraceGetterInterface* getter) {
if (os_stack_trace_getter_ != getter) {
delete os_stack_trace_getter_;
os_stack_trace_getter_ = getter;
}
}
// Returns the current OS stack trace getter if it is not NULL;
// otherwise, creates an OsStackTraceGetter, makes it the current
// getter, and returns it.
OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() {
if (os_stack_trace_getter_ == NULL) {
os_stack_trace_getter_ = new OsStackTraceGetter;
}
return os_stack_trace_getter_;
}
// Returns the TestResult for the test that's currently running, or
// the TestResult for the ad hoc test if no test is running.
TestResult* UnitTestImpl::current_test_result() {
return current_test_info_ ?
&(current_test_info_->result_) : &ad_hoc_test_result_;
}
// Shuffles all test cases, and the tests within each test case,
// making sure that death tests are still run first.
void UnitTestImpl::ShuffleTests() {
// Shuffles the death test cases.
ShuffleRange(random(), 0, last_death_test_case_ + 1, &test_case_indices_);
// Shuffles the non-death test cases.
ShuffleRange(random(), last_death_test_case_ + 1,
static_cast<int>(test_cases_.size()), &test_case_indices_);
// Shuffles the tests inside each test case.
for (size_t i = 0; i < test_cases_.size(); i++) {
test_cases_[i]->ShuffleTests(random());
}
}
// Restores the test cases and tests to their order before the first shuffle.
void UnitTestImpl::UnshuffleTests() {
for (size_t i = 0; i < test_cases_.size(); i++) {
// Unshuffles the tests in each test case.
test_cases_[i]->UnshuffleTests();
// Resets the index of each test case.
test_case_indices_[i] = static_cast<int>(i);
}
}
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/,
int skip_count) {
// We pass skip_count + 1 to skip this wrapper function in addition
// to what the user really wants to skip.
return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1);
}
// Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to
// suppress unreachable code warnings.
namespace {
class ClassUniqueToAlwaysTrue {};
}
bool IsTrue(bool condition) { return condition; }
bool AlwaysTrue() {
#if GTEST_HAS_EXCEPTIONS
// This condition is always false so AlwaysTrue() never actually throws,
// but it makes the compiler think that it may throw.
if (IsTrue(false))
throw ClassUniqueToAlwaysTrue();
#endif // GTEST_HAS_EXCEPTIONS
return true;
}
// If *pstr starts with the given prefix, modifies *pstr to be right
// past the prefix and returns true; otherwise leaves *pstr unchanged
// and returns false. None of pstr, *pstr, and prefix can be NULL.
bool SkipPrefix(const char* prefix, const char** pstr) {
const size_t prefix_len = strlen(prefix);
if (strncmp(*pstr, prefix, prefix_len) == 0) {
*pstr += prefix_len;
return true;
}
return false;
}
// Parses a string as a command line flag. The string should have
// the format "--flag=value". When def_optional is true, the "=value"
// part can be omitted.
//
// Returns the value of the flag, or NULL if the parsing failed.
const char* ParseFlagValue(const char* str,
const char* flag,
bool def_optional) {
// str and flag must not be NULL.
if (str == NULL || flag == NULL) return NULL;
// The flag must start with "--" followed by GTEST_FLAG_PREFIX_.
const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag;
const size_t flag_len = flag_str.length();
if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL;
// Skips the flag name.
const char* flag_end = str + flag_len;
// When def_optional is true, it's OK to not have a "=value" part.
if (def_optional && (flag_end[0] == '\0')) {
return flag_end;
}
// If def_optional is true and there are more characters after the
// flag name, or if def_optional is false, there must be a '=' after
// the flag name.
if (flag_end[0] != '=') return NULL;
// Returns the string after "=".
return flag_end + 1;
}
// Parses a string for a bool flag, in the form of either
// "--flag=value" or "--flag".
//
// In the former case, the value is taken as true as long as it does
// not start with '0', 'f', or 'F'.
//
// In the latter case, the value is taken as true.
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseBoolFlag(const char* str, const char* flag, bool* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag, true);
// Aborts if the parsing failed.
if (value_str == NULL) return false;
// Converts the string value to a bool.
*value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F');
return true;
}
// Parses a string for an Int32 flag, in the form of
// "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseInt32Flag(const char* str, const char* flag, Int32* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag, false);
// Aborts if the parsing failed.
if (value_str == NULL) return false;
// Sets *value to the value of the flag.
return ParseInt32(Message() << "The value of flag --" << flag,
value_str, value);
}
// Parses a string for a string flag, in the form of
// "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseStringFlag(const char* str, const char* flag, std::string* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag, false);
// Aborts if the parsing failed.
if (value_str == NULL) return false;
// Sets *value to the value of the flag.
*value = value_str;
return true;
}
// Determines whether a string has a prefix that Google Test uses for its
// flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_.
// If Google Test detects that a command line flag has its prefix but is not
// recognized, it will print its help message. Flags starting with
// GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test
// internal flags and do not trigger the help message.
static bool HasGoogleTestFlagPrefix(const char* str) {
return (SkipPrefix("--", &str) ||
SkipPrefix("-", &str) ||
SkipPrefix("/", &str)) &&
!SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) &&
(SkipPrefix(GTEST_FLAG_PREFIX_, &str) ||
SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str));
}
// Prints a string containing code-encoded text. The following escape
// sequences can be used in the string to control the text color:
//
// @@ prints a single '@' character.
// @R changes the color to red.
// @G changes the color to green.
// @Y changes the color to yellow.
// @D changes to the default terminal text color.
//
// TODO(wan@google.com): Write tests for this once we add stdout
// capturing to Google Test.
static void PrintColorEncoded(const char* str) {
GTestColor color = COLOR_DEFAULT; // The current color.
// Conceptually, we split the string into segments divided by escape
// sequences. Then we print one segment at a time. At the end of
// each iteration, the str pointer advances to the beginning of the
// next segment.
for (;;) {
const char* p = strchr(str, '@');
if (p == NULL) {
ColoredPrintf(color, "%s", str);
return;
}
ColoredPrintf(color, "%s", std::string(str, p).c_str());
const char ch = p[1];
str = p + 2;
if (ch == '@') {
ColoredPrintf(color, "@");
} else if (ch == 'D') {
color = COLOR_DEFAULT;
} else if (ch == 'R') {
color = COLOR_RED;
} else if (ch == 'G') {
color = COLOR_GREEN;
} else if (ch == 'Y') {
color = COLOR_YELLOW;
} else {
--str;
}
}
}
static const char kColorEncodedHelpMessage[] =
"This program contains tests written using " GTEST_NAME_ ". You can use the\n"
"following command line flags to control its behavior:\n"
"\n"
"Test Selection:\n"
" @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n"
" List the names of all tests instead of running them. The name of\n"
" TEST(Foo, Bar) is \"Foo.Bar\".\n"
" @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSTIVE_PATTERNS"
"[@G-@YNEGATIVE_PATTERNS]@D\n"
" Run only the tests whose name matches one of the positive patterns but\n"
" none of the negative patterns. '?' matches any single character; '*'\n"
" matches any substring; ':' separates two patterns.\n"
" @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n"
" Run all disabled tests too.\n"
"\n"
"Test Execution:\n"
" @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n"
" Run the tests repeatedly; use a negative count to repeat forever.\n"
" @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n"
" Randomize tests' orders on every iteration.\n"
" @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n"
" Random number seed to use for shuffling test orders (between 1 and\n"
" 99999, or 0 to use a seed based on the current time).\n"
"\n"
"Test Output:\n"
" @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n"
" Enable/disable colored output. The default is @Gauto@D.\n"
" -@G-" GTEST_FLAG_PREFIX_ "print_time=0@D\n"
" Don't print the elapsed time of each test.\n"
" @G--" GTEST_FLAG_PREFIX_ "output=xml@Y[@G:@YDIRECTORY_PATH@G"
GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n"
" Generate an XML report in the given directory or with the given file\n"
" name. @YFILE_PATH@D defaults to @Gtest_details.xml@D.\n"
#if GTEST_CAN_STREAM_RESULTS_
" @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n"
" Stream test results to the given server.\n"
#endif // GTEST_CAN_STREAM_RESULTS_
"\n"
"Assertion Behavior:\n"
#if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
" @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n"
" Set the default death test style.\n"
#endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
" @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n"
" Turn assertion failures into debugger break-points.\n"
" @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n"
" Turn assertion failures into C++ exceptions.\n"
" @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n"
" Do not report exceptions as test failures. Instead, allow them\n"
" to crash the program or throw a pop-up (on Windows).\n"
"\n"
"Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set "
"the corresponding\n"
"environment variable of a flag (all letters in upper-case). For example, to\n"
"disable colored text output, you can either specify @G--" GTEST_FLAG_PREFIX_
"color=no@D or set\n"
"the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n"
"\n"
"For more information, please read the " GTEST_NAME_ " documentation at\n"
"@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n"
"(not one in your own code or tests), please report it to\n"
"@G<" GTEST_DEV_EMAIL_ ">@D.\n";
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test. The type parameter CharType can be
// instantiated to either char or wchar_t.
template <typename CharType>
void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) {
for (int i = 1; i < *argc; i++) {
const std::string arg_string = StreamableToString(argv[i]);
const char* const arg = arg_string.c_str();
using internal::ParseBoolFlag;
using internal::ParseInt32Flag;
using internal::ParseStringFlag;
// Do we see a Google Test flag?
if (ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag,
&GTEST_FLAG(also_run_disabled_tests)) ||
ParseBoolFlag(arg, kBreakOnFailureFlag,
&GTEST_FLAG(break_on_failure)) ||
ParseBoolFlag(arg, kCatchExceptionsFlag,
&GTEST_FLAG(catch_exceptions)) ||
ParseStringFlag(arg, kColorFlag, &GTEST_FLAG(color)) ||
ParseStringFlag(arg, kDeathTestStyleFlag,
&GTEST_FLAG(death_test_style)) ||
ParseBoolFlag(arg, kDeathTestUseFork,
&GTEST_FLAG(death_test_use_fork)) ||
ParseStringFlag(arg, kFilterFlag, &GTEST_FLAG(filter)) ||
ParseStringFlag(arg, kInternalRunDeathTestFlag,
&GTEST_FLAG(internal_run_death_test)) ||
ParseBoolFlag(arg, kListTestsFlag, &GTEST_FLAG(list_tests)) ||
ParseStringFlag(arg, kOutputFlag, &GTEST_FLAG(output)) ||
ParseBoolFlag(arg, kPrintTimeFlag, &GTEST_FLAG(print_time)) ||
ParseInt32Flag(arg, kRandomSeedFlag, &GTEST_FLAG(random_seed)) ||
ParseInt32Flag(arg, kRepeatFlag, &GTEST_FLAG(repeat)) ||
ParseBoolFlag(arg, kShuffleFlag, &GTEST_FLAG(shuffle)) ||
ParseInt32Flag(arg, kStackTraceDepthFlag,
&GTEST_FLAG(stack_trace_depth)) ||
ParseStringFlag(arg, kStreamResultToFlag,
&GTEST_FLAG(stream_result_to)) ||
ParseBoolFlag(arg, kThrowOnFailureFlag,
&GTEST_FLAG(throw_on_failure))
) {
// Yes. Shift the remainder of the argv list left by one. Note
// that argv has (*argc + 1) elements, the last one always being
// NULL. The following loop moves the trailing NULL element as
// well.
for (int j = i; j != *argc; j++) {
argv[j] = argv[j + 1];
}
// Decrements the argument count.
(*argc)--;
// We also need to decrement the iterator as we just removed
// an element.
i--;
} else if (arg_string == "--help" || arg_string == "-h" ||
arg_string == "-?" || arg_string == "/?" ||
HasGoogleTestFlagPrefix(arg)) {
// Both help flag and unrecognized Google Test flags (excluding
// internal ones) trigger help display.
g_help_flag = true;
}
}
if (g_help_flag) {
// We print the help here instead of in RUN_ALL_TESTS(), as the
// latter may not be called at all if the user is using Google
// Test with another testing framework.
PrintColorEncoded(kColorEncodedHelpMessage);
}
}
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test.
void ParseGoogleTestFlagsOnly(int* argc, char** argv) {
ParseGoogleTestFlagsOnlyImpl(argc, argv);
}
void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) {
ParseGoogleTestFlagsOnlyImpl(argc, argv);
}
// The internal implementation of InitGoogleTest().
//
// The type parameter CharType can be instantiated to either char or
// wchar_t.
template <typename CharType>
void InitGoogleTestImpl(int* argc, CharType** argv) {
g_init_gtest_count++;
// We don't want to run the initialization code twice.
if (g_init_gtest_count != 1) return;
if (*argc <= 0) return;
internal::g_executable_path = internal::StreamableToString(argv[0]);
#if GTEST_HAS_DEATH_TEST
g_argvs.clear();
for (int i = 0; i != *argc; i++) {
g_argvs.push_back(StreamableToString(argv[i]));
}
#endif // GTEST_HAS_DEATH_TEST
ParseGoogleTestFlagsOnly(argc, argv);
GetUnitTestImpl()->PostFlagParsingInit();
}
} // namespace internal
// Initializes Google Test. This must be called before calling
// RUN_ALL_TESTS(). In particular, it parses a command line for the
// flags that Google Test recognizes. Whenever a Google Test flag is
// seen, it is removed from argv, and *argc is decremented.
//
// No value is returned. Instead, the Google Test flag variables are
// updated.
//
// Calling the function for the second time has no user-visible effect.
void InitGoogleTest(int* argc, char** argv) {
internal::InitGoogleTestImpl(argc, argv);
}
// This overloaded version can be used in Windows programs compiled in
// UNICODE mode.
void InitGoogleTest(int* argc, wchar_t** argv) {
internal::InitGoogleTestImpl(argc, argv);
}
} // namespace testing
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan), vladl@google.com (Vlad Losev)
//
// This file implements death tests.
#if GTEST_HAS_DEATH_TEST
# if GTEST_OS_MAC
# include <crt_externs.h>
# endif // GTEST_OS_MAC
# include <errno.h>
# include <fcntl.h>
# include <limits.h>
# if GTEST_OS_LINUX
# include <signal.h>
# endif // GTEST_OS_LINUX
# include <stdarg.h>
# if GTEST_OS_WINDOWS
# include <windows.h>
# else
# include <sys/mman.h>
# include <sys/wait.h>
# endif // GTEST_OS_WINDOWS
# if GTEST_OS_QNX
# include <spawn.h>
# endif // GTEST_OS_QNX
#endif // GTEST_HAS_DEATH_TEST
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick exists to
// prevent the accidental inclusion of gtest-internal-inl.h in the
// user's code.
#define GTEST_IMPLEMENTATION_ 1
#undef GTEST_IMPLEMENTATION_
namespace testing {
// Constants.
// The default death test style.
static const char kDefaultDeathTestStyle[] = "fast";
GTEST_DEFINE_string_(
death_test_style,
internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle),
"Indicates how to run a death test in a forked child process: "
"\"threadsafe\" (child process re-executes the test binary "
"from the beginning, running only the specific death test) or "
"\"fast\" (child process runs the death test immediately "
"after forking).");
GTEST_DEFINE_bool_(
death_test_use_fork,
internal::BoolFromGTestEnv("death_test_use_fork", false),
"Instructs to use fork()/_exit() instead of clone() in death tests. "
"Ignored and always uses fork() on POSIX systems where clone() is not "
"implemented. Useful when running under valgrind or similar tools if "
"those do not support clone(). Valgrind 3.3.1 will just fail if "
"it sees an unsupported combination of clone() flags. "
"It is not recommended to use this flag w/o valgrind though it will "
"work in 99% of the cases. Once valgrind is fixed, this flag will "
"most likely be removed.");
namespace internal {
GTEST_DEFINE_string_(
internal_run_death_test, "",
"Indicates the file, line number, temporal index of "
"the single death test to run, and a file descriptor to "
"which a success code may be sent, all separated by "
"the '|' characters. This flag is specified if and only if the current "
"process is a sub-process launched for running a thread-safe "
"death test. FOR INTERNAL USE ONLY.");
} // namespace internal
#if GTEST_HAS_DEATH_TEST
namespace internal {
// Valid only for fast death tests. Indicates the code is running in the
// child process of a fast style death test.
static bool g_in_fast_death_test_child = false;
// Returns a Boolean value indicating whether the caller is currently
// executing in the context of the death test child process. Tools such as
// Valgrind heap checkers may need this to modify their behavior in death
// tests. IMPORTANT: This is an internal utility. Using it may break the
// implementation of death tests. User code MUST NOT use it.
bool InDeathTestChild() {
# if GTEST_OS_WINDOWS
// On Windows, death tests are thread-safe regardless of the value of the
// death_test_style flag.
return !GTEST_FLAG(internal_run_death_test).empty();
# else
if (GTEST_FLAG(death_test_style) == "threadsafe")
return !GTEST_FLAG(internal_run_death_test).empty();
else
return g_in_fast_death_test_child;
#endif
}
} // namespace internal
// ExitedWithCode constructor.
ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) {
}
// ExitedWithCode function-call operator.
bool ExitedWithCode::operator()(int exit_status) const {
# if GTEST_OS_WINDOWS
return exit_status == exit_code_;
# else
return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_;
# endif // GTEST_OS_WINDOWS
}
# if !GTEST_OS_WINDOWS
// KilledBySignal constructor.
KilledBySignal::KilledBySignal(int signum) : signum_(signum) {
}
// KilledBySignal function-call operator.
bool KilledBySignal::operator()(int exit_status) const {
return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_;
}
# endif // !GTEST_OS_WINDOWS
namespace internal {
// Utilities needed for death tests.
// Generates a textual description of a given exit code, in the format
// specified by wait(2).
static std::string ExitSummary(int exit_code) {
Message m;
# if GTEST_OS_WINDOWS
m << "Exited with exit status " << exit_code;
# else
if (WIFEXITED(exit_code)) {
m << "Exited with exit status " << WEXITSTATUS(exit_code);
} else if (WIFSIGNALED(exit_code)) {
m << "Terminated by signal " << WTERMSIG(exit_code);
}
# ifdef WCOREDUMP
if (WCOREDUMP(exit_code)) {
m << " (core dumped)";
}
# endif
# endif // GTEST_OS_WINDOWS
return m.GetString();
}
// Returns true if exit_status describes a process that was terminated
// by a signal, or exited normally with a nonzero exit code.
bool ExitedUnsuccessfully(int exit_status) {
return !ExitedWithCode(0)(exit_status);
}
# if !GTEST_OS_WINDOWS
// Generates a textual failure message when a death test finds more than
// one thread running, or cannot determine the number of threads, prior
// to executing the given statement. It is the responsibility of the
// caller not to pass a thread_count of 1.
static std::string DeathTestThreadWarning(size_t thread_count) {
Message msg;
msg << "Death tests use fork(), which is unsafe particularly"
<< " in a threaded context. For this test, " << GTEST_NAME_ << " ";
if (thread_count == 0)
msg << "couldn't detect the number of threads.";
else
msg << "detected " << thread_count << " threads.";
return msg.GetString();
}
# endif // !GTEST_OS_WINDOWS
// Flag characters for reporting a death test that did not die.
static const char kDeathTestLived = 'L';
static const char kDeathTestReturned = 'R';
static const char kDeathTestThrew = 'T';
static const char kDeathTestInternalError = 'I';
// An enumeration describing all of the possible ways that a death test can
// conclude. DIED means that the process died while executing the test
// code; LIVED means that process lived beyond the end of the test code;
// RETURNED means that the test statement attempted to execute a return
// statement, which is not allowed; THREW means that the test statement
// returned control by throwing an exception. IN_PROGRESS means the test
// has not yet concluded.
// TODO(vladl@google.com): Unify names and possibly values for
// AbortReason, DeathTestOutcome, and flag characters above.
enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW };
// Routine for aborting the program which is safe to call from an
// exec-style death test child process, in which case the error
// message is propagated back to the parent process. Otherwise, the
// message is simply printed to stderr. In either case, the program
// then exits with status 1.
void DeathTestAbort(const std::string& message) {
// On a POSIX system, this function may be called from a threadsafe-style
// death test child process, which operates on a very small stack. Use
// the heap for any additional non-minuscule memory requirements.
const InternalRunDeathTestFlag* const flag =
GetUnitTestImpl()->internal_run_death_test_flag();
if (flag != NULL) {
FILE* parent = posix::FDOpen(flag->write_fd(), "w");
fputc(kDeathTestInternalError, parent);
fprintf(parent, "%s", message.c_str());
fflush(parent);
_exit(1);
} else {
fprintf(stderr, "%s", message.c_str());
fflush(stderr);
posix::Abort();
}
}
// A replacement for CHECK that calls DeathTestAbort if the assertion
// fails.
# define GTEST_DEATH_TEST_CHECK_(expression) \
do { \
if (!::testing::internal::IsTrue(expression)) { \
DeathTestAbort( \
::std::string("CHECK failed: File ") + __FILE__ + ", line " \
+ ::testing::internal::StreamableToString(__LINE__) + ": " \
+ #expression); \
} \
} while (::testing::internal::AlwaysFalse())
// This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for
// evaluating any system call that fulfills two conditions: it must return
// -1 on failure, and set errno to EINTR when it is interrupted and
// should be tried again. The macro expands to a loop that repeatedly
// evaluates the expression as long as it evaluates to -1 and sets
// errno to EINTR. If the expression evaluates to -1 but errno is
// something other than EINTR, DeathTestAbort is called.
# define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \
do { \
int gtest_retval; \
do { \
gtest_retval = (expression); \
} while (gtest_retval == -1 && errno == EINTR); \
if (gtest_retval == -1) { \
DeathTestAbort( \
::std::string("CHECK failed: File ") + __FILE__ + ", line " \
+ ::testing::internal::StreamableToString(__LINE__) + ": " \
+ #expression + " != -1"); \
} \
} while (::testing::internal::AlwaysFalse())
// Returns the message describing the last system error in errno.
std::string GetLastErrnoDescription() {
return errno == 0 ? "" : posix::StrError(errno);
}
// This is called from a death test parent process to read a failure
// message from the death test child process and log it with the FATAL
// severity. On Windows, the message is read from a pipe handle. On other
// platforms, it is read from a file descriptor.
static void FailFromInternalError(int fd) {
Message error;
char buffer[256];
int num_read;
do {
while ((num_read = posix::Read(fd, buffer, 255)) > 0) {
buffer[num_read] = '\0';
error << buffer;
}
} while (num_read == -1 && errno == EINTR);
if (num_read == 0) {
GTEST_LOG_(FATAL) << error.GetString();
} else {
const int last_error = errno;
GTEST_LOG_(FATAL) << "Error while reading death test internal: "
<< GetLastErrnoDescription() << " [" << last_error << "]";
}
}
// Death test constructor. Increments the running death test count
// for the current test.
DeathTest::DeathTest() {
TestInfo* const info = GetUnitTestImpl()->current_test_info();
if (info == NULL) {
DeathTestAbort("Cannot run a death test outside of a TEST or "
"TEST_F construct");
}
}
// Creates and returns a death test by dispatching to the current
// death test factory.
bool DeathTest::Create(const char* statement, const RE* regex,
const char* file, int line, DeathTest** test) {
return GetUnitTestImpl()->death_test_factory()->Create(
statement, regex, file, line, test);
}
const char* DeathTest::LastMessage() {
return last_death_test_message_.c_str();
}
void DeathTest::set_last_death_test_message(const std::string& message) {
last_death_test_message_ = message;
}
std::string DeathTest::last_death_test_message_;
// Provides cross platform implementation for some death functionality.
class DeathTestImpl : public DeathTest {
protected:
DeathTestImpl(const char* a_statement, const RE* a_regex)
: statement_(a_statement),
regex_(a_regex),
spawned_(false),
status_(-1),
outcome_(IN_PROGRESS),
read_fd_(-1),
write_fd_(-1) {}
// read_fd_ is expected to be closed and cleared by a derived class.
~DeathTestImpl() { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); }
void Abort(AbortReason reason);
virtual bool Passed(bool status_ok);
const char* statement() const { return statement_; }
const RE* regex() const { return regex_; }
bool spawned() const { return spawned_; }
void set_spawned(bool is_spawned) { spawned_ = is_spawned; }
int status() const { return status_; }
void set_status(int a_status) { status_ = a_status; }
DeathTestOutcome outcome() const { return outcome_; }
void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; }
int read_fd() const { return read_fd_; }
void set_read_fd(int fd) { read_fd_ = fd; }
int write_fd() const { return write_fd_; }
void set_write_fd(int fd) { write_fd_ = fd; }
// Called in the parent process only. Reads the result code of the death
// test child process via a pipe, interprets it to set the outcome_
// member, and closes read_fd_. Outputs diagnostics and terminates in
// case of unexpected codes.
void ReadAndInterpretStatusByte();
private:
// The textual content of the code this object is testing. This class
// doesn't own this string and should not attempt to delete it.
const char* const statement_;
// The regular expression which test output must match. DeathTestImpl
// doesn't own this object and should not attempt to delete it.
const RE* const regex_;
// True if the death test child process has been successfully spawned.
bool spawned_;
// The exit status of the child process.
int status_;
// How the death test concluded.
DeathTestOutcome outcome_;
// Descriptor to the read end of the pipe to the child process. It is
// always -1 in the child process. The child keeps its write end of the
// pipe in write_fd_.
int read_fd_;
// Descriptor to the child's write end of the pipe to the parent process.
// It is always -1 in the parent process. The parent keeps its end of the
// pipe in read_fd_.
int write_fd_;
};
// Called in the parent process only. Reads the result code of the death
// test child process via a pipe, interprets it to set the outcome_
// member, and closes read_fd_. Outputs diagnostics and terminates in
// case of unexpected codes.
void DeathTestImpl::ReadAndInterpretStatusByte() {
char flag;
int bytes_read;
// The read() here blocks until data is available (signifying the
// failure of the death test) or until the pipe is closed (signifying
// its success), so it's okay to call this in the parent before
// the child process has exited.
do {
bytes_read = posix::Read(read_fd(), &flag, 1);
} while (bytes_read == -1 && errno == EINTR);
if (bytes_read == 0) {
set_outcome(DIED);
} else if (bytes_read == 1) {
switch (flag) {
case kDeathTestReturned:
set_outcome(RETURNED);
break;
case kDeathTestThrew:
set_outcome(THREW);
break;
case kDeathTestLived:
set_outcome(LIVED);
break;
case kDeathTestInternalError:
FailFromInternalError(read_fd()); // Does not return.
break;
default:
GTEST_LOG_(FATAL) << "Death test child process reported "
<< "unexpected status byte ("
<< static_cast<unsigned int>(flag) << ")";
}
} else {
GTEST_LOG_(FATAL) << "Read from death test child process failed: "
<< GetLastErrnoDescription();
}
GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd()));
set_read_fd(-1);
}
// Signals that the death test code which should have exited, didn't.
// Should be called only in a death test child process.
// Writes a status byte to the child's status file descriptor, then
// calls _exit(1).
void DeathTestImpl::Abort(AbortReason reason) {
// The parent process considers the death test to be a failure if
// it finds any data in our pipe. So, here we write a single flag byte
// to the pipe, then exit.
const char status_ch =
reason == TEST_DID_NOT_DIE ? kDeathTestLived :
reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned;
GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1));
// We are leaking the descriptor here because on some platforms (i.e.,
// when built as Windows DLL), destructors of global objects will still
// run after calling _exit(). On such systems, write_fd_ will be
// indirectly closed from the destructor of UnitTestImpl, causing double
// close if it is also closed here. On debug configurations, double close
// may assert. As there are no in-process buffers to flush here, we are
// relying on the OS to close the descriptor after the process terminates
// when the destructors are not run.
_exit(1); // Exits w/o any normal exit hooks (we were supposed to crash)
}
// Returns an indented copy of stderr output for a death test.
// This makes distinguishing death test output lines from regular log lines
// much easier.
static ::std::string FormatDeathTestOutput(const ::std::string& output) {
::std::string ret;
for (size_t at = 0; ; ) {
const size_t line_end = output.find('\n', at);
ret += "[ DEATH ] ";
if (line_end == ::std::string::npos) {
ret += output.substr(at);
break;
}
ret += output.substr(at, line_end + 1 - at);
at = line_end + 1;
}
return ret;
}
// Assesses the success or failure of a death test, using both private
// members which have previously been set, and one argument:
//
// Private data members:
// outcome: An enumeration describing how the death test
// concluded: DIED, LIVED, THREW, or RETURNED. The death test
// fails in the latter three cases.
// status: The exit status of the child process. On *nix, it is in the
// in the format specified by wait(2). On Windows, this is the
// value supplied to the ExitProcess() API or a numeric code
// of the exception that terminated the program.
// regex: A regular expression object to be applied to
// the test's captured standard error output; the death test
// fails if it does not match.
//
// Argument:
// status_ok: true if exit_status is acceptable in the context of
// this particular death test, which fails if it is false
//
// Returns true iff all of the above conditions are met. Otherwise, the
// first failing condition, in the order given above, is the one that is
// reported. Also sets the last death test message string.
bool DeathTestImpl::Passed(bool status_ok) {
if (!spawned())
return false;
const std::string error_message = GetCapturedStderr();
bool success = false;
Message buffer;
buffer << "Death test: " << statement() << "\n";
switch (outcome()) {
case LIVED:
buffer << " Result: failed to die.\n"
<< " Error msg:\n" << FormatDeathTestOutput(error_message);
break;
case THREW:
buffer << " Result: threw an exception.\n"
<< " Error msg:\n" << FormatDeathTestOutput(error_message);
break;
case RETURNED:
buffer << " Result: illegal return in test statement.\n"
<< " Error msg:\n" << FormatDeathTestOutput(error_message);
break;
case DIED:
if (status_ok) {
const bool matched = RE::PartialMatch(error_message.c_str(), *regex());
if (matched) {
success = true;
} else {
buffer << " Result: died but not with expected error.\n"
<< " Expected: " << regex()->pattern() << "\n"
<< "Actual msg:\n" << FormatDeathTestOutput(error_message);
}
} else {
buffer << " Result: died but not with expected exit code:\n"
<< " " << ExitSummary(status()) << "\n"
<< "Actual msg:\n" << FormatDeathTestOutput(error_message);
}
break;
case IN_PROGRESS:
default:
GTEST_LOG_(FATAL)
<< "DeathTest::Passed somehow called before conclusion of test";
}
DeathTest::set_last_death_test_message(buffer.GetString());
return success;
}
# if GTEST_OS_WINDOWS
// WindowsDeathTest implements death tests on Windows. Due to the
// specifics of starting new processes on Windows, death tests there are
// always threadsafe, and Google Test considers the
// --gtest_death_test_style=fast setting to be equivalent to
// --gtest_death_test_style=threadsafe there.
//
// A few implementation notes: Like the Linux version, the Windows
// implementation uses pipes for child-to-parent communication. But due to
// the specifics of pipes on Windows, some extra steps are required:
//
// 1. The parent creates a communication pipe and stores handles to both
// ends of it.
// 2. The parent starts the child and provides it with the information
// necessary to acquire the handle to the write end of the pipe.
// 3. The child acquires the write end of the pipe and signals the parent
// using a Windows event.
// 4. Now the parent can release the write end of the pipe on its side. If
// this is done before step 3, the object's reference count goes down to
// 0 and it is destroyed, preventing the child from acquiring it. The
// parent now has to release it, or read operations on the read end of
// the pipe will not return when the child terminates.
// 5. The parent reads child's output through the pipe (outcome code and
// any possible error messages) from the pipe, and its stderr and then
// determines whether to fail the test.
//
// Note: to distinguish Win32 API calls from the local method and function
// calls, the former are explicitly resolved in the global namespace.
//
class WindowsDeathTest : public DeathTestImpl {
public:
WindowsDeathTest(const char* a_statement,
const RE* a_regex,
const char* file,
int line)
: DeathTestImpl(a_statement, a_regex), file_(file), line_(line) {}
// All of these virtual functions are inherited from DeathTest.
virtual int Wait();
virtual TestRole AssumeRole();
private:
// The name of the file in which the death test is located.
const char* const file_;
// The line number on which the death test is located.
const int line_;
// Handle to the write end of the pipe to the child process.
AutoHandle write_handle_;
// Child process handle.
AutoHandle child_handle_;
// Event the child process uses to signal the parent that it has
// acquired the handle to the write end of the pipe. After seeing this
// event the parent can release its own handles to make sure its
// ReadFile() calls return when the child terminates.
AutoHandle event_handle_;
};
// Waits for the child in a death test to exit, returning its exit
// status, or 0 if no child process exists. As a side effect, sets the
// outcome data member.
int WindowsDeathTest::Wait() {
if (!spawned())
return 0;
// Wait until the child either signals that it has acquired the write end
// of the pipe or it dies.
const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() };
switch (::WaitForMultipleObjects(2,
wait_handles,
FALSE, // Waits for any of the handles.
INFINITE)) {
case WAIT_OBJECT_0:
case WAIT_OBJECT_0 + 1:
break;
default:
GTEST_DEATH_TEST_CHECK_(false); // Should not get here.
}
// The child has acquired the write end of the pipe or exited.
// We release the handle on our side and continue.
write_handle_.Reset();
event_handle_.Reset();
ReadAndInterpretStatusByte();
// Waits for the child process to exit if it haven't already. This
// returns immediately if the child has already exited, regardless of
// whether previous calls to WaitForMultipleObjects synchronized on this
// handle or not.
GTEST_DEATH_TEST_CHECK_(
WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(),
INFINITE));
DWORD status_code;
GTEST_DEATH_TEST_CHECK_(
::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE);
child_handle_.Reset();
set_status(static_cast<int>(status_code));
return status();
}
// The AssumeRole process for a Windows death test. It creates a child
// process with the same executable as the current process to run the
// death test. The child process is given the --gtest_filter and
// --gtest_internal_run_death_test flags such that it knows to run the
// current death test only.
DeathTest::TestRole WindowsDeathTest::AssumeRole() {
const UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const TestInfo* const info = impl->current_test_info();
const int death_test_index = info->result()->death_test_count();
if (flag != NULL) {
// ParseInternalRunDeathTestFlag() has performed all the necessary
// processing.
set_write_fd(flag->write_fd());
return EXECUTE_TEST;
}
// WindowsDeathTest uses an anonymous pipe to communicate results of
// a death test.
SECURITY_ATTRIBUTES handles_are_inheritable = {
sizeof(SECURITY_ATTRIBUTES), NULL, TRUE };
HANDLE read_handle, write_handle;
GTEST_DEATH_TEST_CHECK_(
::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable,
0) // Default buffer size.
!= FALSE);
set_read_fd(::_open_osfhandle(reinterpret_cast<intptr_t>(read_handle),
O_RDONLY));
write_handle_.Reset(write_handle);
event_handle_.Reset(::CreateEvent(
&handles_are_inheritable,
TRUE, // The event will automatically reset to non-signaled state.
FALSE, // The initial state is non-signalled.
NULL)); // The even is unnamed.
GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != NULL);
const std::string filter_flag =
std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" +
info->test_case_name() + "." + info->name();
const std::string internal_flag =
std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag +
"=" + file_ + "|" + StreamableToString(line_) + "|" +
StreamableToString(death_test_index) + "|" +
StreamableToString(static_cast<unsigned int>(::GetCurrentProcessId())) +
// size_t has the same width as pointers on both 32-bit and 64-bit
// Windows platforms.
// See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx.
"|" + StreamableToString(reinterpret_cast<size_t>(write_handle)) +
"|" + StreamableToString(reinterpret_cast<size_t>(event_handle_.Get()));
char executable_path[_MAX_PATH + 1]; // NOLINT
GTEST_DEATH_TEST_CHECK_(
_MAX_PATH + 1 != ::GetModuleFileNameA(NULL,
executable_path,
_MAX_PATH));
std::string command_line =
std::string(::GetCommandLineA()) + " " + filter_flag + " \"" +
internal_flag + "\"";
DeathTest::set_last_death_test_message("");
CaptureStderr();
// Flush the log buffers since the log streams are shared with the child.
FlushInfoLog();
// The child process will share the standard handles with the parent.
STARTUPINFOA startup_info;
memset(&startup_info, 0, sizeof(STARTUPINFO));
startup_info.dwFlags = STARTF_USESTDHANDLES;
startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE);
startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE);
startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE);
PROCESS_INFORMATION process_info;
GTEST_DEATH_TEST_CHECK_(::CreateProcessA(
executable_path,
const_cast<char*>(command_line.c_str()),
NULL, // Retuned process handle is not inheritable.
NULL, // Retuned thread handle is not inheritable.
TRUE, // Child inherits all inheritable handles (for write_handle_).
0x0, // Default creation flags.
NULL, // Inherit the parent's environment.
UnitTest::GetInstance()->original_working_dir(),
&startup_info,
&process_info) != FALSE);
child_handle_.Reset(process_info.hProcess);
::CloseHandle(process_info.hThread);
set_spawned(true);
return OVERSEE_TEST;
}
# else // We are not on Windows.
// ForkingDeathTest provides implementations for most of the abstract
// methods of the DeathTest interface. Only the AssumeRole method is
// left undefined.
class ForkingDeathTest : public DeathTestImpl {
public:
ForkingDeathTest(const char* statement, const RE* regex);
// All of these virtual functions are inherited from DeathTest.
virtual int Wait();
protected:
void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; }
private:
// PID of child process during death test; 0 in the child process itself.
pid_t child_pid_;
};
// Constructs a ForkingDeathTest.
ForkingDeathTest::ForkingDeathTest(const char* a_statement, const RE* a_regex)
: DeathTestImpl(a_statement, a_regex),
child_pid_(-1) {}
// Waits for the child in a death test to exit, returning its exit
// status, or 0 if no child process exists. As a side effect, sets the
// outcome data member.
int ForkingDeathTest::Wait() {
if (!spawned())
return 0;
ReadAndInterpretStatusByte();
int status_value;
GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0));
set_status(status_value);
return status_value;
}
// A concrete death test class that forks, then immediately runs the test
// in the child process.
class NoExecDeathTest : public ForkingDeathTest {
public:
NoExecDeathTest(const char* a_statement, const RE* a_regex) :
ForkingDeathTest(a_statement, a_regex) { }
virtual TestRole AssumeRole();
};
// The AssumeRole process for a fork-and-run death test. It implements a
// straightforward fork, with a simple pipe to transmit the status byte.
DeathTest::TestRole NoExecDeathTest::AssumeRole() {
const size_t thread_count = GetThreadCount();
if (thread_count != 1) {
GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count);
}
int pipe_fd[2];
GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
DeathTest::set_last_death_test_message("");
CaptureStderr();
// When we fork the process below, the log file buffers are copied, but the
// file descriptors are shared. We flush all log files here so that closing
// the file descriptors in the child process doesn't throw off the
// synchronization between descriptors and buffers in the parent process.
// This is as close to the fork as possible to avoid a race condition in case
// there are multiple threads running before the death test, and another
// thread writes to the log file.
FlushInfoLog();
const pid_t child_pid = fork();
GTEST_DEATH_TEST_CHECK_(child_pid != -1);
set_child_pid(child_pid);
if (child_pid == 0) {
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0]));
set_write_fd(pipe_fd[1]);
// Redirects all logging to stderr in the child process to prevent
// concurrent writes to the log files. We capture stderr in the parent
// process and append the child process' output to a log.
LogToStderr();
// Event forwarding to the listeners of event listener API mush be shut
// down in death test subprocesses.
GetUnitTestImpl()->listeners()->SuppressEventForwarding();
g_in_fast_death_test_child = true;
return EXECUTE_TEST;
} else {
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
set_read_fd(pipe_fd[0]);
set_spawned(true);
return OVERSEE_TEST;
}
}
// A concrete death test class that forks and re-executes the main
// program from the beginning, with command-line flags set that cause
// only this specific death test to be run.
class ExecDeathTest : public ForkingDeathTest {
public:
ExecDeathTest(const char* a_statement, const RE* a_regex,
const char* file, int line) :
ForkingDeathTest(a_statement, a_regex), file_(file), line_(line) { }
virtual TestRole AssumeRole();
private:
static ::std::vector<testing::internal::string>
GetArgvsForDeathTestChildProcess() {
::std::vector<testing::internal::string> args = GetInjectableArgvs();
return args;
}
// The name of the file in which the death test is located.
const char* const file_;
// The line number on which the death test is located.
const int line_;
};
// Utility class for accumulating command-line arguments.
class Arguments {
public:
Arguments() {
args_.push_back(NULL);
}
~Arguments() {
for (std::vector<char*>::iterator i = args_.begin(); i != args_.end();
++i) {
free(*i);
}
}
void AddArgument(const char* argument) {
args_.insert(args_.end() - 1, posix::StrDup(argument));
}
template <typename Str>
void AddArguments(const ::std::vector<Str>& arguments) {
for (typename ::std::vector<Str>::const_iterator i = arguments.begin();
i != arguments.end();
++i) {
args_.insert(args_.end() - 1, posix::StrDup(i->c_str()));
}
}
char* const* Argv() {
return &args_[0];
}
private:
std::vector<char*> args_;
};
// A struct that encompasses the arguments to the child process of a
// threadsafe-style death test process.
struct ExecDeathTestArgs {
char* const* argv; // Command-line arguments for the child's call to exec
int close_fd; // File descriptor to close; the read end of a pipe
};
# if GTEST_OS_MAC
inline char** GetEnviron() {
// When Google Test is built as a framework on MacOS X, the environ variable
// is unavailable. Apple's documentation (man environ) recommends using
// _NSGetEnviron() instead.
return *_NSGetEnviron();
}
# else
// Some POSIX platforms expect you to declare environ. extern "C" makes
// it reside in the global namespace.
extern "C" char** environ;
inline char** GetEnviron() { return environ; }
# endif // GTEST_OS_MAC
# if !GTEST_OS_QNX
// The main function for a threadsafe-style death test child process.
// This function is called in a clone()-ed process and thus must avoid
// any potentially unsafe operations like malloc or libc functions.
static int ExecDeathTestChildMain(void* child_arg) {
ExecDeathTestArgs* const args = static_cast<ExecDeathTestArgs*>(child_arg);
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd));
// We need to execute the test program in the same environment where
// it was originally invoked. Therefore we change to the original
// working directory first.
const char* const original_dir =
UnitTest::GetInstance()->original_working_dir();
// We can safely call chdir() as it's a direct system call.
if (chdir(original_dir) != 0) {
DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " +
GetLastErrnoDescription());
return EXIT_FAILURE;
}
// We can safely call execve() as it's a direct system call. We
// cannot use execvp() as it's a libc function and thus potentially
// unsafe. Since execve() doesn't search the PATH, the user must
// invoke the test program via a valid path that contains at least
// one path separator.
execve(args->argv[0], args->argv, GetEnviron());
DeathTestAbort(std::string("execve(") + args->argv[0] + ", ...) in " +
original_dir + " failed: " +
GetLastErrnoDescription());
return EXIT_FAILURE;
}
# endif // !GTEST_OS_QNX
// Two utility routines that together determine the direction the stack
// grows.
// This could be accomplished more elegantly by a single recursive
// function, but we want to guard against the unlikely possibility of
// a smart compiler optimizing the recursion away.
//
// GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining
// StackLowerThanAddress into StackGrowsDown, which then doesn't give
// correct answer.
void StackLowerThanAddress(const void* ptr, bool* result) GTEST_NO_INLINE_;
void StackLowerThanAddress(const void* ptr, bool* result) {
int dummy;
*result = (&dummy < ptr);
}
// Make sure AddressSanitizer does not tamper with the stack here.
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
bool StackGrowsDown() {
int dummy;
bool result;
StackLowerThanAddress(&dummy, &result);
return result;
}
// Spawns a child process with the same executable as the current process in
// a thread-safe manner and instructs it to run the death test. The
// implementation uses fork(2) + exec. On systems where clone(2) is
// available, it is used instead, being slightly more thread-safe. On QNX,
// fork supports only single-threaded environments, so this function uses
// spawn(2) there instead. The function dies with an error message if
// anything goes wrong.
static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) {
ExecDeathTestArgs args = { argv, close_fd };
pid_t child_pid = -1;
# if GTEST_OS_QNX
// Obtains the current directory and sets it to be closed in the child
// process.
const int cwd_fd = open(".", O_RDONLY);
GTEST_DEATH_TEST_CHECK_(cwd_fd != -1);
GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC));
// We need to execute the test program in the same environment where
// it was originally invoked. Therefore we change to the original
// working directory first.
const char* const original_dir =
UnitTest::GetInstance()->original_working_dir();
// We can safely call chdir() as it's a direct system call.
if (chdir(original_dir) != 0) {
DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " +
GetLastErrnoDescription());
return EXIT_FAILURE;
}
int fd_flags;
// Set close_fd to be closed after spawn.
GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD));
GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD,
fd_flags | FD_CLOEXEC));
struct inheritance inherit = {0};
// spawn is a system call.
child_pid = spawn(args.argv[0], 0, NULL, &inherit, args.argv, GetEnviron());
// Restores the current working directory.
GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1);
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd));
# else // GTEST_OS_QNX
# if GTEST_OS_LINUX
// When a SIGPROF signal is received while fork() or clone() are executing,
// the process may hang. To avoid this, we ignore SIGPROF here and re-enable
// it after the call to fork()/clone() is complete.
struct sigaction saved_sigprof_action;
struct sigaction ignore_sigprof_action;
memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action));
sigemptyset(&ignore_sigprof_action.sa_mask);
ignore_sigprof_action.sa_handler = SIG_IGN;
GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction(
SIGPROF, &ignore_sigprof_action, &saved_sigprof_action));
# endif // GTEST_OS_LINUX
# if GTEST_HAS_CLONE
const bool use_fork = GTEST_FLAG(death_test_use_fork);
if (!use_fork) {
static const bool stack_grows_down = StackGrowsDown();
const size_t stack_size = getpagesize();
// MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead.
void* const stack = mmap(NULL, stack_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED);
// Maximum stack alignment in bytes: For a downward-growing stack, this
// amount is subtracted from size of the stack space to get an address
// that is within the stack space and is aligned on all systems we care
// about. As far as I know there is no ABI with stack alignment greater
// than 64. We assume stack and stack_size already have alignment of
// kMaxStackAlignment.
const size_t kMaxStackAlignment = 64;
void* const stack_top =
static_cast<char*>(stack) +
(stack_grows_down ? stack_size - kMaxStackAlignment : 0);
GTEST_DEATH_TEST_CHECK_(stack_size > kMaxStackAlignment &&
reinterpret_cast<intptr_t>(stack_top) % kMaxStackAlignment == 0);
child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args);
GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1);
}
# else
const bool use_fork = true;
# endif // GTEST_HAS_CLONE
if (use_fork && (child_pid = fork()) == 0) {
ExecDeathTestChildMain(&args);
_exit(0);
}
# endif // GTEST_OS_QNX
# if GTEST_OS_LINUX
GTEST_DEATH_TEST_CHECK_SYSCALL_(
sigaction(SIGPROF, &saved_sigprof_action, NULL));
# endif // GTEST_OS_LINUX
GTEST_DEATH_TEST_CHECK_(child_pid != -1);
return child_pid;
}
// The AssumeRole process for a fork-and-exec death test. It re-executes the
// main program from the beginning, setting the --gtest_filter
// and --gtest_internal_run_death_test flags to cause only the current
// death test to be re-run.
DeathTest::TestRole ExecDeathTest::AssumeRole() {
const UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const TestInfo* const info = impl->current_test_info();
const int death_test_index = info->result()->death_test_count();
if (flag != NULL) {
set_write_fd(flag->write_fd());
return EXECUTE_TEST;
}
int pipe_fd[2];
GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
// Clear the close-on-exec flag on the write end of the pipe, lest
// it be closed when the child process does an exec:
GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1);
const std::string filter_flag =
std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "="
+ info->test_case_name() + "." + info->name();
const std::string internal_flag =
std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "="
+ file_ + "|" + StreamableToString(line_) + "|"
+ StreamableToString(death_test_index) + "|"
+ StreamableToString(pipe_fd[1]);
Arguments args;
args.AddArguments(GetArgvsForDeathTestChildProcess());
args.AddArgument(filter_flag.c_str());
args.AddArgument(internal_flag.c_str());
DeathTest::set_last_death_test_message("");
CaptureStderr();
// See the comment in NoExecDeathTest::AssumeRole for why the next line
// is necessary.
FlushInfoLog();
const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]);
GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
set_child_pid(child_pid);
set_read_fd(pipe_fd[0]);
set_spawned(true);
return OVERSEE_TEST;
}
# endif // !GTEST_OS_WINDOWS
// Creates a concrete DeathTest-derived class that depends on the
// --gtest_death_test_style flag, and sets the pointer pointed to
// by the "test" argument to its address. If the test should be
// skipped, sets that pointer to NULL. Returns true, unless the
// flag is set to an invalid value.
bool DefaultDeathTestFactory::Create(const char* statement, const RE* regex,
const char* file, int line,
DeathTest** test) {
UnitTestImpl* const impl = GetUnitTestImpl();
const InternalRunDeathTestFlag* const flag =
impl->internal_run_death_test_flag();
const int death_test_index = impl->current_test_info()
->increment_death_test_count();
if (flag != NULL) {
if (death_test_index > flag->index()) {
DeathTest::set_last_death_test_message(
"Death test count (" + StreamableToString(death_test_index)
+ ") somehow exceeded expected maximum ("
+ StreamableToString(flag->index()) + ")");
return false;
}
if (!(flag->file() == file && flag->line() == line &&
flag->index() == death_test_index)) {
*test = NULL;
return true;
}
}
# if GTEST_OS_WINDOWS
if (GTEST_FLAG(death_test_style) == "threadsafe" ||
GTEST_FLAG(death_test_style) == "fast") {
*test = new WindowsDeathTest(statement, regex, file, line);
}
# else
if (GTEST_FLAG(death_test_style) == "threadsafe") {
*test = new ExecDeathTest(statement, regex, file, line);
} else if (GTEST_FLAG(death_test_style) == "fast") {
*test = new NoExecDeathTest(statement, regex);
}
# endif // GTEST_OS_WINDOWS
else { // NOLINT - this is more readable than unbalanced brackets inside #if.
DeathTest::set_last_death_test_message(
"Unknown death test style \"" + GTEST_FLAG(death_test_style)
+ "\" encountered");
return false;
}
return true;
}
// Splits a given string on a given delimiter, populating a given
// vector with the fields. GTEST_HAS_DEATH_TEST implies that we have
// ::std::string, so we can use it here.
static void SplitString(const ::std::string& str, char delimiter,
::std::vector< ::std::string>* dest) {
::std::vector< ::std::string> parsed;
::std::string::size_type pos = 0;
while (::testing::internal::AlwaysTrue()) {
const ::std::string::size_type colon = str.find(delimiter, pos);
if (colon == ::std::string::npos) {
parsed.push_back(str.substr(pos));
break;
} else {
parsed.push_back(str.substr(pos, colon - pos));
pos = colon + 1;
}
}
dest->swap(parsed);
}
# if GTEST_OS_WINDOWS
// Recreates the pipe and event handles from the provided parameters,
// signals the event, and returns a file descriptor wrapped around the pipe
// handle. This function is called in the child process only.
int GetStatusFileDescriptor(unsigned int parent_process_id,
size_t write_handle_as_size_t,
size_t event_handle_as_size_t) {
AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE,
FALSE, // Non-inheritable.
parent_process_id));
if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) {
DeathTestAbort("Unable to open parent process " +
StreamableToString(parent_process_id));
}
// TODO(vladl@google.com): Replace the following check with a
// compile-time assertion when available.
GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t));
const HANDLE write_handle =
reinterpret_cast<HANDLE>(write_handle_as_size_t);
HANDLE dup_write_handle;
// The newly initialized handle is accessible only in in the parent
// process. To obtain one accessible within the child, we need to use
// DuplicateHandle.
if (!::DuplicateHandle(parent_process_handle.Get(), write_handle,
::GetCurrentProcess(), &dup_write_handle,
0x0, // Requested privileges ignored since
// DUPLICATE_SAME_ACCESS is used.
FALSE, // Request non-inheritable handler.
DUPLICATE_SAME_ACCESS)) {
DeathTestAbort("Unable to duplicate the pipe handle " +
StreamableToString(write_handle_as_size_t) +
" from the parent process " +
StreamableToString(parent_process_id));
}
const HANDLE event_handle = reinterpret_cast<HANDLE>(event_handle_as_size_t);
HANDLE dup_event_handle;
if (!::DuplicateHandle(parent_process_handle.Get(), event_handle,
::GetCurrentProcess(), &dup_event_handle,
0x0,
FALSE,
DUPLICATE_SAME_ACCESS)) {
DeathTestAbort("Unable to duplicate the event handle " +
StreamableToString(event_handle_as_size_t) +
" from the parent process " +
StreamableToString(parent_process_id));
}
const int write_fd =
::_open_osfhandle(reinterpret_cast<intptr_t>(dup_write_handle), O_APPEND);
if (write_fd == -1) {
DeathTestAbort("Unable to convert pipe handle " +
StreamableToString(write_handle_as_size_t) +
" to a file descriptor");
}
// Signals the parent that the write end of the pipe has been acquired
// so the parent can release its own write end.
::SetEvent(dup_event_handle);
return write_fd;
}
# endif // GTEST_OS_WINDOWS
// Returns a newly created InternalRunDeathTestFlag object with fields
// initialized from the GTEST_FLAG(internal_run_death_test) flag if
// the flag is specified; otherwise returns NULL.
InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() {
if (GTEST_FLAG(internal_run_death_test) == "") return NULL;
// GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we
// can use it here.
int line = -1;
int index = -1;
::std::vector< ::std::string> fields;
SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields);
int write_fd = -1;
# if GTEST_OS_WINDOWS
unsigned int parent_process_id = 0;
size_t write_handle_as_size_t = 0;
size_t event_handle_as_size_t = 0;
if (fields.size() != 6
|| !ParseNaturalNumber(fields[1], &line)
|| !ParseNaturalNumber(fields[2], &index)
|| !ParseNaturalNumber(fields[3], &parent_process_id)
|| !ParseNaturalNumber(fields[4], &write_handle_as_size_t)
|| !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) {
DeathTestAbort("Bad --gtest_internal_run_death_test flag: " +
GTEST_FLAG(internal_run_death_test));
}
write_fd = GetStatusFileDescriptor(parent_process_id,
write_handle_as_size_t,
event_handle_as_size_t);
# else
if (fields.size() != 4
|| !ParseNaturalNumber(fields[1], &line)
|| !ParseNaturalNumber(fields[2], &index)
|| !ParseNaturalNumber(fields[3], &write_fd)) {
DeathTestAbort("Bad --gtest_internal_run_death_test flag: "
+ GTEST_FLAG(internal_run_death_test));
}
# endif // GTEST_OS_WINDOWS
return new InternalRunDeathTestFlag(fields[0], line, index, write_fd);
}
} // namespace internal
#endif // GTEST_HAS_DEATH_TEST
} // namespace testing
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: keith.ray@gmail.com (Keith Ray)
#include <stdlib.h>
#if GTEST_OS_WINDOWS_MOBILE
# include <windows.h>
#elif GTEST_OS_WINDOWS
# include <direct.h>
# include <io.h>
#elif GTEST_OS_SYMBIAN
// Symbian OpenC has PATH_MAX in sys/syslimits.h
# include <sys/syslimits.h>
#else
# include <limits.h>
# include <climits> // Some Linux distributions define PATH_MAX here.
#endif // GTEST_OS_WINDOWS_MOBILE
#if GTEST_OS_WINDOWS
# define GTEST_PATH_MAX_ _MAX_PATH
#elif defined(PATH_MAX)
# define GTEST_PATH_MAX_ PATH_MAX
#elif defined(_XOPEN_PATH_MAX)
# define GTEST_PATH_MAX_ _XOPEN_PATH_MAX
#else
# define GTEST_PATH_MAX_ _POSIX_PATH_MAX
#endif // GTEST_OS_WINDOWS
namespace testing {
namespace internal {
#if GTEST_OS_WINDOWS
// On Windows, '\\' is the standard path separator, but many tools and the
// Windows API also accept '/' as an alternate path separator. Unless otherwise
// noted, a file path can contain either kind of path separators, or a mixture
// of them.
const char kPathSeparator = '\\';
const char kAlternatePathSeparator = '/';
const char kAlternatePathSeparatorString[] = "/";
# if GTEST_OS_WINDOWS_MOBILE
// Windows CE doesn't have a current directory. You should not use
// the current directory in tests on Windows CE, but this at least
// provides a reasonable fallback.
const char kCurrentDirectoryString[] = "\\";
// Windows CE doesn't define INVALID_FILE_ATTRIBUTES
const DWORD kInvalidFileAttributes = 0xffffffff;
# else
const char kCurrentDirectoryString[] = ".\\";
# endif // GTEST_OS_WINDOWS_MOBILE
#else
const char kPathSeparator = '/';
const char kCurrentDirectoryString[] = "./";
#endif // GTEST_OS_WINDOWS
// Returns whether the given character is a valid path separator.
static bool IsPathSeparator(char c) {
#if GTEST_HAS_ALT_PATH_SEP_
return (c == kPathSeparator) || (c == kAlternatePathSeparator);
#else
return c == kPathSeparator;
#endif
}
// Returns the current working directory, or "" if unsuccessful.
FilePath FilePath::GetCurrentDir() {
#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT
// Windows CE doesn't have a current directory, so we just return
// something reasonable.
return FilePath(kCurrentDirectoryString);
#elif GTEST_OS_WINDOWS
char cwd[GTEST_PATH_MAX_ + 1] = { '\0' };
return FilePath(_getcwd(cwd, sizeof(cwd)) == NULL ? "" : cwd);
#else
char cwd[GTEST_PATH_MAX_ + 1] = { '\0' };
char* result = getcwd(cwd, sizeof(cwd));
# if GTEST_OS_NACL
// getcwd will likely fail in NaCl due to the sandbox, so return something
// reasonable. The user may have provided a shim implementation for getcwd,
// however, so fallback only when failure is detected.
return FilePath(result == NULL ? kCurrentDirectoryString : cwd);
# endif // GTEST_OS_NACL
return FilePath(result == NULL ? "" : cwd);
#endif // GTEST_OS_WINDOWS_MOBILE
}
// Returns a copy of the FilePath with the case-insensitive extension removed.
// Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns
// FilePath("dir/file"). If a case-insensitive extension is not
// found, returns a copy of the original FilePath.
FilePath FilePath::RemoveExtension(const char* extension) const {
const std::string dot_extension = std::string(".") + extension;
if (String::EndsWithCaseInsensitive(pathname_, dot_extension)) {
return FilePath(pathname_.substr(
0, pathname_.length() - dot_extension.length()));
}
return *this;
}
// Returns a pointer to the last occurence of a valid path separator in
// the FilePath. On Windows, for example, both '/' and '\' are valid path
// separators. Returns NULL if no path separator was found.
const char* FilePath::FindLastPathSeparator() const {
const char* const last_sep = strrchr(c_str(), kPathSeparator);
#if GTEST_HAS_ALT_PATH_SEP_
const char* const last_alt_sep = strrchr(c_str(), kAlternatePathSeparator);
// Comparing two pointers of which only one is NULL is undefined.
if (last_alt_sep != NULL &&
(last_sep == NULL || last_alt_sep > last_sep)) {
return last_alt_sep;
}
#endif
return last_sep;
}
// Returns a copy of the FilePath with the directory part removed.
// Example: FilePath("path/to/file").RemoveDirectoryName() returns
// FilePath("file"). If there is no directory part ("just_a_file"), it returns
// the FilePath unmodified. If there is no file part ("just_a_dir/") it
// returns an empty FilePath ("").
// On Windows platform, '\' is the path separator, otherwise it is '/'.
FilePath FilePath::RemoveDirectoryName() const {
const char* const last_sep = FindLastPathSeparator();
return last_sep ? FilePath(last_sep + 1) : *this;
}
// RemoveFileName returns the directory path with the filename removed.
// Example: FilePath("path/to/file").RemoveFileName() returns "path/to/".
// If the FilePath is "a_file" or "/a_file", RemoveFileName returns
// FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does
// not have a file, like "just/a/dir/", it returns the FilePath unmodified.
// On Windows platform, '\' is the path separator, otherwise it is '/'.
FilePath FilePath::RemoveFileName() const {
const char* const last_sep = FindLastPathSeparator();
std::string dir;
if (last_sep) {
dir = std::string(c_str(), last_sep + 1 - c_str());
} else {
dir = kCurrentDirectoryString;
}
return FilePath(dir);
}
// Helper functions for naming files in a directory for xml output.
// Given directory = "dir", base_name = "test", number = 0,
// extension = "xml", returns "dir/test.xml". If number is greater
// than zero (e.g., 12), returns "dir/test_12.xml".
// On Windows platform, uses \ as the separator rather than /.
FilePath FilePath::MakeFileName(const FilePath& directory,
const FilePath& base_name,
int number,
const char* extension) {
std::string file;
if (number == 0) {
file = base_name.string() + "." + extension;
} else {
file = base_name.string() + "_" + StreamableToString(number)
+ "." + extension;
}
return ConcatPaths(directory, FilePath(file));
}
// Given directory = "dir", relative_path = "test.xml", returns "dir/test.xml".
// On Windows, uses \ as the separator rather than /.
FilePath FilePath::ConcatPaths(const FilePath& directory,
const FilePath& relative_path) {
if (directory.IsEmpty())
return relative_path;
const FilePath dir(directory.RemoveTrailingPathSeparator());
return FilePath(dir.string() + kPathSeparator + relative_path.string());
}
// Returns true if pathname describes something findable in the file-system,
// either a file, directory, or whatever.
bool FilePath::FileOrDirectoryExists() const {
#if GTEST_OS_WINDOWS_MOBILE
LPCWSTR unicode = String::AnsiToUtf16(pathname_.c_str());
const DWORD attributes = GetFileAttributes(unicode);
delete [] unicode;
return attributes != kInvalidFileAttributes;
#else
posix::StatStruct file_stat;
return posix::Stat(pathname_.c_str(), &file_stat) == 0;
#endif // GTEST_OS_WINDOWS_MOBILE
}
// Returns true if pathname describes a directory in the file-system
// that exists.
bool FilePath::DirectoryExists() const {
bool result = false;
#if GTEST_OS_WINDOWS
// Don't strip off trailing separator if path is a root directory on
// Windows (like "C:\\").
const FilePath& path(IsRootDirectory() ? *this :
RemoveTrailingPathSeparator());
#else
const FilePath& path(*this);
#endif
#if GTEST_OS_WINDOWS_MOBILE
LPCWSTR unicode = String::AnsiToUtf16(path.c_str());
const DWORD attributes = GetFileAttributes(unicode);
delete [] unicode;
if ((attributes != kInvalidFileAttributes) &&
(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
result = true;
}
#else
posix::StatStruct file_stat;
result = posix::Stat(path.c_str(), &file_stat) == 0 &&
posix::IsDir(file_stat);
#endif // GTEST_OS_WINDOWS_MOBILE
return result;
}
// Returns true if pathname describes a root directory. (Windows has one
// root directory per disk drive.)
bool FilePath::IsRootDirectory() const {
#if GTEST_OS_WINDOWS
// TODO(wan@google.com): on Windows a network share like
// \\server\share can be a root directory, although it cannot be the
// current directory. Handle this properly.
return pathname_.length() == 3 && IsAbsolutePath();
#else
return pathname_.length() == 1 && IsPathSeparator(pathname_.c_str()[0]);
#endif
}
// Returns true if pathname describes an absolute path.
bool FilePath::IsAbsolutePath() const {
const char* const name = pathname_.c_str();
#if GTEST_OS_WINDOWS
return pathname_.length() >= 3 &&
((name[0] >= 'a' && name[0] <= 'z') ||
(name[0] >= 'A' && name[0] <= 'Z')) &&
name[1] == ':' &&
IsPathSeparator(name[2]);
#else
return IsPathSeparator(name[0]);
#endif
}
// Returns a pathname for a file that does not currently exist. The pathname
// will be directory/base_name.extension or
// directory/base_name_<number>.extension if directory/base_name.extension
// already exists. The number will be incremented until a pathname is found
// that does not already exist.
// Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'.
// There could be a race condition if two or more processes are calling this
// function at the same time -- they could both pick the same filename.
FilePath FilePath::GenerateUniqueFileName(const FilePath& directory,
const FilePath& base_name,
const char* extension) {
FilePath full_pathname;
int number = 0;
do {
full_pathname.Set(MakeFileName(directory, base_name, number++, extension));
} while (full_pathname.FileOrDirectoryExists());
return full_pathname;
}
// Returns true if FilePath ends with a path separator, which indicates that
// it is intended to represent a directory. Returns false otherwise.
// This does NOT check that a directory (or file) actually exists.
bool FilePath::IsDirectory() const {
return !pathname_.empty() &&
IsPathSeparator(pathname_.c_str()[pathname_.length() - 1]);
}
// Create directories so that path exists. Returns true if successful or if
// the directories already exist; returns false if unable to create directories
// for any reason.
bool FilePath::CreateDirectoriesRecursively() const {
if (!this->IsDirectory()) {
return false;
}
if (pathname_.length() == 0 || this->DirectoryExists()) {
return true;
}
const FilePath parent(this->RemoveTrailingPathSeparator().RemoveFileName());
return parent.CreateDirectoriesRecursively() && this->CreateFolder();
}
// Create the directory so that path exists. Returns true if successful or
// if the directory already exists; returns false if unable to create the
// directory for any reason, including if the parent directory does not
// exist. Not named "CreateDirectory" because that's a macro on Windows.
bool FilePath::CreateFolder() const {
#if GTEST_OS_WINDOWS_MOBILE
FilePath removed_sep(this->RemoveTrailingPathSeparator());
LPCWSTR unicode = String::AnsiToUtf16(removed_sep.c_str());
int result = CreateDirectory(unicode, NULL) ? 0 : -1;
delete [] unicode;
#elif GTEST_OS_WINDOWS
int result = _mkdir(pathname_.c_str());
#else
int result = mkdir(pathname_.c_str(), 0777);
#endif // GTEST_OS_WINDOWS_MOBILE
if (result == -1) {
return this->DirectoryExists(); // An error is OK if the directory exists.
}
return true; // No error.
}
// If input name has a trailing separator character, remove it and return the
// name, otherwise return the name string unmodified.
// On Windows platform, uses \ as the separator, other platforms use /.
FilePath FilePath::RemoveTrailingPathSeparator() const {
return IsDirectory()
? FilePath(pathname_.substr(0, pathname_.length() - 1))
: *this;
}
// Removes any redundant separators that might be in the pathname.
// For example, "bar///foo" becomes "bar/foo". Does not eliminate other
// redundancies that might be in a pathname involving "." or "..".
// TODO(wan@google.com): handle Windows network shares (e.g. \\server\share).
void FilePath::Normalize() {
if (pathname_.c_str() == NULL) {
pathname_ = "";
return;
}
const char* src = pathname_.c_str();
char* const dest = new char[pathname_.length() + 1];
char* dest_ptr = dest;
memset(dest_ptr, 0, pathname_.length() + 1);
while (*src != '\0') {
*dest_ptr = *src;
if (!IsPathSeparator(*src)) {
src++;
} else {
#if GTEST_HAS_ALT_PATH_SEP_
if (*dest_ptr == kAlternatePathSeparator) {
*dest_ptr = kPathSeparator;
}
#endif
while (IsPathSeparator(*src))
src++;
}
dest_ptr++;
}
*dest_ptr = '\0';
pathname_ = dest;
delete[] dest;
}
} // namespace internal
} // namespace testing
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#if GTEST_OS_WINDOWS
# include <windows.h>
# include <io.h>
# include <sys/stat.h>
# include <map> // Used in ThreadLocal.
#else
# include <unistd.h>
#endif // GTEST_OS_WINDOWS
#if GTEST_OS_MAC
# include <mach/mach_init.h>
# include <mach/task.h>
# include <mach/vm_map.h>
#endif // GTEST_OS_MAC
#if GTEST_OS_QNX
# include <devctl.h>
# include <fcntl.h>
# include <sys/procfs.h>
#endif // GTEST_OS_QNX
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick exists to
// prevent the accidental inclusion of gtest-internal-inl.h in the
// user's code.
#define GTEST_IMPLEMENTATION_ 1
#undef GTEST_IMPLEMENTATION_
namespace testing {
namespace internal {
#if defined(_MSC_VER) || defined(__BORLANDC__)
// MSVC and C++Builder do not provide a definition of STDERR_FILENO.
const int kStdOutFileno = 1;
const int kStdErrFileno = 2;
#else
const int kStdOutFileno = STDOUT_FILENO;
const int kStdErrFileno = STDERR_FILENO;
#endif // _MSC_VER
#if GTEST_OS_MAC
// Returns the number of threads running in the process, or 0 to indicate that
// we cannot detect it.
size_t GetThreadCount() {
const task_t task = mach_task_self();
mach_msg_type_number_t thread_count;
thread_act_array_t thread_list;
const kern_return_t status = task_threads(task, &thread_list, &thread_count);
if (status == KERN_SUCCESS) {
// task_threads allocates resources in thread_list and we need to free them
// to avoid leaks.
vm_deallocate(task,
reinterpret_cast<vm_address_t>(thread_list),
sizeof(thread_t) * thread_count);
return static_cast<size_t>(thread_count);
} else {
return 0;
}
}
#elif GTEST_OS_QNX
// Returns the number of threads running in the process, or 0 to indicate that
// we cannot detect it.
size_t GetThreadCount() {
const int fd = open("/proc/self/as", O_RDONLY);
if (fd < 0) {
return 0;
}
procfs_info process_info;
const int status =
devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL);
close(fd);
if (status == EOK) {
return static_cast<size_t>(process_info.num_threads);
} else {
return 0;
}
}
#else
size_t GetThreadCount() {
// There's no portable way to detect the number of threads, so we just
// return 0 to indicate that we cannot detect it.
return 0;
}
#endif // GTEST_OS_MAC
#if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
void SleepMilliseconds(int n) {
::Sleep(n);
}
AutoHandle::AutoHandle()
: handle_(INVALID_HANDLE_VALUE) {}
AutoHandle::AutoHandle(Handle handle)
: handle_(handle) {}
AutoHandle::~AutoHandle() {
Reset();
}
AutoHandle::Handle AutoHandle::Get() const {
return handle_;
}
void AutoHandle::Reset() {
Reset(INVALID_HANDLE_VALUE);
}
void AutoHandle::Reset(HANDLE handle) {
// Resetting with the same handle we already own is invalid.
if (handle_ != handle) {
if (IsCloseable()) {
::CloseHandle(handle_);
}
handle_ = handle;
} else {
GTEST_CHECK_(!IsCloseable())
<< "Resetting a valid handle to itself is likely a programmer error "
"and thus not allowed.";
}
}
bool AutoHandle::IsCloseable() const {
// Different Windows APIs may use either of these values to represent an
// invalid handle.
return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE;
}
Notification::Notification()
: event_(::CreateEvent(NULL, // Default security attributes.
TRUE, // Do not reset automatically.
FALSE, // Initially unset.
NULL)) { // Anonymous event.
GTEST_CHECK_(event_.Get() != NULL);
}
void Notification::Notify() {
GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
}
void Notification::WaitForNotification() {
GTEST_CHECK_(
::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
}
Mutex::Mutex()
: owner_thread_id_(0),
type_(kDynamic),
critical_section_init_phase_(0),
critical_section_(new CRITICAL_SECTION) {
::InitializeCriticalSection(critical_section_);
}
Mutex::~Mutex() {
// Static mutexes are leaked intentionally. It is not thread-safe to try
// to clean them up.
// TODO(yukawa): Switch to Slim Reader/Writer (SRW) Locks, which requires
// nothing to clean it up but is available only on Vista and later.
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa904937.aspx
if (type_ == kDynamic) {
::DeleteCriticalSection(critical_section_);
delete critical_section_;
critical_section_ = NULL;
}
}
void Mutex::Lock() {
ThreadSafeLazyInit();
::EnterCriticalSection(critical_section_);
owner_thread_id_ = ::GetCurrentThreadId();
}
void Mutex::Unlock() {
ThreadSafeLazyInit();
// We don't protect writing to owner_thread_id_ here, as it's the
// caller's responsibility to ensure that the current thread holds the
// mutex when this is called.
owner_thread_id_ = 0;
::LeaveCriticalSection(critical_section_);
}
// Does nothing if the current thread holds the mutex. Otherwise, crashes
// with high probability.
void Mutex::AssertHeld() {
ThreadSafeLazyInit();
GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
<< "The current thread is not holding the mutex @" << this;
}
// Initializes owner_thread_id_ and critical_section_ in static mutexes.
void Mutex::ThreadSafeLazyInit() {
// Dynamic mutexes are initialized in the constructor.
if (type_ == kStatic) {
switch (
::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
case 0:
// If critical_section_init_phase_ was 0 before the exchange, we
// are the first to test it and need to perform the initialization.
owner_thread_id_ = 0;
critical_section_ = new CRITICAL_SECTION;
::InitializeCriticalSection(critical_section_);
// Updates the critical_section_init_phase_ to 2 to signal
// initialization complete.
GTEST_CHECK_(::InterlockedCompareExchange(
&critical_section_init_phase_, 2L, 1L) ==
1L);
break;
case 1:
// Somebody else is already initializing the mutex; spin until they
// are done.
while (::InterlockedCompareExchange(&critical_section_init_phase_,
2L,
2L) != 2L) {
// Possibly yields the rest of the thread's time slice to other
// threads.
::Sleep(0);
}
break;
case 2:
break; // The mutex is already initialized and ready for use.
default:
GTEST_CHECK_(false)
<< "Unexpected value of critical_section_init_phase_ "
<< "while initializing a static mutex.";
}
}
}
namespace {
class ThreadWithParamSupport : public ThreadWithParamBase {
public:
static HANDLE CreateThread(Runnable* runnable,
Notification* thread_can_start) {
ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
DWORD thread_id;
// TODO(yukawa): Consider to use _beginthreadex instead.
HANDLE thread_handle = ::CreateThread(
NULL, // Default security.
0, // Default stack size.
&ThreadWithParamSupport::ThreadMain,
param, // Parameter to ThreadMainStatic
0x0, // Default creation flags.
&thread_id); // Need a valid pointer for the call to work under Win98.
GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error "
<< ::GetLastError() << ".";
if (thread_handle == NULL) {
delete param;
}
return thread_handle;
}
private:
struct ThreadMainParam {
ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
: runnable_(runnable),
thread_can_start_(thread_can_start) {
}
scoped_ptr<Runnable> runnable_;
// Does not own.
Notification* thread_can_start_;
};
static DWORD WINAPI ThreadMain(void* ptr) {
// Transfers ownership.
scoped_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
if (param->thread_can_start_ != NULL)
param->thread_can_start_->WaitForNotification();
param->runnable_->Run();
return 0;
}
// Prohibit instantiation.
ThreadWithParamSupport();
GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
};
} // namespace
ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
Notification* thread_can_start)
: thread_(ThreadWithParamSupport::CreateThread(runnable,
thread_can_start)) {
}
ThreadWithParamBase::~ThreadWithParamBase() {
Join();
}
void ThreadWithParamBase::Join() {
GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
<< "Failed to join the thread with error " << ::GetLastError() << ".";
}
// Maps a thread to a set of ThreadIdToThreadLocals that have values
// instantiated on that thread and notifies them when the thread exits. A
// ThreadLocal instance is expected to persist until all threads it has
// values on have terminated.
class ThreadLocalRegistryImpl {
public:
// Registers thread_local_instance as having value on the current thread.
// Returns a value that can be used to identify the thread from other threads.
static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
const ThreadLocalBase* thread_local_instance) {
DWORD current_thread = ::GetCurrentThreadId();
MutexLock lock(&mutex_);
ThreadIdToThreadLocals* const thread_to_thread_locals =
GetThreadLocalsMapLocked();
ThreadIdToThreadLocals::iterator thread_local_pos =
thread_to_thread_locals->find(current_thread);
if (thread_local_pos == thread_to_thread_locals->end()) {
thread_local_pos = thread_to_thread_locals->insert(
std::make_pair(current_thread, ThreadLocalValues())).first;
StartWatcherThreadFor(current_thread);
}
ThreadLocalValues& thread_local_values = thread_local_pos->second;
ThreadLocalValues::iterator value_pos =
thread_local_values.find(thread_local_instance);
if (value_pos == thread_local_values.end()) {
value_pos =
thread_local_values
.insert(std::make_pair(
thread_local_instance,
linked_ptr<ThreadLocalValueHolderBase>(
thread_local_instance->NewValueForCurrentThread())))
.first;
}
return value_pos->second.get();
}
static void OnThreadLocalDestroyed(
const ThreadLocalBase* thread_local_instance) {
std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
// Clean up the ThreadLocalValues data structure while holding the lock, but
// defer the destruction of the ThreadLocalValueHolderBases.
{
MutexLock lock(&mutex_);
ThreadIdToThreadLocals* const thread_to_thread_locals =
GetThreadLocalsMapLocked();
for (ThreadIdToThreadLocals::iterator it =
thread_to_thread_locals->begin();
it != thread_to_thread_locals->end();
++it) {
ThreadLocalValues& thread_local_values = it->second;
ThreadLocalValues::iterator value_pos =
thread_local_values.find(thread_local_instance);
if (value_pos != thread_local_values.end()) {
value_holders.push_back(value_pos->second);
thread_local_values.erase(value_pos);
// This 'if' can only be successful at most once, so theoretically we
// could break out of the loop here, but we don't bother doing so.
}
}
}
// Outside the lock, let the destructor for 'value_holders' deallocate the
// ThreadLocalValueHolderBases.
}
static void OnThreadExit(DWORD thread_id) {
GTEST_CHECK_(thread_id != 0) << ::GetLastError();
std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
// Clean up the ThreadIdToThreadLocals data structure while holding the
// lock, but defer the destruction of the ThreadLocalValueHolderBases.
{
MutexLock lock(&mutex_);
ThreadIdToThreadLocals* const thread_to_thread_locals =
GetThreadLocalsMapLocked();
ThreadIdToThreadLocals::iterator thread_local_pos =
thread_to_thread_locals->find(thread_id);
if (thread_local_pos != thread_to_thread_locals->end()) {
ThreadLocalValues& thread_local_values = thread_local_pos->second;
for (ThreadLocalValues::iterator value_pos =
thread_local_values.begin();
value_pos != thread_local_values.end();
++value_pos) {
value_holders.push_back(value_pos->second);
}
thread_to_thread_locals->erase(thread_local_pos);
}
}
// Outside the lock, let the destructor for 'value_holders' deallocate the
// ThreadLocalValueHolderBases.
}
private:
// In a particular thread, maps a ThreadLocal object to its value.
typedef std::map<const ThreadLocalBase*,
linked_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues;
// Stores all ThreadIdToThreadLocals having values in a thread, indexed by
// thread's ID.
typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
// Holds the thread id and thread handle that we pass from
// StartWatcherThreadFor to WatcherThreadFunc.
typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
static void StartWatcherThreadFor(DWORD thread_id) {
// The returned handle will be kept in thread_map and closed by
// watcher_thread in WatcherThreadFunc.
HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
FALSE,
thread_id);
GTEST_CHECK_(thread != NULL);
// We need to to pass a valid thread ID pointer into CreateThread for it
// to work correctly under Win98.
DWORD watcher_thread_id;
HANDLE watcher_thread = ::CreateThread(
NULL, // Default security.
0, // Default stack size
&ThreadLocalRegistryImpl::WatcherThreadFunc,
reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
CREATE_SUSPENDED,
&watcher_thread_id);
GTEST_CHECK_(watcher_thread != NULL);
// Give the watcher thread the same priority as ours to avoid being
// blocked by it.
::SetThreadPriority(watcher_thread,
::GetThreadPriority(::GetCurrentThread()));
::ResumeThread(watcher_thread);
::CloseHandle(watcher_thread);
}
// Monitors exit from a given thread and notifies those
// ThreadIdToThreadLocals about thread termination.
static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
const ThreadIdAndHandle* tah =
reinterpret_cast<const ThreadIdAndHandle*>(param);
GTEST_CHECK_(
::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
OnThreadExit(tah->first);
::CloseHandle(tah->second);
delete tah;
return 0;
}
// Returns map of thread local instances.
static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
mutex_.AssertHeld();
static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals;
return map;
}
// Protects access to GetThreadLocalsMapLocked() and its return value.
static Mutex mutex_;
// Protects access to GetThreadMapLocked() and its return value.
static Mutex thread_map_mutex_;
};
Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
const ThreadLocalBase* thread_local_instance) {
return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
thread_local_instance);
}
void ThreadLocalRegistry::OnThreadLocalDestroyed(
const ThreadLocalBase* thread_local_instance) {
ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
}
#endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
#if GTEST_USES_POSIX_RE
// Implements RE. Currently only needed for death tests.
RE::~RE() {
if (is_valid_) {
// regfree'ing an invalid regex might crash because the content
// of the regex is undefined. Since the regex's are essentially
// the same, one cannot be valid (or invalid) without the other
// being so too.
regfree(&partial_regex_);
regfree(&full_regex_);
}
free(const_cast<char*>(pattern_));
}
// Returns true iff regular expression re matches the entire str.
bool RE::FullMatch(const char* str, const RE& re) {
if (!re.is_valid_) return false;
regmatch_t match;
return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
}
// Returns true iff regular expression re matches a substring of str
// (including str itself).
bool RE::PartialMatch(const char* str, const RE& re) {
if (!re.is_valid_) return false;
regmatch_t match;
return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
}
// Initializes an RE from its string representation.
void RE::Init(const char* regex) {
pattern_ = posix::StrDup(regex);
// Reserves enough bytes to hold the regular expression used for a
// full match.
const size_t full_regex_len = strlen(regex) + 10;
char* const full_pattern = new char[full_regex_len];
snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
// We want to call regcomp(&partial_regex_, ...) even if the
// previous expression returns false. Otherwise partial_regex_ may
// not be properly initialized can may cause trouble when it's
// freed.
//
// Some implementation of POSIX regex (e.g. on at least some
// versions of Cygwin) doesn't accept the empty string as a valid
// regex. We change it to an equivalent form "()" to be safe.
if (is_valid_) {
const char* const partial_regex = (*regex == '\0') ? "()" : regex;
is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
}
EXPECT_TRUE(is_valid_)
<< "Regular expression \"" << regex
<< "\" is not a valid POSIX Extended regular expression.";
delete[] full_pattern;
}
#elif GTEST_USES_SIMPLE_RE
// Returns true iff ch appears anywhere in str (excluding the
// terminating '\0' character).
bool IsInSet(char ch, const char* str) {
return ch != '\0' && strchr(str, ch) != NULL;
}
// Returns true iff ch belongs to the given classification. Unlike
// similar functions in <ctype.h>, these aren't affected by the
// current locale.
bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
bool IsAsciiPunct(char ch) {
return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
}
bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
bool IsAsciiWordChar(char ch) {
return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
('0' <= ch && ch <= '9') || ch == '_';
}
// Returns true iff "\\c" is a supported escape sequence.
bool IsValidEscape(char c) {
return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
}
// Returns true iff the given atom (specified by escaped and pattern)
// matches ch. The result is undefined if the atom is invalid.
bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
if (escaped) { // "\\p" where p is pattern_char.
switch (pattern_char) {
case 'd': return IsAsciiDigit(ch);
case 'D': return !IsAsciiDigit(ch);
case 'f': return ch == '\f';
case 'n': return ch == '\n';
case 'r': return ch == '\r';
case 's': return IsAsciiWhiteSpace(ch);
case 'S': return !IsAsciiWhiteSpace(ch);
case 't': return ch == '\t';
case 'v': return ch == '\v';
case 'w': return IsAsciiWordChar(ch);
case 'W': return !IsAsciiWordChar(ch);
}
return IsAsciiPunct(pattern_char) && pattern_char == ch;
}
return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
}
// Helper function used by ValidateRegex() to format error messages.
std::string FormatRegexSyntaxError(const char* regex, int index) {
return (Message() << "Syntax error at index " << index
<< " in simple regular expression \"" << regex << "\": ").GetString();
}
// Generates non-fatal failures and returns false if regex is invalid;
// otherwise returns true.
bool ValidateRegex(const char* regex) {
if (regex == NULL) {
// TODO(wan@google.com): fix the source file location in the
// assertion failures to match where the regex is used in user
// code.
ADD_FAILURE() << "NULL is not a valid simple regular expression.";
return false;
}
bool is_valid = true;
// True iff ?, *, or + can follow the previous atom.
bool prev_repeatable = false;
for (int i = 0; regex[i]; i++) {
if (regex[i] == '\\') { // An escape sequence
i++;
if (regex[i] == '\0') {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
<< "'\\' cannot appear at the end.";
return false;
}
if (!IsValidEscape(regex[i])) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
<< "invalid escape sequence \"\\" << regex[i] << "\".";
is_valid = false;
}
prev_repeatable = true;
} else { // Not an escape sequence.
const char ch = regex[i];
if (ch == '^' && i > 0) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'^' can only appear at the beginning.";
is_valid = false;
} else if (ch == '$' && regex[i + 1] != '\0') {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'$' can only appear at the end.";
is_valid = false;
} else if (IsInSet(ch, "()[]{}|")) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'" << ch << "' is unsupported.";
is_valid = false;
} else if (IsRepeat(ch) && !prev_repeatable) {
ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
<< "'" << ch << "' can only follow a repeatable token.";
is_valid = false;
}
prev_repeatable = !IsInSet(ch, "^$?*+");
}
}
return is_valid;
}
// Matches a repeated regex atom followed by a valid simple regular
// expression. The regex atom is defined as c if escaped is false,
// or \c otherwise. repeat is the repetition meta character (?, *,
// or +). The behavior is undefined if str contains too many
// characters to be indexable by size_t, in which case the test will
// probably time out anyway. We are fine with this limitation as
// std::string has it too.
bool MatchRepetitionAndRegexAtHead(
bool escaped, char c, char repeat, const char* regex,
const char* str) {
const size_t min_count = (repeat == '+') ? 1 : 0;
const size_t max_count = (repeat == '?') ? 1 :
static_cast<size_t>(-1) - 1;
// We cannot call numeric_limits::max() as it conflicts with the
// max() macro on Windows.
for (size_t i = 0; i <= max_count; ++i) {
// We know that the atom matches each of the first i characters in str.
if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
// We have enough matches at the head, and the tail matches too.
// Since we only care about *whether* the pattern matches str
// (as opposed to *how* it matches), there is no need to find a
// greedy match.
return true;
}
if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
return false;
}
return false;
}
// Returns true iff regex matches a prefix of str. regex must be a
// valid simple regular expression and not start with "^", or the
// result is undefined.
bool MatchRegexAtHead(const char* regex, const char* str) {
if (*regex == '\0') // An empty regex matches a prefix of anything.
return true;
// "$" only matches the end of a string. Note that regex being
// valid guarantees that there's nothing after "$" in it.
if (*regex == '$')
return *str == '\0';
// Is the first thing in regex an escape sequence?
const bool escaped = *regex == '\\';
if (escaped)
++regex;
if (IsRepeat(regex[1])) {
// MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
// here's an indirect recursion. It terminates as the regex gets
// shorter in each recursion.
return MatchRepetitionAndRegexAtHead(
escaped, regex[0], regex[1], regex + 2, str);
} else {
// regex isn't empty, isn't "$", and doesn't start with a
// repetition. We match the first atom of regex with the first
// character of str and recurse.
return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
MatchRegexAtHead(regex + 1, str + 1);
}
}
// Returns true iff regex matches any substring of str. regex must be
// a valid simple regular expression, or the result is undefined.
//
// The algorithm is recursive, but the recursion depth doesn't exceed
// the regex length, so we won't need to worry about running out of
// stack space normally. In rare cases the time complexity can be
// exponential with respect to the regex length + the string length,
// but usually it's must faster (often close to linear).
bool MatchRegexAnywhere(const char* regex, const char* str) {
if (regex == NULL || str == NULL)
return false;
if (*regex == '^')
return MatchRegexAtHead(regex + 1, str);
// A successful match can be anywhere in str.
do {
if (MatchRegexAtHead(regex, str))
return true;
} while (*str++ != '\0');
return false;
}
// Implements the RE class.
RE::~RE() {
free(const_cast<char*>(pattern_));
free(const_cast<char*>(full_pattern_));
}
// Returns true iff regular expression re matches the entire str.
bool RE::FullMatch(const char* str, const RE& re) {
return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
}
// Returns true iff regular expression re matches a substring of str
// (including str itself).
bool RE::PartialMatch(const char* str, const RE& re) {
return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
}
// Initializes an RE from its string representation.
void RE::Init(const char* regex) {
pattern_ = full_pattern_ = NULL;
if (regex != NULL) {
pattern_ = posix::StrDup(regex);
}
is_valid_ = ValidateRegex(regex);
if (!is_valid_) {
// No need to calculate the full pattern when the regex is invalid.
return;
}
const size_t len = strlen(regex);
// Reserves enough bytes to hold the regular expression used for a
// full match: we need space to prepend a '^', append a '$', and
// terminate the string with '\0'.
char* buffer = static_cast<char*>(malloc(len + 3));
full_pattern_ = buffer;
if (*regex != '^')
*buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
// We don't use snprintf or strncpy, as they trigger a warning when
// compiled with VC++ 8.0.
memcpy(buffer, regex, len);
buffer += len;
if (len == 0 || regex[len - 1] != '$')
*buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
*buffer = '\0';
}
#endif // GTEST_USES_POSIX_RE
const char kUnknownFile[] = "unknown file";
// Formats a source file path and a line number as they would appear
// in an error message from the compiler used to compile this code.
GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
const std::string file_name(file == NULL ? kUnknownFile : file);
if (line < 0) {
return file_name + ":";
}
#ifdef _MSC_VER
return file_name + "(" + StreamableToString(line) + "):";
#else
return file_name + ":" + StreamableToString(line) + ":";
#endif // _MSC_VER
}
// Formats a file location for compiler-independent XML output.
// Although this function is not platform dependent, we put it next to
// FormatFileLocation in order to contrast the two functions.
// Note that FormatCompilerIndependentFileLocation() does NOT append colon
// to the file location it produces, unlike FormatFileLocation().
GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
const char* file, int line) {
const std::string file_name(file == NULL ? kUnknownFile : file);
if (line < 0)
return file_name;
else
return file_name + ":" + StreamableToString(line);
}
GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
: severity_(severity) {
const char* const marker =
severity == GTEST_INFO ? "[ INFO ]" :
severity == GTEST_WARNING ? "[WARNING]" :
severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
GetStream() << ::std::endl << marker << " "
<< FormatFileLocation(file, line).c_str() << ": ";
}
// Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
GTestLog::~GTestLog() {
GetStream() << ::std::endl;
if (severity_ == GTEST_FATAL) {
fflush(stderr);
posix::Abort();
}
}
// Disable Microsoft deprecation warnings for POSIX functions called from
// this class (creat, dup, dup2, and close)
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996)
#if GTEST_HAS_STREAM_REDIRECTION
// Object that captures an output stream (stdout/stderr).
class CapturedStream {
public:
// The ctor redirects the stream to a temporary file.
explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
# if GTEST_OS_WINDOWS
char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
const UINT success = ::GetTempFileNameA(temp_dir_path,
"gtest_redir",
0, // Generate unique file name.
temp_file_path);
GTEST_CHECK_(success != 0)
<< "Unable to create a temporary file in " << temp_dir_path;
const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
<< temp_file_path;
filename_ = temp_file_path;
# else
// There's no guarantee that a test has write access to the current
// directory, so we create the temporary file in the /tmp directory
// instead. We use /tmp on most systems, and /sdcard on Android.
// That's because Android doesn't have /tmp.
# if GTEST_OS_LINUX_ANDROID
// Note: Android applications are expected to call the framework's
// Context.getExternalStorageDirectory() method through JNI to get
// the location of the world-writable SD Card directory. However,
// this requires a Context handle, which cannot be retrieved
// globally from native code. Doing so also precludes running the
// code as part of a regular standalone executable, which doesn't
// run in a Dalvik process (e.g. when running it through 'adb shell').
//
// The location /sdcard is directly accessible from native code
// and is the only location (unofficially) supported by the Android
// team. It's generally a symlink to the real SD Card mount point
// which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or
// other OEM-customized locations. Never rely on these, and always
// use /sdcard.
char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX";
# else
char name_template[] = "/tmp/captured_stream.XXXXXX";
# endif // GTEST_OS_LINUX_ANDROID
const int captured_fd = mkstemp(name_template);
filename_ = name_template;
# endif // GTEST_OS_WINDOWS
fflush(NULL);
dup2(captured_fd, fd_);
close(captured_fd);
}
~CapturedStream() {
remove(filename_.c_str());
}
std::string GetCapturedString() {
if (uncaptured_fd_ != -1) {
// Restores the original stream.
fflush(NULL);
dup2(uncaptured_fd_, fd_);
close(uncaptured_fd_);
uncaptured_fd_ = -1;
}
FILE* const file = posix::FOpen(filename_.c_str(), "r");
const std::string content = ReadEntireFile(file);
posix::FClose(file);
return content;
}
private:
// Reads the entire content of a file as an std::string.
static std::string ReadEntireFile(FILE* file);
// Returns the size (in bytes) of a file.
static size_t GetFileSize(FILE* file);
const int fd_; // A stream to capture.
int uncaptured_fd_;
// Name of the temporary file holding the stderr output.
::std::string filename_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
};
// Returns the size (in bytes) of a file.
size_t CapturedStream::GetFileSize(FILE* file) {
fseek(file, 0, SEEK_END);
return static_cast<size_t>(ftell(file));
}
// Reads the entire content of a file as a string.
std::string CapturedStream::ReadEntireFile(FILE* file) {
const size_t file_size = GetFileSize(file);
char* const buffer = new char[file_size];
size_t bytes_last_read = 0; // # of bytes read in the last fread()
size_t bytes_read = 0; // # of bytes read so far
fseek(file, 0, SEEK_SET);
// Keeps reading the file until we cannot read further or the
// pre-determined file size is reached.
do {
bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
bytes_read += bytes_last_read;
} while (bytes_last_read > 0 && bytes_read < file_size);
const std::string content(buffer, bytes_read);
delete[] buffer;
return content;
}
GTEST_DISABLE_MSC_WARNINGS_POP_()
static CapturedStream* g_captured_stderr = NULL;
static CapturedStream* g_captured_stdout = NULL;
// Starts capturing an output stream (stdout/stderr).
void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) {
if (*stream != NULL) {
GTEST_LOG_(FATAL) << "Only one " << stream_name
<< " capturer can exist at a time.";
}
*stream = new CapturedStream(fd);
}
// Stops capturing the output stream and returns the captured string.
std::string GetCapturedStream(CapturedStream** captured_stream) {
const std::string content = (*captured_stream)->GetCapturedString();
delete *captured_stream;
*captured_stream = NULL;
return content;
}
// Starts capturing stdout.
void CaptureStdout() {
CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
}
// Starts capturing stderr.
void CaptureStderr() {
CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
}
// Stops capturing stdout and returns the captured string.
std::string GetCapturedStdout() {
return GetCapturedStream(&g_captured_stdout);
}
// Stops capturing stderr and returns the captured string.
std::string GetCapturedStderr() {
return GetCapturedStream(&g_captured_stderr);
}
#endif // GTEST_HAS_STREAM_REDIRECTION
#if GTEST_HAS_DEATH_TEST
// A copy of all command line arguments. Set by InitGoogleTest().
::std::vector<testing::internal::string> g_argvs;
static const ::std::vector<testing::internal::string>* g_injected_test_argvs =
NULL; // Owned.
void SetInjectableArgvs(const ::std::vector<testing::internal::string>* argvs) {
if (g_injected_test_argvs != argvs)
delete g_injected_test_argvs;
g_injected_test_argvs = argvs;
}
const ::std::vector<testing::internal::string>& GetInjectableArgvs() {
if (g_injected_test_argvs != NULL) {
return *g_injected_test_argvs;
}
return g_argvs;
}
#endif // GTEST_HAS_DEATH_TEST
#if GTEST_OS_WINDOWS_MOBILE
namespace posix {
void Abort() {
DebugBreak();
TerminateProcess(GetCurrentProcess(), 1);
}
} // namespace posix
#endif // GTEST_OS_WINDOWS_MOBILE
// Returns the name of the environment variable corresponding to the
// given flag. For example, FlagToEnvVar("foo") will return
// "GTEST_FOO" in the open-source version.
static std::string FlagToEnvVar(const char* flag) {
const std::string full_flag =
(Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
Message env_var;
for (size_t i = 0; i != full_flag.length(); i++) {
env_var << ToUpper(full_flag.c_str()[i]);
}
return env_var.GetString();
}
// Parses 'str' for a 32-bit signed integer. If successful, writes
// the result to *value and returns true; otherwise leaves *value
// unchanged and returns false.
bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
// Parses the environment variable as a decimal integer.
char* end = NULL;
const long long_value = strtol(str, &end, 10); // NOLINT
// Has strtol() consumed all characters in the string?
if (*end != '\0') {
// No - an invalid character was encountered.
Message msg;
msg << "WARNING: " << src_text
<< " is expected to be a 32-bit integer, but actually"
<< " has value \"" << str << "\".\n";
printf("%s", msg.GetString().c_str());
fflush(stdout);
return false;
}
// Is the parsed value in the range of an Int32?
const Int32 result = static_cast<Int32>(long_value);
if (long_value == LONG_MAX || long_value == LONG_MIN ||
// The parsed value overflows as a long. (strtol() returns
// LONG_MAX or LONG_MIN when the input overflows.)
result != long_value
// The parsed value overflows as an Int32.
) {
Message msg;
msg << "WARNING: " << src_text
<< " is expected to be a 32-bit integer, but actually"
<< " has value " << str << ", which overflows.\n";
printf("%s", msg.GetString().c_str());
fflush(stdout);
return false;
}
*value = result;
return true;
}
// Reads and returns the Boolean environment variable corresponding to
// the given flag; if it's not set, returns default_value.
//
// The value is considered true iff it's not "0".
bool BoolFromGTestEnv(const char* flag, bool default_value) {
const std::string env_var = FlagToEnvVar(flag);
const char* const string_value = posix::GetEnv(env_var.c_str());
return string_value == NULL ?
default_value : strcmp(string_value, "0") != 0;
}
// Reads and returns a 32-bit integer stored in the environment
// variable corresponding to the given flag; if it isn't set or
// doesn't represent a valid 32-bit integer, returns default_value.
Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
const std::string env_var = FlagToEnvVar(flag);
const char* const string_value = posix::GetEnv(env_var.c_str());
if (string_value == NULL) {
// The environment variable is not set.
return default_value;
}
Int32 result = default_value;
if (!ParseInt32(Message() << "Environment variable " << env_var,
string_value, &result)) {
printf("The default value %s is used.\n",
(Message() << default_value).GetString().c_str());
fflush(stdout);
return default_value;
}
return result;
}
// Reads and returns the string environment variable corresponding to
// the given flag; if it's not set, returns default_value.
const char* StringFromGTestEnv(const char* flag, const char* default_value) {
const std::string env_var = FlagToEnvVar(flag);
const char* const value = posix::GetEnv(env_var.c_str());
return value == NULL ? default_value : value;
}
} // namespace internal
} // namespace testing
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Test - The Google C++ Testing Framework
//
// This file implements a universal value printer that can print a
// value of any type T:
//
// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
//
// It uses the << operator when possible, and prints the bytes in the
// object otherwise. A user can override its behavior for a class
// type Foo by defining either operator<<(::std::ostream&, const Foo&)
// or void PrintTo(const Foo&, ::std::ostream*) in the namespace that
// defines Foo.
#include <ctype.h>
#include <stdio.h>
#include <cwchar>
#include <ostream> // NOLINT
#include <string>
namespace testing {
namespace {
using ::std::ostream;
// Prints a segment of bytes in the given object.
GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_
void PrintByteSegmentInObjectTo(const unsigned char* obj_bytes, size_t start,
size_t count, ostream* os) {
char text[5] = "";
for (size_t i = 0; i != count; i++) {
const size_t j = start + i;
if (i != 0) {
// Organizes the bytes into groups of 2 for easy parsing by
// human.
if ((j % 2) == 0)
*os << ' ';
else
*os << '-';
}
GTEST_SNPRINTF_(text, sizeof(text), "%02X", obj_bytes[j]);
*os << text;
}
}
// Prints the bytes in the given value to the given ostream.
void PrintBytesInObjectToImpl(const unsigned char* obj_bytes, size_t count,
ostream* os) {
// Tells the user how big the object is.
*os << count << "-byte object <";
const size_t kThreshold = 132;
const size_t kChunkSize = 64;
// If the object size is bigger than kThreshold, we'll have to omit
// some details by printing only the first and the last kChunkSize
// bytes.
// TODO(wan): let the user control the threshold using a flag.
if (count < kThreshold) {
PrintByteSegmentInObjectTo(obj_bytes, 0, count, os);
} else {
PrintByteSegmentInObjectTo(obj_bytes, 0, kChunkSize, os);
*os << " ... ";
// Rounds up to 2-byte boundary.
const size_t resume_pos = (count - kChunkSize + 1)/2*2;
PrintByteSegmentInObjectTo(obj_bytes, resume_pos, count - resume_pos, os);
}
*os << ">";
}
} // namespace
namespace internal2 {
// Delegates to PrintBytesInObjectToImpl() to print the bytes in the
// given object. The delegation simplifies the implementation, which
// uses the << operator and thus is easier done outside of the
// ::testing::internal namespace, which contains a << operator that
// sometimes conflicts with the one in STL.
void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count,
ostream* os) {
PrintBytesInObjectToImpl(obj_bytes, count, os);
}
} // namespace internal2
namespace internal {
// Depending on the value of a char (or wchar_t), we print it in one
// of three formats:
// - as is if it's a printable ASCII (e.g. 'a', '2', ' '),
// - as a hexidecimal escape sequence (e.g. '\x7F'), or
// - as a special escape sequence (e.g. '\r', '\n').
enum CharFormat {
kAsIs,
kHexEscape,
kSpecialEscape
};
// Returns true if c is a printable ASCII character. We test the
// value of c directly instead of calling isprint(), which is buggy on
// Windows Mobile.
inline bool IsPrintableAscii(wchar_t c) {
return 0x20 <= c && c <= 0x7E;
}
// Prints a wide or narrow char c as a character literal without the
// quotes, escaping it when necessary; returns how c was formatted.
// The template argument UnsignedChar is the unsigned version of Char,
// which is the type of c.
template <typename UnsignedChar, typename Char>
static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) {
switch (static_cast<wchar_t>(c)) {
case L'\0':
*os << "\\0";
break;
case L'\'':
*os << "\\'";
break;
case L'\\':
*os << "\\\\";
break;
case L'\a':
*os << "\\a";
break;
case L'\b':
*os << "\\b";
break;
case L'\f':
*os << "\\f";
break;
case L'\n':
*os << "\\n";
break;
case L'\r':
*os << "\\r";
break;
case L'\t':
*os << "\\t";
break;
case L'\v':
*os << "\\v";
break;
default:
if (IsPrintableAscii(c)) {
*os << static_cast<char>(c);
return kAsIs;
} else {
*os << "\\x" + String::FormatHexInt(static_cast<UnsignedChar>(c));
return kHexEscape;
}
}
return kSpecialEscape;
}
// Prints a wchar_t c as if it's part of a string literal, escaping it when
// necessary; returns how c was formatted.
static CharFormat PrintAsStringLiteralTo(wchar_t c, ostream* os) {
switch (c) {
case L'\'':
*os << "'";
return kAsIs;
case L'"':
*os << "\\\"";
return kSpecialEscape;
default:
return PrintAsCharLiteralTo<wchar_t>(c, os);
}
}
// Prints a char c as if it's part of a string literal, escaping it when
// necessary; returns how c was formatted.
static CharFormat PrintAsStringLiteralTo(char c, ostream* os) {
return PrintAsStringLiteralTo(
static_cast<wchar_t>(static_cast<unsigned char>(c)), os);
}
// Prints a wide or narrow character c and its code. '\0' is printed
// as "'\\0'", other unprintable characters are also properly escaped
// using the standard C++ escape sequence. The template argument
// UnsignedChar is the unsigned version of Char, which is the type of c.
template <typename UnsignedChar, typename Char>
void PrintCharAndCodeTo(Char c, ostream* os) {
// First, print c as a literal in the most readable form we can find.
*os << ((sizeof(c) > 1) ? "L'" : "'");
const CharFormat format = PrintAsCharLiteralTo<UnsignedChar>(c, os);
*os << "'";
// To aid user debugging, we also print c's code in decimal, unless
// it's 0 (in which case c was printed as '\\0', making the code
// obvious).
if (c == 0)
return;
*os << " (" << static_cast<int>(c);
// For more convenience, we print c's code again in hexidecimal,
// unless c was already printed in the form '\x##' or the code is in
// [1, 9].
if (format == kHexEscape || (1 <= c && c <= 9)) {
// Do nothing.
} else {
*os << ", 0x" << String::FormatHexInt(static_cast<UnsignedChar>(c));
}
*os << ")";
}
void PrintTo(unsigned char c, ::std::ostream* os) {
PrintCharAndCodeTo<unsigned char>(c, os);
}
void PrintTo(signed char c, ::std::ostream* os) {
PrintCharAndCodeTo<unsigned char>(c, os);
}
// Prints a wchar_t as a symbol if it is printable or as its internal
// code otherwise and also as its code. L'\0' is printed as "L'\\0'".
void PrintTo(wchar_t wc, ostream* os) {
PrintCharAndCodeTo<wchar_t>(wc, os);
}
// Prints the given array of characters to the ostream. CharType must be either
// char or wchar_t.
// The array starts at begin, the length is len, it may include '\0' characters
// and may not be NUL-terminated.
template <typename CharType>
GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_
static void PrintCharsAsStringTo(
const CharType* begin, size_t len, ostream* os) {
const char* const kQuoteBegin = sizeof(CharType) == 1 ? "\"" : "L\"";
*os << kQuoteBegin;
bool is_previous_hex = false;
for (size_t index = 0; index < len; ++index) {
const CharType cur = begin[index];
if (is_previous_hex && IsXDigit(cur)) {
// Previous character is of '\x..' form and this character can be
// interpreted as another hexadecimal digit in its number. Break string to
// disambiguate.
*os << "\" " << kQuoteBegin;
}
is_previous_hex = PrintAsStringLiteralTo(cur, os) == kHexEscape;
}
*os << "\"";
}
// Prints a (const) char/wchar_t array of 'len' elements, starting at address
// 'begin'. CharType must be either char or wchar_t.
template <typename CharType>
GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_
GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_
static void UniversalPrintCharArray(
const CharType* begin, size_t len, ostream* os) {
// The code
// const char kFoo[] = "foo";
// generates an array of 4, not 3, elements, with the last one being '\0'.
//
// Therefore when printing a char array, we don't print the last element if
// it's '\0', such that the output matches the string literal as it's
// written in the source code.
if (len > 0 && begin[len - 1] == '\0') {
PrintCharsAsStringTo(begin, len - 1, os);
return;
}
// If, however, the last element in the array is not '\0', e.g.
// const char kFoo[] = { 'f', 'o', 'o' };
// we must print the entire array. We also print a message to indicate
// that the array is not NUL-terminated.
PrintCharsAsStringTo(begin, len, os);
*os << " (no terminating NUL)";
}
// Prints a (const) char array of 'len' elements, starting at address 'begin'.
void UniversalPrintArray(const char* begin, size_t len, ostream* os) {
UniversalPrintCharArray(begin, len, os);
}
// Prints a (const) wchar_t array of 'len' elements, starting at address
// 'begin'.
void UniversalPrintArray(const wchar_t* begin, size_t len, ostream* os) {
UniversalPrintCharArray(begin, len, os);
}
// Prints the given C string to the ostream.
void PrintTo(const char* s, ostream* os) {
if (s == NULL) {
*os << "NULL";
} else {
*os << ImplicitCast_<const void*>(s) << " pointing to ";
PrintCharsAsStringTo(s, strlen(s), os);
}
}
// MSVC compiler can be configured to define whar_t as a typedef
// of unsigned short. Defining an overload for const wchar_t* in that case
// would cause pointers to unsigned shorts be printed as wide strings,
// possibly accessing more memory than intended and causing invalid
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
// wchar_t is implemented as a native type.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
// Prints the given wide C string to the ostream.
void PrintTo(const wchar_t* s, ostream* os) {
if (s == NULL) {
*os << "NULL";
} else {
*os << ImplicitCast_<const void*>(s) << " pointing to ";
PrintCharsAsStringTo(s, std::wcslen(s), os);
}
}
#endif // wchar_t is native
// Prints a ::string object.
#if GTEST_HAS_GLOBAL_STRING
void PrintStringTo(const ::string& s, ostream* os) {
PrintCharsAsStringTo(s.data(), s.size(), os);
}
#endif // GTEST_HAS_GLOBAL_STRING
void PrintStringTo(const ::std::string& s, ostream* os) {
PrintCharsAsStringTo(s.data(), s.size(), os);
}
// Prints a ::wstring object.
#if GTEST_HAS_GLOBAL_WSTRING
void PrintWideStringTo(const ::wstring& s, ostream* os) {
PrintCharsAsStringTo(s.data(), s.size(), os);
}
#endif // GTEST_HAS_GLOBAL_WSTRING
#if GTEST_HAS_STD_WSTRING
void PrintWideStringTo(const ::std::wstring& s, ostream* os) {
PrintCharsAsStringTo(s.data(), s.size(), os);
}
#endif // GTEST_HAS_STD_WSTRING
} // namespace internal
} // namespace testing
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: mheule@google.com (Markus Heule)
//
// The Google C++ Testing Framework (Google Test)
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick exists to
// prevent the accidental inclusion of gtest-internal-inl.h in the
// user's code.
#define GTEST_IMPLEMENTATION_ 1
#undef GTEST_IMPLEMENTATION_
namespace testing {
using internal::GetUnitTestImpl;
// Gets the summary of the failure message by omitting the stack trace
// in it.
std::string TestPartResult::ExtractSummary(const char* message) {
const char* const stack_trace = strstr(message, internal::kStackTraceMarker);
return stack_trace == NULL ? message :
std::string(message, stack_trace);
}
// Prints a TestPartResult object.
std::ostream& operator<<(std::ostream& os, const TestPartResult& result) {
return os
<< result.file_name() << ":" << result.line_number() << ": "
<< (result.type() == TestPartResult::kSuccess ? "Success" :
result.type() == TestPartResult::kFatalFailure ? "Fatal failure" :
"Non-fatal failure") << ":\n"
<< result.message() << std::endl;
}
// Appends a TestPartResult to the array.
void TestPartResultArray::Append(const TestPartResult& result) {
array_.push_back(result);
}
// Returns the TestPartResult at the given index (0-based).
const TestPartResult& TestPartResultArray::GetTestPartResult(int index) const {
if (index < 0 || index >= size()) {
printf("\nInvalid index (%d) into TestPartResultArray.\n", index);
internal::posix::Abort();
}
return array_[index];
}
// Returns the number of TestPartResult objects in the array.
int TestPartResultArray::size() const {
return static_cast<int>(array_.size());
}
namespace internal {
HasNewFatalFailureHelper::HasNewFatalFailureHelper()
: has_new_fatal_failure_(false),
original_reporter_(GetUnitTestImpl()->
GetTestPartResultReporterForCurrentThread()) {
GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(this);
}
HasNewFatalFailureHelper::~HasNewFatalFailureHelper() {
GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(
original_reporter_);
}
void HasNewFatalFailureHelper::ReportTestPartResult(
const TestPartResult& result) {
if (result.fatally_failed())
has_new_fatal_failure_ = true;
original_reporter_->ReportTestPartResult(result);
}
} // namespace internal
} // namespace testing
// Copyright 2008 Google Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
namespace testing {
namespace internal {
#if GTEST_HAS_TYPED_TEST_P
// Skips to the first non-space char in str. Returns an empty string if str
// contains only whitespace characters.
static const char* SkipSpaces(const char* str) {
while (IsSpace(*str))
str++;
return str;
}
static std::vector<std::string> SplitIntoTestNames(const char* src) {
std::vector<std::string> name_vec;
src = SkipSpaces(src);
for (; src != NULL; src = SkipComma(src)) {
name_vec.push_back(StripTrailingSpaces(GetPrefixUntilComma(src)));
}
return name_vec;
}
// Verifies that registered_tests match the test names in
// defined_test_names_; returns registered_tests if successful, or
// aborts the program otherwise.
const char* TypedTestCasePState::VerifyRegisteredTestNames(
const char* file, int line, const char* registered_tests) {
typedef ::std::set<const char*>::const_iterator DefinedTestIter;
registered_ = true;
std::vector<std::string> name_vec = SplitIntoTestNames(registered_tests);
Message errors;
std::set<std::string> tests;
for (std::vector<std::string>::const_iterator name_it = name_vec.begin();
name_it != name_vec.end(); ++name_it) {
const std::string& name = *name_it;
if (tests.count(name) != 0) {
errors << "Test " << name << " is listed more than once.\n";
continue;
}
bool found = false;
for (DefinedTestIter it = defined_test_names_.begin();
it != defined_test_names_.end();
++it) {
if (name == *it) {
found = true;
break;
}
}
if (found) {
tests.insert(name);
} else {
errors << "No test named " << name
<< " can be found in this test case.\n";
}
}
for (DefinedTestIter it = defined_test_names_.begin();
it != defined_test_names_.end();
++it) {
if (tests.count(*it) == 0) {
errors << "You forgot to list test " << *it << ".\n";
}
}
const std::string& errors_str = errors.GetString();
if (errors_str != "") {
fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(),
errors_str.c_str());
fflush(stderr);
posix::Abort();
}
return registered_tests;
}
#endif // GTEST_HAS_TYPED_TEST_P
} // namespace internal
} // namespace testing
#endif // __clang_analyzer__