rocksdb/utilities/transactions/write_prepared_txn_db.cc

997 lines
41 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#include "utilities/transactions/write_prepared_txn_db.h"
#include <algorithm>
#include <cinttypes>
#include <string>
#include <unordered_set>
#include <vector>
#include "db/arena_wrapped_db_iter.h"
#include "db/db_impl/db_impl.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/utilities/transaction_db.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
#include "util/mutexlock.h"
#include "util/string_util.h"
#include "utilities/transactions/pessimistic_transaction.h"
#include "utilities/transactions/transaction_db_mutex_impl.h"
namespace ROCKSDB_NAMESPACE {
Status WritePreparedTxnDB::Initialize(
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles) {
auto dbimpl = static_cast_with_check<DBImpl>(GetRootDB());
assert(dbimpl != nullptr);
auto rtxns = dbimpl->recovered_transactions();
std::map<SequenceNumber, SequenceNumber> ordered_seq_cnt;
for (auto rtxn : rtxns) {
// There should only one batch for WritePrepared policy.
assert(rtxn.second->batches_.size() == 1);
const auto& seq = rtxn.second->batches_.begin()->first;
const auto& batch_info = rtxn.second->batches_.begin()->second;
auto cnt = batch_info.batch_cnt_ ? batch_info.batch_cnt_ : 1;
ordered_seq_cnt[seq] = cnt;
}
// AddPrepared must be called in order
for (auto seq_cnt : ordered_seq_cnt) {
auto seq = seq_cnt.first;
auto cnt = seq_cnt.second;
for (size_t i = 0; i < cnt; i++) {
AddPrepared(seq + i);
}
}
SequenceNumber prev_max = max_evicted_seq_;
SequenceNumber last_seq = db_impl_->GetLatestSequenceNumber();
AdvanceMaxEvictedSeq(prev_max, last_seq);
// Create a gap between max and the next snapshot. This simplifies the logic
// in IsInSnapshot by not having to consider the special case of max ==
// snapshot after recovery. This is tested in IsInSnapshotEmptyMapTest.
if (last_seq) {
db_impl_->versions_->SetLastAllocatedSequence(last_seq + 1);
db_impl_->versions_->SetLastSequence(last_seq + 1);
db_impl_->versions_->SetLastPublishedSequence(last_seq + 1);
}
db_impl_->SetSnapshotChecker(new WritePreparedSnapshotChecker(this));
// A callback to commit a single sub-batch
class CommitSubBatchPreReleaseCallback : public PreReleaseCallback {
public:
explicit CommitSubBatchPreReleaseCallback(WritePreparedTxnDB* db)
: db_(db) {}
Status Callback(SequenceNumber commit_seq,
bool is_mem_disabled __attribute__((__unused__)), uint64_t,
size_t /*index*/, size_t /*total*/) override {
assert(!is_mem_disabled);
db_->AddCommitted(commit_seq, commit_seq);
return Status::OK();
}
private:
WritePreparedTxnDB* db_;
};
db_impl_->SetRecoverableStatePreReleaseCallback(
new CommitSubBatchPreReleaseCallback(this));
auto s = PessimisticTransactionDB::Initialize(compaction_enabled_cf_indices,
handles);
return s;
}
Status WritePreparedTxnDB::VerifyCFOptions(
const ColumnFamilyOptions& cf_options) {
Status s = PessimisticTransactionDB::VerifyCFOptions(cf_options);
if (!s.ok()) {
return s;
}
if (!cf_options.memtable_factory->CanHandleDuplicatedKey()) {
return Status::InvalidArgument(
"memtable_factory->CanHandleDuplicatedKey() cannot be false with "
"WritePrpeared transactions");
}
return Status::OK();
}
Transaction* WritePreparedTxnDB::BeginTransaction(
const WriteOptions& write_options, const TransactionOptions& txn_options,
Transaction* old_txn) {
if (old_txn != nullptr) {
ReinitializeTransaction(old_txn, write_options, txn_options);
return old_txn;
} else {
return new WritePreparedTxn(this, write_options, txn_options);
}
}
Status WritePreparedTxnDB::Write(const WriteOptions& opts,
WriteBatch* updates) {
if (txn_db_options_.skip_concurrency_control) {
// Skip locking the rows
const size_t UNKNOWN_BATCH_CNT = 0;
WritePreparedTxn* NO_TXN = nullptr;
return WriteInternal(opts, updates, UNKNOWN_BATCH_CNT, NO_TXN);
} else {
return PessimisticTransactionDB::WriteWithConcurrencyControl(opts, updates);
}
}
Status WritePreparedTxnDB::Write(
const WriteOptions& opts,
const TransactionDBWriteOptimizations& optimizations, WriteBatch* updates) {
if (optimizations.skip_concurrency_control) {
// Skip locking the rows
const size_t UNKNOWN_BATCH_CNT = 0;
const size_t ONE_BATCH_CNT = 1;
const size_t batch_cnt = optimizations.skip_duplicate_key_check
? ONE_BATCH_CNT
: UNKNOWN_BATCH_CNT;
WritePreparedTxn* NO_TXN = nullptr;
return WriteInternal(opts, updates, batch_cnt, NO_TXN);
} else {
// TODO(myabandeh): Make use of skip_duplicate_key_check hint
// Fall back to unoptimized version
return PessimisticTransactionDB::WriteWithConcurrencyControl(opts, updates);
}
}
Status WritePreparedTxnDB::WriteInternal(const WriteOptions& write_options_orig,
WriteBatch* batch, size_t batch_cnt,
WritePreparedTxn* txn) {
ROCKS_LOG_DETAILS(db_impl_->immutable_db_options().info_log,
"CommitBatchInternal");
if (batch->Count() == 0) {
// Otherwise our 1 seq per batch logic will break since there is no seq
// increased for this batch.
return Status::OK();
}
if (batch_cnt == 0) { // not provided, then compute it
// TODO(myabandeh): add an option to allow user skipping this cost
SubBatchCounter counter(*GetCFComparatorMap());
auto s = batch->Iterate(&counter);
assert(s.ok());
batch_cnt = counter.BatchCount();
WPRecordTick(TXN_DUPLICATE_KEY_OVERHEAD);
ROCKS_LOG_DETAILS(info_log_, "Duplicate key overhead: %" PRIu64 " batches",
static_cast<uint64_t>(batch_cnt));
}
assert(batch_cnt);
bool do_one_write = !db_impl_->immutable_db_options().two_write_queues;
WriteOptions write_options(write_options_orig);
// In the absence of Prepare markers, use Noop as a batch separator
WriteBatchInternal::InsertNoop(batch);
const bool DISABLE_MEMTABLE = true;
const uint64_t no_log_ref = 0;
uint64_t seq_used = kMaxSequenceNumber;
const size_t ZERO_PREPARES = 0;
const bool kSeperatePrepareCommitBatches = true;
// Since this is not 2pc, there is no need for AddPrepared but having it in
// the PreReleaseCallback enables an optimization. Refer to
// SmallestUnCommittedSeq for more details.
AddPreparedCallback add_prepared_callback(
this, db_impl_, batch_cnt,
db_impl_->immutable_db_options().two_write_queues,
!kSeperatePrepareCommitBatches);
WritePreparedCommitEntryPreReleaseCallback update_commit_map(
this, db_impl_, kMaxSequenceNumber, ZERO_PREPARES, batch_cnt);
PreReleaseCallback* pre_release_callback;
if (do_one_write) {
pre_release_callback = &update_commit_map;
} else {
pre_release_callback = &add_prepared_callback;
}
auto s = db_impl_->WriteImpl(write_options, batch, nullptr, nullptr,
no_log_ref, !DISABLE_MEMTABLE, &seq_used,
batch_cnt, pre_release_callback);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
uint64_t prepare_seq = seq_used;
if (txn != nullptr) {
txn->SetId(prepare_seq);
}
if (!s.ok()) {
return s;
}
if (do_one_write) {
return s;
} // else do the 2nd write for commit
ROCKS_LOG_DETAILS(db_impl_->immutable_db_options().info_log,
"CommitBatchInternal 2nd write prepare_seq: %" PRIu64,
prepare_seq);
// Commit the batch by writing an empty batch to the 2nd queue that will
// release the commit sequence number to readers.
const size_t ZERO_COMMITS = 0;
WritePreparedCommitEntryPreReleaseCallback update_commit_map_with_prepare(
this, db_impl_, prepare_seq, batch_cnt, ZERO_COMMITS);
WriteBatch empty_batch;
write_options.disableWAL = true;
write_options.sync = false;
const size_t ONE_BATCH = 1; // Just to inc the seq
s = db_impl_->WriteImpl(write_options, &empty_batch, nullptr, nullptr,
no_log_ref, DISABLE_MEMTABLE, &seq_used, ONE_BATCH,
&update_commit_map_with_prepare);
assert(!s.ok() || seq_used != kMaxSequenceNumber);
// Note: RemovePrepared is called from within PreReleaseCallback
return s;
}
Status WritePreparedTxnDB::Get(const ReadOptions& options,
ColumnFamilyHandle* column_family,
const Slice& key, PinnableSlice* value) {
SequenceNumber min_uncommitted, snap_seq;
const SnapshotBackup backed_by_snapshot =
AssignMinMaxSeqs(options.snapshot, &min_uncommitted, &snap_seq);
WritePreparedTxnReadCallback callback(this, snap_seq, min_uncommitted,
backed_by_snapshot);
bool* dont_care = nullptr;
New API to get all merge operands for a Key (#5604) Summary: This is a new API added to db.h to allow for fetching all merge operands associated with a Key. The main motivation for this API is to support use cases where doing a full online merge is not necessary as it is performance sensitive. Example use-cases: 1. Update subset of columns and read subset of columns - Imagine a SQL Table, a row is encoded as a K/V pair (as it is done in MyRocks). If there are many columns and users only updated one of them, we can use merge operator to reduce write amplification. While users only read one or two columns in the read query, this feature can avoid a full merging of the whole row, and save some CPU. 2. Updating very few attributes in a value which is a JSON-like document - Updating one attribute can be done efficiently using merge operator, while reading back one attribute can be done more efficiently if we don't need to do a full merge. ---------------------------------------------------------------------------------------------------- API : Status GetMergeOperands( const ReadOptions& options, ColumnFamilyHandle* column_family, const Slice& key, PinnableSlice* merge_operands, GetMergeOperandsOptions* get_merge_operands_options, int* number_of_operands) Example usage : int size = 100; int number_of_operands = 0; std::vector<PinnableSlice> values(size); GetMergeOperandsOptions merge_operands_info; db_->GetMergeOperands(ReadOptions(), db_->DefaultColumnFamily(), "k1", values.data(), merge_operands_info, &number_of_operands); Description : Returns all the merge operands corresponding to the key. If the number of merge operands in DB is greater than merge_operands_options.expected_max_number_of_operands no merge operands are returned and status is Incomplete. Merge operands returned are in the order of insertion. merge_operands-> Points to an array of at-least merge_operands_options.expected_max_number_of_operands and the caller is responsible for allocating it. If the status returned is Incomplete then number_of_operands will contain the total number of merge operands found in DB for key. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5604 Test Plan: Added unit test and perf test in db_bench that can be run using the command: ./db_bench -benchmarks=getmergeoperands --merge_operator=sortlist Differential Revision: D16657366 Pulled By: vjnadimpalli fbshipit-source-id: 0faadd752351745224ee12d4ae9ef3cb529951bf
2019-08-06 14:22:34 -07:00
DBImpl::GetImplOptions get_impl_options;
get_impl_options.column_family = column_family;
get_impl_options.value = value;
get_impl_options.value_found = dont_care;
get_impl_options.callback = &callback;
auto res = db_impl_->GetImpl(options, key, get_impl_options);
if (LIKELY(callback.valid() && ValidateSnapshot(callback.max_visible_seq(),
backed_by_snapshot))) {
return res;
} else {
WPRecordTick(TXN_GET_TRY_AGAIN);
return Status::TryAgain();
}
}
void WritePreparedTxnDB::UpdateCFComparatorMap(
const std::vector<ColumnFamilyHandle*>& handles) {
auto cf_map = new std::map<uint32_t, const Comparator*>();
auto handle_map = new std::map<uint32_t, ColumnFamilyHandle*>();
for (auto h : handles) {
auto id = h->GetID();
const Comparator* comparator = h->GetComparator();
(*cf_map)[id] = comparator;
if (id != 0) {
(*handle_map)[id] = h;
} else {
// The pointer to the default cf handle in the handles will be deleted.
// Use the pointer maintained by the db instead.
(*handle_map)[id] = DefaultColumnFamily();
}
}
cf_map_.reset(cf_map);
handle_map_.reset(handle_map);
}
void WritePreparedTxnDB::UpdateCFComparatorMap(ColumnFamilyHandle* h) {
auto old_cf_map_ptr = cf_map_.get();
assert(old_cf_map_ptr);
auto cf_map = new std::map<uint32_t, const Comparator*>(*old_cf_map_ptr);
auto old_handle_map_ptr = handle_map_.get();
assert(old_handle_map_ptr);
auto handle_map =
new std::map<uint32_t, ColumnFamilyHandle*>(*old_handle_map_ptr);
auto id = h->GetID();
const Comparator* comparator = h->GetComparator();
(*cf_map)[id] = comparator;
(*handle_map)[id] = h;
cf_map_.reset(cf_map);
handle_map_.reset(handle_map);
}
std::vector<Status> WritePreparedTxnDB::MultiGet(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values) {
assert(values);
size_t num_keys = keys.size();
values->resize(num_keys);
std::vector<Status> stat_list(num_keys);
for (size_t i = 0; i < num_keys; ++i) {
stat_list[i] = this->Get(options, column_family[i], keys[i], &(*values)[i]);
}
return stat_list;
}
// Struct to hold ownership of snapshot and read callback for iterator cleanup.
struct WritePreparedTxnDB::IteratorState {
IteratorState(WritePreparedTxnDB* txn_db, SequenceNumber sequence,
std::shared_ptr<ManagedSnapshot> s,
SequenceNumber min_uncommitted)
: callback(txn_db, sequence, min_uncommitted, kBackedByDBSnapshot),
snapshot(s) {}
WritePreparedTxnReadCallback callback;
std::shared_ptr<ManagedSnapshot> snapshot;
};
namespace {
static void CleanupWritePreparedTxnDBIterator(void* arg1, void* /*arg2*/) {
delete reinterpret_cast<WritePreparedTxnDB::IteratorState*>(arg1);
}
} // anonymous namespace
Iterator* WritePreparedTxnDB::NewIterator(const ReadOptions& options,
ColumnFamilyHandle* column_family) {
constexpr bool ALLOW_BLOB = true;
constexpr bool ALLOW_REFRESH = true;
std::shared_ptr<ManagedSnapshot> own_snapshot = nullptr;
SequenceNumber snapshot_seq = kMaxSequenceNumber;
SequenceNumber min_uncommitted = 0;
if (options.snapshot != nullptr) {
snapshot_seq = options.snapshot->GetSequenceNumber();
min_uncommitted =
static_cast_with_check<const SnapshotImpl>(options.snapshot)
->min_uncommitted_;
} else {
auto* snapshot = GetSnapshot();
// We take a snapshot to make sure that the related data in the commit map
// are not deleted.
snapshot_seq = snapshot->GetSequenceNumber();
min_uncommitted =
static_cast_with_check<const SnapshotImpl>(snapshot)->min_uncommitted_;
own_snapshot = std::make_shared<ManagedSnapshot>(db_impl_, snapshot);
}
assert(snapshot_seq != kMaxSequenceNumber);
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
auto* state =
new IteratorState(this, snapshot_seq, own_snapshot, min_uncommitted);
auto* db_iter =
db_impl_->NewIteratorImpl(options, cfd, snapshot_seq, &state->callback,
!ALLOW_BLOB, !ALLOW_REFRESH);
db_iter->RegisterCleanup(CleanupWritePreparedTxnDBIterator, state, nullptr);
return db_iter;
}
Status WritePreparedTxnDB::NewIterators(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) {
constexpr bool ALLOW_BLOB = true;
constexpr bool ALLOW_REFRESH = true;
std::shared_ptr<ManagedSnapshot> own_snapshot = nullptr;
SequenceNumber snapshot_seq = kMaxSequenceNumber;
SequenceNumber min_uncommitted = 0;
if (options.snapshot != nullptr) {
snapshot_seq = options.snapshot->GetSequenceNumber();
min_uncommitted =
static_cast_with_check<const SnapshotImpl>(options.snapshot)
->min_uncommitted_;
} else {
auto* snapshot = GetSnapshot();
// We take a snapshot to make sure that the related data in the commit map
// are not deleted.
snapshot_seq = snapshot->GetSequenceNumber();
own_snapshot = std::make_shared<ManagedSnapshot>(db_impl_, snapshot);
min_uncommitted =
static_cast_with_check<const SnapshotImpl>(snapshot)->min_uncommitted_;
}
iterators->clear();
iterators->reserve(column_families.size());
for (auto* column_family : column_families) {
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(column_family)->cfd();
auto* state =
new IteratorState(this, snapshot_seq, own_snapshot, min_uncommitted);
auto* db_iter =
db_impl_->NewIteratorImpl(options, cfd, snapshot_seq, &state->callback,
!ALLOW_BLOB, !ALLOW_REFRESH);
db_iter->RegisterCleanup(CleanupWritePreparedTxnDBIterator, state, nullptr);
iterators->push_back(db_iter);
}
return Status::OK();
}
void WritePreparedTxnDB::Init(const TransactionDBOptions& /* unused */) {
// Adcance max_evicted_seq_ no more than 100 times before the cache wraps
// around.
INC_STEP_FOR_MAX_EVICTED =
std::max(COMMIT_CACHE_SIZE / 100, static_cast<size_t>(1));
snapshot_cache_ = std::unique_ptr<std::atomic<SequenceNumber>[]>(
new std::atomic<SequenceNumber>[SNAPSHOT_CACHE_SIZE] {});
commit_cache_ = std::unique_ptr<std::atomic<CommitEntry64b>[]>(
new std::atomic<CommitEntry64b>[COMMIT_CACHE_SIZE] {});
dummy_max_snapshot_.number_ = kMaxSequenceNumber;
}
void WritePreparedTxnDB::CheckPreparedAgainstMax(SequenceNumber new_max,
bool locked) {
// When max_evicted_seq_ advances, move older entries from prepared_txns_
// to delayed_prepared_. This guarantees that if a seq is lower than max,
// then it is not in prepared_txns_ and save an expensive, synchronized
// lookup from a shared set. delayed_prepared_ is expected to be empty in
// normal cases.
ROCKS_LOG_DETAILS(
info_log_,
"CheckPreparedAgainstMax prepared_txns_.empty() %d top: %" PRIu64,
prepared_txns_.empty(),
prepared_txns_.empty() ? 0 : prepared_txns_.top());
const SequenceNumber prepared_top = prepared_txns_.top();
const bool empty = prepared_top == kMaxSequenceNumber;
// Preliminary check to avoid the synchronization cost
if (!empty && prepared_top <= new_max) {
if (locked) {
// Needed to avoid double locking in pop().
prepared_txns_.push_pop_mutex()->Unlock();
}
WriteLock wl(&prepared_mutex_);
// Need to fetch fresh values of ::top after mutex is acquired
while (!prepared_txns_.empty() && prepared_txns_.top() <= new_max) {
auto to_be_popped = prepared_txns_.top();
delayed_prepared_.insert(to_be_popped);
ROCKS_LOG_WARN(info_log_,
"prepared_mutex_ overhead %" PRIu64 " (prep=%" PRIu64
" new_max=%" PRIu64,
static_cast<uint64_t>(delayed_prepared_.size()),
to_be_popped, new_max);
delayed_prepared_empty_.store(false, std::memory_order_release);
// Update prepared_txns_ after updating delayed_prepared_empty_ otherwise
// there will be a point in time that the entry is neither in
// prepared_txns_ nor in delayed_prepared_, which will not be checked if
// delayed_prepared_empty_ is false.
prepared_txns_.pop();
}
if (locked) {
prepared_txns_.push_pop_mutex()->Lock();
}
}
}
void WritePreparedTxnDB::AddPrepared(uint64_t seq, bool locked) {
ROCKS_LOG_DETAILS(info_log_, "Txn %" PRIu64 " Preparing with max %" PRIu64,
seq, max_evicted_seq_.load());
TEST_SYNC_POINT("AddPrepared::begin:pause");
TEST_SYNC_POINT("AddPrepared::begin:resume");
if (!locked) {
prepared_txns_.push_pop_mutex()->Lock();
}
prepared_txns_.push_pop_mutex()->AssertHeld();
prepared_txns_.push(seq);
auto new_max = future_max_evicted_seq_.load();
if (UNLIKELY(seq <= new_max)) {
// This should not happen in normal case
ROCKS_LOG_ERROR(
info_log_,
"Added prepare_seq is not larger than max_evicted_seq_: %" PRIu64
" <= %" PRIu64,
seq, new_max);
CheckPreparedAgainstMax(new_max, true /*locked*/);
}
if (!locked) {
prepared_txns_.push_pop_mutex()->Unlock();
}
TEST_SYNC_POINT("AddPrepared::end");
}
void WritePreparedTxnDB::AddCommitted(uint64_t prepare_seq, uint64_t commit_seq,
uint8_t loop_cnt) {
ROCKS_LOG_DETAILS(info_log_, "Txn %" PRIu64 " Committing with %" PRIu64,
prepare_seq, commit_seq);
TEST_SYNC_POINT("WritePreparedTxnDB::AddCommitted:start");
TEST_SYNC_POINT("WritePreparedTxnDB::AddCommitted:start:pause");
auto indexed_seq = prepare_seq % COMMIT_CACHE_SIZE;
CommitEntry64b evicted_64b;
CommitEntry evicted;
bool to_be_evicted = GetCommitEntry(indexed_seq, &evicted_64b, &evicted);
if (LIKELY(to_be_evicted)) {
assert(evicted.prep_seq != prepare_seq);
auto prev_max = max_evicted_seq_.load(std::memory_order_acquire);
ROCKS_LOG_DETAILS(info_log_,
"Evicting %" PRIu64 ",%" PRIu64 " with max %" PRIu64,
evicted.prep_seq, evicted.commit_seq, prev_max);
if (prev_max < evicted.commit_seq) {
auto last = db_impl_->GetLastPublishedSequence(); // could be 0
SequenceNumber max_evicted_seq;
if (LIKELY(evicted.commit_seq < last)) {
assert(last > 0);
// Inc max in larger steps to avoid frequent updates
max_evicted_seq =
std::min(evicted.commit_seq + INC_STEP_FOR_MAX_EVICTED, last - 1);
} else {
// legit when a commit entry in a write batch overwrite the previous one
max_evicted_seq = evicted.commit_seq;
}
ROCKS_LOG_DETAILS(info_log_,
"%lu Evicting %" PRIu64 ",%" PRIu64 " with max %" PRIu64
" => %lu",
prepare_seq, evicted.prep_seq, evicted.commit_seq,
prev_max, max_evicted_seq);
AdvanceMaxEvictedSeq(prev_max, max_evicted_seq);
}
// After each eviction from commit cache, check if the commit entry should
// be kept around because it overlaps with a live snapshot.
CheckAgainstSnapshots(evicted);
if (UNLIKELY(!delayed_prepared_empty_.load(std::memory_order_acquire))) {
WriteLock wl(&prepared_mutex_);
for (auto dp : delayed_prepared_) {
if (dp == evicted.prep_seq) {
// This is a rare case that txn is committed but prepared_txns_ is not
// cleaned up yet. Refer to delayed_prepared_commits_ definition for
// why it should be kept updated.
delayed_prepared_commits_[evicted.prep_seq] = evicted.commit_seq;
ROCKS_LOG_DEBUG(info_log_,
"delayed_prepared_commits_[%" PRIu64 "]=%" PRIu64,
evicted.prep_seq, evicted.commit_seq);
break;
}
}
}
}
bool succ =
ExchangeCommitEntry(indexed_seq, evicted_64b, {prepare_seq, commit_seq});
if (UNLIKELY(!succ)) {
ROCKS_LOG_ERROR(info_log_,
"ExchangeCommitEntry failed on [%" PRIu64 "] %" PRIu64
",%" PRIu64 " retrying...",
indexed_seq, prepare_seq, commit_seq);
// A very rare event, in which the commit entry is updated before we do.
// Here we apply a very simple solution of retrying.
if (loop_cnt > 100) {
throw std::runtime_error("Infinite loop in AddCommitted!");
}
AddCommitted(prepare_seq, commit_seq, ++loop_cnt);
return;
}
TEST_SYNC_POINT("WritePreparedTxnDB::AddCommitted:end");
TEST_SYNC_POINT("WritePreparedTxnDB::AddCommitted:end:pause");
}
void WritePreparedTxnDB::RemovePrepared(const uint64_t prepare_seq,
const size_t batch_cnt) {
TEST_SYNC_POINT_CALLBACK(
"RemovePrepared:Start",
const_cast<void*>(reinterpret_cast<const void*>(&prepare_seq)));
TEST_SYNC_POINT("WritePreparedTxnDB::RemovePrepared:pause");
TEST_SYNC_POINT("WritePreparedTxnDB::RemovePrepared:resume");
ROCKS_LOG_DETAILS(info_log_,
"RemovePrepared %" PRIu64 " cnt: %" ROCKSDB_PRIszt,
prepare_seq, batch_cnt);
WriteLock wl(&prepared_mutex_);
for (size_t i = 0; i < batch_cnt; i++) {
prepared_txns_.erase(prepare_seq + i);
bool was_empty = delayed_prepared_.empty();
if (!was_empty) {
delayed_prepared_.erase(prepare_seq + i);
auto it = delayed_prepared_commits_.find(prepare_seq + i);
if (it != delayed_prepared_commits_.end()) {
ROCKS_LOG_DETAILS(info_log_, "delayed_prepared_commits_.erase %" PRIu64,
prepare_seq + i);
delayed_prepared_commits_.erase(it);
}
bool is_empty = delayed_prepared_.empty();
if (was_empty != is_empty) {
delayed_prepared_empty_.store(is_empty, std::memory_order_release);
}
}
}
}
bool WritePreparedTxnDB::GetCommitEntry(const uint64_t indexed_seq,
CommitEntry64b* entry_64b,
CommitEntry* entry) const {
*entry_64b = commit_cache_[static_cast<size_t>(indexed_seq)].load(std::memory_order_acquire);
bool valid = entry_64b->Parse(indexed_seq, entry, FORMAT);
return valid;
}
bool WritePreparedTxnDB::AddCommitEntry(const uint64_t indexed_seq,
const CommitEntry& new_entry,
CommitEntry* evicted_entry) {
CommitEntry64b new_entry_64b(new_entry, FORMAT);
CommitEntry64b evicted_entry_64b = commit_cache_[static_cast<size_t>(indexed_seq)].exchange(
new_entry_64b, std::memory_order_acq_rel);
bool valid = evicted_entry_64b.Parse(indexed_seq, evicted_entry, FORMAT);
return valid;
}
bool WritePreparedTxnDB::ExchangeCommitEntry(const uint64_t indexed_seq,
CommitEntry64b& expected_entry_64b,
const CommitEntry& new_entry) {
auto& atomic_entry = commit_cache_[static_cast<size_t>(indexed_seq)];
CommitEntry64b new_entry_64b(new_entry, FORMAT);
bool succ = atomic_entry.compare_exchange_strong(
expected_entry_64b, new_entry_64b, std::memory_order_acq_rel,
std::memory_order_acquire);
return succ;
}
void WritePreparedTxnDB::AdvanceMaxEvictedSeq(const SequenceNumber& prev_max,
const SequenceNumber& new_max) {
ROCKS_LOG_DETAILS(info_log_,
"AdvanceMaxEvictedSeq overhead %" PRIu64 " => %" PRIu64,
prev_max, new_max);
// Declare the intention before getting snapshot from the DB. This helps a
// concurrent GetSnapshot to wait to catch up with future_max_evicted_seq_ if
// it has not already. Otherwise the new snapshot is when we ask DB for
// snapshots smaller than future max.
auto updated_future_max = prev_max;
while (updated_future_max < new_max &&
!future_max_evicted_seq_.compare_exchange_weak(
updated_future_max, new_max, std::memory_order_acq_rel,
std::memory_order_relaxed)) {
};
CheckPreparedAgainstMax(new_max, false /*locked*/);
// With each change to max_evicted_seq_ fetch the live snapshots behind it.
// We use max as the version of snapshots to identify how fresh are the
// snapshot list. This works because the snapshots are between 0 and
// max, so the larger the max, the more complete they are.
SequenceNumber new_snapshots_version = new_max;
std::vector<SequenceNumber> snapshots;
bool update_snapshots = false;
if (new_snapshots_version > snapshots_version_) {
// This is to avoid updating the snapshots_ if it already updated
// with a more recent vesion by a concrrent thread
update_snapshots = true;
// We only care about snapshots lower then max
snapshots = GetSnapshotListFromDB(new_max);
}
if (update_snapshots) {
UpdateSnapshots(snapshots, new_snapshots_version);
WritePrepared: Report released snapshots in IsInSnapshot (#4856) Summary: Previously IsInSnapshot assumed that the snapshot is valid at the time that the function is called. However there are cases where that might not be valid. Example is background compactions where the compaction algorithm operates with a list of snapshots some of which might be released by the time they are being passed to IsInSnapshot. The patch make two changes to enable the caller to tell difference: i) any live snapshot below max is added to max_committed_seq_, which allows IsInSnapshot to confidently tell whether the passed snapshot is invalid if it below max, ii) extends IsInSnapshot API with a "released" variable that is set true when IsInSnapshot find no such snapshot below max and also find no other way to give a certain return value. In such cases the return value is true but the caller should also check the "released" boolean after the call. In short here is the changes in the API: i) If the snapshot is valid, no change is required. ii) If the snapshot might be invalid, a reference to "released" boolean must be passed to IsInSnapshot. ii-a) If snapshot is above max, IsInSnapshot can figure the return valid using the commit cache. ii-b) otherwise if snapshot is in old_commit_map_, IsInSnapshot can use that to tell if value was visible to the snapshot. ii-c) otherwise it sets "released" to true and returns true as well. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4856 Differential Revision: D13599847 Pulled By: maysamyabandeh fbshipit-source-id: 1752be28667f886a1efec8cae5714b9b7a8f1e0f
2019-01-08 14:43:24 -08:00
if (!snapshots.empty()) {
WriteLock wl(&old_commit_map_mutex_);
for (auto snap : snapshots) {
// This allows IsInSnapshot to tell apart the reads from in valid
// snapshots from the reads from committed values in valid snapshots.
old_commit_map_[snap];
}
old_commit_map_empty_.store(false, std::memory_order_release);
}
}
auto updated_prev_max = prev_max;
TEST_SYNC_POINT("AdvanceMaxEvictedSeq::update_max:pause");
TEST_SYNC_POINT("AdvanceMaxEvictedSeq::update_max:resume");
while (updated_prev_max < new_max &&
!max_evicted_seq_.compare_exchange_weak(updated_prev_max, new_max,
std::memory_order_acq_rel,
std::memory_order_relaxed)) {
};
}
const Snapshot* WritePreparedTxnDB::GetSnapshot() {
const bool kForWWConflictCheck = true;
return GetSnapshotInternal(!kForWWConflictCheck);
}
SnapshotImpl* WritePreparedTxnDB::GetSnapshotInternal(
bool for_ww_conflict_check) {
// Note: for this optimization setting the last sequence number and obtaining
// the smallest uncommitted seq should be done atomically. However to avoid
// the mutex overhead, we call SmallestUnCommittedSeq BEFORE taking the
// snapshot. Since we always updated the list of unprepared seq (via
// AddPrepared) AFTER the last sequence is updated, this guarantees that the
// smallest uncommitted seq that we pair with the snapshot is smaller or equal
// the value that would be obtained otherwise atomically. That is ok since
// this optimization works as long as min_uncommitted is less than or equal
// than the smallest uncommitted seq when the snapshot was taken.
auto min_uncommitted = WritePreparedTxnDB::SmallestUnCommittedSeq();
SnapshotImpl* snap_impl = db_impl_->GetSnapshotImpl(for_ww_conflict_check);
TEST_SYNC_POINT("WritePreparedTxnDB::GetSnapshotInternal:first");
assert(snap_impl);
SequenceNumber snap_seq = snap_impl->GetSequenceNumber();
// Note: Check against future_max_evicted_seq_ (in contrast with
// max_evicted_seq_) in case there is a concurrent AdvanceMaxEvictedSeq.
if (UNLIKELY(snap_seq != 0 && snap_seq <= future_max_evicted_seq_)) {
// There is a very rare case in which the commit entry evicts another commit
// entry that is not published yet thus advancing max evicted seq beyond the
// last published seq. This case is not likely in real-world setup so we
// handle it with a few retries.
size_t retry = 0;
SequenceNumber max;
while ((max = future_max_evicted_seq_.load()) != 0 &&
snap_impl->GetSequenceNumber() <= max && retry < 100) {
ROCKS_LOG_WARN(info_log_,
"GetSnapshot snap: %" PRIu64 " max: %" PRIu64
" retry %" ROCKSDB_PRIszt,
snap_impl->GetSequenceNumber(), max, retry);
ReleaseSnapshot(snap_impl);
// Wait for last visible seq to catch up with max, and also go beyond it
// by one.
AdvanceSeqByOne();
snap_impl = db_impl_->GetSnapshotImpl(for_ww_conflict_check);
assert(snap_impl);
retry++;
}
assert(snap_impl->GetSequenceNumber() > max);
if (snap_impl->GetSequenceNumber() <= max) {
throw std::runtime_error(
"Snapshot seq " + ToString(snap_impl->GetSequenceNumber()) +
" after " + ToString(retry) +
" retries is still less than futre_max_evicted_seq_" + ToString(max));
}
}
EnhanceSnapshot(snap_impl, min_uncommitted);
ROCKS_LOG_DETAILS(
db_impl_->immutable_db_options().info_log,
"GetSnapshot %" PRIu64 " ww:%" PRIi32 " min_uncommitted: %" PRIu64,
snap_impl->GetSequenceNumber(), for_ww_conflict_check, min_uncommitted);
TEST_SYNC_POINT("WritePreparedTxnDB::GetSnapshotInternal:end");
return snap_impl;
}
void WritePreparedTxnDB::AdvanceSeqByOne() {
// Inserting an empty value will i) let the max evicted entry to be
// published, i.e., max == last_published, increase the last published to
// be one beyond max, i.e., max < last_published.
WriteOptions woptions;
TransactionOptions txn_options;
Transaction* txn0 = BeginTransaction(woptions, txn_options, nullptr);
std::hash<std::thread::id> hasher;
char name[64];
snprintf(name, 64, "txn%" ROCKSDB_PRIszt, hasher(std::this_thread::get_id()));
assert(strlen(name) < 64 - 1);
Status s = txn0->SetName(name);
assert(s.ok());
if (s.ok()) {
// Without prepare it would simply skip the commit
s = txn0->Prepare();
}
assert(s.ok());
if (s.ok()) {
s = txn0->Commit();
}
assert(s.ok());
delete txn0;
}
const std::vector<SequenceNumber> WritePreparedTxnDB::GetSnapshotListFromDB(
SequenceNumber max) {
ROCKS_LOG_DETAILS(info_log_, "GetSnapshotListFromDB with max %" PRIu64, max);
InstrumentedMutexLock dblock(db_impl_->mutex());
db_impl_->mutex()->AssertHeld();
return db_impl_->snapshots().GetAll(nullptr, max);
}
void WritePreparedTxnDB::ReleaseSnapshotInternal(
const SequenceNumber snap_seq) {
// TODO(myabandeh): relax should enough since the synchronizatin is already
// done by snapshots_mutex_ under which this function is called.
if (snap_seq <= max_evicted_seq_.load(std::memory_order_acquire)) {
// Then this is a rare case that transaction did not finish before max
// advances. It is expected for a few read-only backup snapshots. For such
// snapshots we might have kept around a couple of entries in the
// old_commit_map_. Check and do garbage collection if that is the case.
bool need_gc = false;
{
WPRecordTick(TXN_OLD_COMMIT_MAP_MUTEX_OVERHEAD);
ROCKS_LOG_WARN(info_log_, "old_commit_map_mutex_ overhead for %" PRIu64,
snap_seq);
ReadLock rl(&old_commit_map_mutex_);
auto prep_set_entry = old_commit_map_.find(snap_seq);
need_gc = prep_set_entry != old_commit_map_.end();
}
if (need_gc) {
WPRecordTick(TXN_OLD_COMMIT_MAP_MUTEX_OVERHEAD);
ROCKS_LOG_WARN(info_log_, "old_commit_map_mutex_ overhead for %" PRIu64,
snap_seq);
WriteLock wl(&old_commit_map_mutex_);
old_commit_map_.erase(snap_seq);
old_commit_map_empty_.store(old_commit_map_.empty(),
std::memory_order_release);
}
}
}
void WritePreparedTxnDB::CleanupReleasedSnapshots(
const std::vector<SequenceNumber>& new_snapshots,
const std::vector<SequenceNumber>& old_snapshots) {
auto newi = new_snapshots.begin();
auto oldi = old_snapshots.begin();
for (; newi != new_snapshots.end() && oldi != old_snapshots.end();) {
assert(*newi >= *oldi); // cannot have new snapshots with lower seq
if (*newi == *oldi) { // still not released
auto value = *newi;
while (newi != new_snapshots.end() && *newi == value) {
newi++;
}
while (oldi != old_snapshots.end() && *oldi == value) {
oldi++;
}
} else {
assert(*newi > *oldi); // *oldi is released
ReleaseSnapshotInternal(*oldi);
oldi++;
}
}
// Everything remained in old_snapshots is released and must be cleaned up
for (; oldi != old_snapshots.end(); oldi++) {
ReleaseSnapshotInternal(*oldi);
}
}
void WritePreparedTxnDB::UpdateSnapshots(
const std::vector<SequenceNumber>& snapshots,
const SequenceNumber& version) {
ROCKS_LOG_DETAILS(info_log_, "UpdateSnapshots with version %" PRIu64,
version);
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:start");
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:start");
#ifndef NDEBUG
size_t sync_i = 0;
#endif
ROCKS_LOG_DETAILS(info_log_, "snapshots_mutex_ overhead");
WriteLock wl(&snapshots_mutex_);
snapshots_version_ = version;
// We update the list concurrently with the readers.
// Both new and old lists are sorted and the new list is subset of the
// previous list plus some new items. Thus if a snapshot repeats in
// both new and old lists, it will appear upper in the new list. So if
// we simply insert the new snapshots in order, if an overwritten item
// is still valid in the new list is either written to the same place in
// the array or it is written in a higher palce before it gets
// overwritten by another item. This guarantess a reader that reads the
// list bottom-up will eventaully see a snapshot that repeats in the
// update, either before it gets overwritten by the writer or
// afterwards.
size_t i = 0;
auto it = snapshots.begin();
for (; it != snapshots.end() && i < SNAPSHOT_CACHE_SIZE; ++it, ++i) {
snapshot_cache_[i].store(*it, std::memory_order_release);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:", ++sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:", sync_i);
}
#ifndef NDEBUG
// Release the remaining sync points since they are useless given that the
// reader would also use lock to access snapshots
for (++sync_i; sync_i <= 10; ++sync_i) {
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:", sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:", sync_i);
}
#endif
snapshots_.clear();
for (; it != snapshots.end(); ++it) {
// Insert them to a vector that is less efficient to access
// concurrently
snapshots_.push_back(*it);
}
// Update the size at the end. Otherwise a parallel reader might read
// items that are not set yet.
snapshots_total_.store(snapshots.size(), std::memory_order_release);
// Note: this must be done after the snapshots data structures are updated
// with the new list of snapshots.
CleanupReleasedSnapshots(snapshots, snapshots_all_);
snapshots_all_ = snapshots;
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:end");
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:end");
}
void WritePreparedTxnDB::CheckAgainstSnapshots(const CommitEntry& evicted) {
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:start");
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:start");
#ifndef NDEBUG
size_t sync_i = 0;
#endif
// First check the snapshot cache that is efficient for concurrent access
auto cnt = snapshots_total_.load(std::memory_order_acquire);
// The list might get updated concurrently as we are reading from it. The
// reader should be able to read all the snapshots that are still valid
// after the update. Since the survived snapshots are written in a higher
// place before gets overwritten the reader that reads bottom-up will
// eventully see it.
const bool next_is_larger = true;
// We will set to true if the border line snapshot suggests that.
bool search_larger_list = false;
size_t ip1 = std::min(cnt, SNAPSHOT_CACHE_SIZE);
for (; 0 < ip1; ip1--) {
SequenceNumber snapshot_seq =
snapshot_cache_[ip1 - 1].load(std::memory_order_acquire);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:",
++sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:", sync_i);
if (ip1 == SNAPSHOT_CACHE_SIZE) { // border line snapshot
// snapshot_seq < commit_seq => larger_snapshot_seq <= commit_seq
// then later also continue the search to larger snapshots
search_larger_list = snapshot_seq < evicted.commit_seq;
}
if (!MaybeUpdateOldCommitMap(evicted.prep_seq, evicted.commit_seq,
snapshot_seq, !next_is_larger)) {
break;
}
}
#ifndef NDEBUG
// Release the remaining sync points before accquiring the lock
for (++sync_i; sync_i <= 10; ++sync_i) {
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:", sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:", sync_i);
}
#endif
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:end");
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:end");
if (UNLIKELY(SNAPSHOT_CACHE_SIZE < cnt && search_larger_list)) {
// Then access the less efficient list of snapshots_
WPRecordTick(TXN_SNAPSHOT_MUTEX_OVERHEAD);
ROCKS_LOG_WARN(info_log_,
"snapshots_mutex_ overhead for <%" PRIu64 ",%" PRIu64
"> with %" ROCKSDB_PRIszt " snapshots",
evicted.prep_seq, evicted.commit_seq, cnt);
ReadLock rl(&snapshots_mutex_);
// Items could have moved from the snapshots_ to snapshot_cache_ before
// accquiring the lock. To make sure that we do not miss a valid snapshot,
// read snapshot_cache_ again while holding the lock.
for (size_t i = 0; i < SNAPSHOT_CACHE_SIZE; i++) {
SequenceNumber snapshot_seq =
snapshot_cache_[i].load(std::memory_order_acquire);
if (!MaybeUpdateOldCommitMap(evicted.prep_seq, evicted.commit_seq,
snapshot_seq, next_is_larger)) {
break;
}
}
for (auto snapshot_seq_2 : snapshots_) {
if (!MaybeUpdateOldCommitMap(evicted.prep_seq, evicted.commit_seq,
snapshot_seq_2, next_is_larger)) {
break;
}
}
}
}
bool WritePreparedTxnDB::MaybeUpdateOldCommitMap(
const uint64_t& prep_seq, const uint64_t& commit_seq,
const uint64_t& snapshot_seq, const bool next_is_larger = true) {
// If we do not store an entry in old_commit_map_ we assume it is committed in
// all snapshots. If commit_seq <= snapshot_seq, it is considered already in
// the snapshot so we need not to keep the entry around for this snapshot.
if (commit_seq <= snapshot_seq) {
// continue the search if the next snapshot could be smaller than commit_seq
return !next_is_larger;
}
// then snapshot_seq < commit_seq
if (prep_seq <= snapshot_seq) { // overlapping range
WPRecordTick(TXN_OLD_COMMIT_MAP_MUTEX_OVERHEAD);
ROCKS_LOG_WARN(info_log_,
"old_commit_map_mutex_ overhead for %" PRIu64
" commit entry: <%" PRIu64 ",%" PRIu64 ">",
snapshot_seq, prep_seq, commit_seq);
WriteLock wl(&old_commit_map_mutex_);
old_commit_map_empty_.store(false, std::memory_order_release);
auto& vec = old_commit_map_[snapshot_seq];
vec.insert(std::upper_bound(vec.begin(), vec.end(), prep_seq), prep_seq);
// We need to store it once for each overlapping snapshot. Returning true to
// continue the search if there is more overlapping snapshot.
return true;
}
// continue the search if the next snapshot could be larger than prep_seq
return next_is_larger;
}
WritePreparedTxnDB::~WritePreparedTxnDB() {
// At this point there could be running compaction/flush holding a
// SnapshotChecker, which holds a pointer back to WritePreparedTxnDB.
// Make sure those jobs finished before destructing WritePreparedTxnDB.
if (!db_impl_->shutting_down_) {
db_impl_->CancelAllBackgroundWork(true /*wait*/);
}
}
void SubBatchCounter::InitWithComp(const uint32_t cf) {
auto cmp = comparators_[cf];
keys_[cf] = CFKeys(SetComparator(cmp));
}
void SubBatchCounter::AddKey(const uint32_t cf, const Slice& key) {
CFKeys& cf_keys = keys_[cf];
if (cf_keys.size() == 0) { // just inserted
InitWithComp(cf);
}
auto it = cf_keys.insert(key);
if (it.second == false) { // second is false if a element already existed.
batches_++;
keys_.clear();
InitWithComp(cf);
keys_[cf].insert(key);
}
}
} // namespace ROCKSDB_NAMESPACE
#endif // ROCKSDB_LITE