rocksdb/utilities/transactions/write_prepared_txn_db.cc

520 lines
21 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include "utilities/transactions/write_prepared_txn_db.h"
#include <inttypes.h>
#include <string>
#include <unordered_set>
#include <vector>
#include "db/db_impl.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/utilities/transaction_db.h"
#include "util/mutexlock.h"
#include "util/sync_point.h"
#include "utilities/transactions/pessimistic_transaction.h"
#include "utilities/transactions/transaction_db_mutex_impl.h"
namespace rocksdb {
Status WritePreparedTxnDB::Initialize(
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles) {
auto dbimpl = reinterpret_cast<DBImpl*>(GetRootDB());
assert(dbimpl != nullptr);
auto rtxns = dbimpl->recovered_transactions();
for (auto rtxn : rtxns) {
AddPrepared(rtxn.second->seq_);
}
SequenceNumber prev_max = max_evicted_seq_;
SequenceNumber last_seq = db_impl_->GetLatestSequenceNumber();
AdvanceMaxEvictedSeq(prev_max, last_seq);
db_impl_->SetSnapshotChecker(new WritePreparedSnapshotChecker(this));
auto s = PessimisticTransactionDB::Initialize(compaction_enabled_cf_indices,
handles);
return s;
}
Transaction* WritePreparedTxnDB::BeginTransaction(
const WriteOptions& write_options, const TransactionOptions& txn_options,
Transaction* old_txn) {
if (old_txn != nullptr) {
ReinitializeTransaction(old_txn, write_options, txn_options);
return old_txn;
} else {
return new WritePreparedTxn(this, write_options, txn_options);
}
}
Status WritePreparedTxnDB::Get(const ReadOptions& options,
ColumnFamilyHandle* column_family,
const Slice& key, PinnableSlice* value) {
// We are fine with the latest committed value. This could be done by
// specifying the snapshot as kMaxSequenceNumber.
SequenceNumber seq = kMaxSequenceNumber;
if (options.snapshot != nullptr) {
seq = options.snapshot->GetSequenceNumber();
}
WritePreparedTxnReadCallback callback(this, seq);
bool* dont_care = nullptr;
// Note: no need to specify a snapshot for read options as no specific
// snapshot is requested by the user.
return db_impl_->GetImpl(options, column_family, key, value, dont_care,
&callback);
}
// Struct to hold ownership of snapshot and read callback for iterator cleanup.
struct WritePreparedTxnDB::IteratorState {
IteratorState(WritePreparedTxnDB* txn_db, SequenceNumber sequence,
std::shared_ptr<ManagedSnapshot> s)
: callback(txn_db, sequence), snapshot(s) {}
WritePreparedTxnReadCallback callback;
std::shared_ptr<ManagedSnapshot> snapshot;
};
namespace {
static void CleanupWritePreparedTxnDBIterator(void* arg1, void* arg2) {
delete reinterpret_cast<WritePreparedTxnDB::IteratorState*>(arg1);
}
} // anonymous namespace
Iterator* WritePreparedTxnDB::NewIterator(const ReadOptions& options,
ColumnFamilyHandle* column_family) {
std::shared_ptr<ManagedSnapshot> own_snapshot = nullptr;
SequenceNumber snapshot_seq = kMaxSequenceNumber;
if (options.snapshot != nullptr) {
snapshot_seq = options.snapshot->GetSequenceNumber();
} else {
auto* snapshot = db_impl_->GetSnapshot();
// We take a snapshot to make sure that the related data in the commit map
// are not deleted.
snapshot_seq = snapshot->GetSequenceNumber();
own_snapshot = std::make_shared<ManagedSnapshot>(db_impl_, snapshot);
}
assert(snapshot_seq != kMaxSequenceNumber);
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
auto* state = new IteratorState(this, snapshot_seq, own_snapshot);
auto* db_iter =
db_impl_->NewIteratorImpl(options, cfd, snapshot_seq, &state->callback);
db_iter->RegisterCleanup(CleanupWritePreparedTxnDBIterator, state, nullptr);
return db_iter;
}
Status WritePreparedTxnDB::NewIterators(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) {
std::shared_ptr<ManagedSnapshot> own_snapshot = nullptr;
SequenceNumber snapshot_seq = kMaxSequenceNumber;
if (options.snapshot != nullptr) {
snapshot_seq = options.snapshot->GetSequenceNumber();
} else {
auto* snapshot = db_impl_->GetSnapshot();
// We take a snapshot to make sure that the related data in the commit map
// are not deleted.
snapshot_seq = snapshot->GetSequenceNumber();
own_snapshot = std::make_shared<ManagedSnapshot>(db_impl_, snapshot);
}
iterators->clear();
iterators->reserve(column_families.size());
for (auto* column_family : column_families) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
auto* state = new IteratorState(this, snapshot_seq, own_snapshot);
auto* db_iter =
db_impl_->NewIteratorImpl(options, cfd, snapshot_seq, &state->callback);
db_iter->RegisterCleanup(CleanupWritePreparedTxnDBIterator, state, nullptr);
iterators->push_back(db_iter);
}
return Status::OK();
}
void WritePreparedTxnDB::Init(const TransactionDBOptions& /* unused */) {
// Adcance max_evicted_seq_ no more than 100 times before the cache wraps
// around.
INC_STEP_FOR_MAX_EVICTED =
std::max(SNAPSHOT_CACHE_SIZE / 100, static_cast<size_t>(1));
snapshot_cache_ = unique_ptr<std::atomic<SequenceNumber>[]>(
new std::atomic<SequenceNumber>[SNAPSHOT_CACHE_SIZE] {});
commit_cache_ = unique_ptr<std::atomic<CommitEntry64b>[]>(
new std::atomic<CommitEntry64b>[COMMIT_CACHE_SIZE] {});
}
// Returns true if commit_seq <= snapshot_seq
bool WritePreparedTxnDB::IsInSnapshot(uint64_t prep_seq,
uint64_t snapshot_seq) const {
// Here we try to infer the return value without looking into prepare list.
// This would help avoiding synchronization over a shared map.
// TODO(myabandeh): read your own writes
// TODO(myabandeh): optimize this. This sequence of checks must be correct but
// not necessary efficient
if (prep_seq == 0) {
// Compaction will output keys to bottom-level with sequence number 0 if
// it is visible to the earliest snapshot.
return true;
}
if (snapshot_seq < prep_seq) {
// snapshot_seq < prep_seq <= commit_seq => snapshot_seq < commit_seq
return false;
}
if (!delayed_prepared_empty_.load(std::memory_order_acquire)) {
// We should not normally reach here
ReadLock rl(&prepared_mutex_);
if (delayed_prepared_.find(prep_seq) != delayed_prepared_.end()) {
// Then it is not committed yet
return false;
}
}
auto indexed_seq = prep_seq % COMMIT_CACHE_SIZE;
CommitEntry64b dont_care;
CommitEntry cached;
bool exist = GetCommitEntry(indexed_seq, &dont_care, &cached);
if (exist && prep_seq == cached.prep_seq) {
// It is committed and also not evicted from commit cache
return cached.commit_seq <= snapshot_seq;
}
// else it could be committed but not inserted in the map which could happen
// after recovery, or it could be committed and evicted by another commit, or
// never committed.
// At this point we dont know if it was committed or it is still prepared
auto max_evicted_seq = max_evicted_seq_.load(std::memory_order_acquire);
if (max_evicted_seq < prep_seq) {
// Not evicted from cache and also not present, so must be still prepared
return false;
}
// When advancing max_evicted_seq_, we move older entires from prepared to
// delayed_prepared_. Also we move evicted entries from commit cache to
// old_commit_map_ if it overlaps with any snapshot. Since prep_seq <=
// max_evicted_seq_, we have three cases: i) in delayed_prepared_, ii) in
// old_commit_map_, iii) committed with no conflict with any snapshot (i)
// delayed_prepared_ is checked above
if (max_evicted_seq < snapshot_seq) { // then (ii) cannot be the case
// only (iii) is the case: committed
// commit_seq <= max_evicted_seq_ < snapshot_seq => commit_seq <
// snapshot_seq
return true;
}
// else (ii) might be the case: check the commit data saved for this snapshot.
// If there was no overlapping commit entry, then it is committed with a
// commit_seq lower than any live snapshot, including snapshot_seq.
if (old_commit_map_empty_.load(std::memory_order_acquire)) {
return true;
}
{
// We should not normally reach here
ReadLock rl(&old_commit_map_mutex_);
auto old_commit_entry = old_commit_map_.find(prep_seq);
if (old_commit_entry == old_commit_map_.end() ||
old_commit_entry->second <= snapshot_seq) {
return true;
}
}
// (ii) it the case: it is committed but after the snapshot_seq
return false;
}
void WritePreparedTxnDB::AddPrepared(uint64_t seq) {
ROCKS_LOG_DEBUG(info_log_, "Txn %" PRIu64 " Prepareing", seq);
// TODO(myabandeh): Add a runtime check to ensure the following assert.
assert(seq > max_evicted_seq_);
WriteLock wl(&prepared_mutex_);
prepared_txns_.push(seq);
}
void WritePreparedTxnDB::RollbackPrepared(uint64_t prep_seq,
uint64_t rollback_seq) {
ROCKS_LOG_DEBUG(
info_log_, "Txn %" PRIu64 " rolling back with rollback seq of " PRIu64 "",
prep_seq, rollback_seq);
std::vector<SequenceNumber> snapshots =
GetSnapshotListFromDB(kMaxSequenceNumber);
// TODO(myabandeh): currently we are assuming that there is no snapshot taken
// when a transaciton is rolled back. This is the case the way MySQL does
// rollback which is after recovery. We should extend it to be able to
// rollback txns that overlap with exsiting snapshots.
assert(snapshots.size() == 0);
if (snapshots.size()) {
throw std::runtime_error(
"Rollback reqeust while there are live snapshots.");
}
WriteLock wl(&prepared_mutex_);
prepared_txns_.erase(prep_seq);
bool was_empty = delayed_prepared_.empty();
if (!was_empty) {
delayed_prepared_.erase(prep_seq);
bool is_empty = delayed_prepared_.empty();
if (was_empty != is_empty) {
delayed_prepared_empty_.store(is_empty, std::memory_order_release);
}
}
}
void WritePreparedTxnDB::AddCommitted(uint64_t prepare_seq,
uint64_t commit_seq) {
ROCKS_LOG_DEBUG(info_log_, "Txn %" PRIu64 " Committing with %" PRIu64,
prepare_seq, commit_seq);
auto indexed_seq = prepare_seq % COMMIT_CACHE_SIZE;
CommitEntry64b evicted_64b;
CommitEntry evicted;
bool to_be_evicted = GetCommitEntry(indexed_seq, &evicted_64b, &evicted);
if (to_be_evicted) {
auto prev_max = max_evicted_seq_.load(std::memory_order_acquire);
if (prev_max < evicted.commit_seq) {
// Inc max in larger steps to avoid frequent updates
auto max_evicted_seq = evicted.commit_seq + INC_STEP_FOR_MAX_EVICTED;
AdvanceMaxEvictedSeq(prev_max, max_evicted_seq);
}
// After each eviction from commit cache, check if the commit entry should
// be kept around because it overlaps with a live snapshot.
CheckAgainstSnapshots(evicted);
}
bool succ =
ExchangeCommitEntry(indexed_seq, evicted_64b, {prepare_seq, commit_seq});
if (!succ) {
// A very rare event, in which the commit entry is updated before we do.
// Here we apply a very simple solution of retrying.
// TODO(myabandeh): do precautions to detect bugs that cause infinite loops
AddCommitted(prepare_seq, commit_seq);
return;
}
{
WriteLock wl(&prepared_mutex_);
prepared_txns_.erase(prepare_seq);
bool was_empty = delayed_prepared_.empty();
if (!was_empty) {
delayed_prepared_.erase(prepare_seq);
bool is_empty = delayed_prepared_.empty();
if (was_empty != is_empty) {
delayed_prepared_empty_.store(is_empty, std::memory_order_release);
}
}
}
}
bool WritePreparedTxnDB::GetCommitEntry(const uint64_t indexed_seq,
CommitEntry64b* entry_64b,
CommitEntry* entry) const {
*entry_64b = commit_cache_[indexed_seq].load(std::memory_order_acquire);
bool valid = entry_64b->Parse(indexed_seq, entry, FORMAT);
return valid;
}
bool WritePreparedTxnDB::AddCommitEntry(const uint64_t indexed_seq,
const CommitEntry& new_entry,
CommitEntry* evicted_entry) {
CommitEntry64b new_entry_64b(new_entry, FORMAT);
CommitEntry64b evicted_entry_64b = commit_cache_[indexed_seq].exchange(
new_entry_64b, std::memory_order_acq_rel);
bool valid = evicted_entry_64b.Parse(indexed_seq, evicted_entry, FORMAT);
return valid;
}
bool WritePreparedTxnDB::ExchangeCommitEntry(const uint64_t indexed_seq,
CommitEntry64b& expected_entry_64b,
const CommitEntry& new_entry) {
auto& atomic_entry = commit_cache_[indexed_seq];
CommitEntry64b new_entry_64b(new_entry, FORMAT);
bool succ = atomic_entry.compare_exchange_strong(
expected_entry_64b, new_entry_64b, std::memory_order_acq_rel,
std::memory_order_acquire);
return succ;
}
void WritePreparedTxnDB::AdvanceMaxEvictedSeq(SequenceNumber& prev_max,
SequenceNumber& new_max) {
// When max_evicted_seq_ advances, move older entries from prepared_txns_
// to delayed_prepared_. This guarantees that if a seq is lower than max,
// then it is not in prepared_txns_ ans save an expensive, synchronized
// lookup from a shared set. delayed_prepared_ is expected to be empty in
// normal cases.
{
WriteLock wl(&prepared_mutex_);
while (!prepared_txns_.empty() && prepared_txns_.top() <= new_max) {
auto to_be_popped = prepared_txns_.top();
delayed_prepared_.insert(to_be_popped);
prepared_txns_.pop();
delayed_prepared_empty_.store(false, std::memory_order_release);
}
}
// With each change to max_evicted_seq_ fetch the live snapshots behind it.
// We use max as the version of snapshots to identify how fresh are the
// snapshot list. This works because the snapshots are between 0 and
// max, so the larger the max, the more complete they are.
SequenceNumber new_snapshots_version = new_max;
std::vector<SequenceNumber> snapshots;
bool update_snapshots = false;
if (new_snapshots_version > snapshots_version_) {
// This is to avoid updating the snapshots_ if it already updated
// with a more recent vesion by a concrrent thread
update_snapshots = true;
// We only care about snapshots lower then max
snapshots = GetSnapshotListFromDB(new_max);
}
if (update_snapshots) {
UpdateSnapshots(snapshots, new_snapshots_version);
}
while (prev_max < new_max && !max_evicted_seq_.compare_exchange_weak(
prev_max, new_max, std::memory_order_acq_rel,
std::memory_order_relaxed)) {
};
}
const std::vector<SequenceNumber> WritePreparedTxnDB::GetSnapshotListFromDB(
SequenceNumber max) {
InstrumentedMutex(db_impl_->mutex());
return db_impl_->snapshots().GetAll(nullptr, max);
}
void WritePreparedTxnDB::UpdateSnapshots(
const std::vector<SequenceNumber>& snapshots,
const SequenceNumber& version) {
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:start");
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:start");
#ifndef NDEBUG
size_t sync_i = 0;
#endif
WriteLock wl(&snapshots_mutex_);
snapshots_version_ = version;
// We update the list concurrently with the readers.
// Both new and old lists are sorted and the new list is subset of the
// previous list plus some new items. Thus if a snapshot repeats in
// both new and old lists, it will appear upper in the new list. So if
// we simply insert the new snapshots in order, if an overwritten item
// is still valid in the new list is either written to the same place in
// the array or it is written in a higher palce before it gets
// overwritten by another item. This guarantess a reader that reads the
// list bottom-up will eventaully see a snapshot that repeats in the
// update, either before it gets overwritten by the writer or
// afterwards.
size_t i = 0;
auto it = snapshots.begin();
for (; it != snapshots.end() && i < SNAPSHOT_CACHE_SIZE; it++, i++) {
snapshot_cache_[i].store(*it, std::memory_order_release);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:", ++sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:", sync_i);
}
#ifndef NDEBUG
// Release the remaining sync points since they are useless given that the
// reader would also use lock to access snapshots
for (++sync_i; sync_i <= 10; ++sync_i) {
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:", sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:", sync_i);
}
#endif
snapshots_.clear();
for (; it != snapshots.end(); it++) {
// Insert them to a vector that is less efficient to access
// concurrently
snapshots_.push_back(*it);
}
// Update the size at the end. Otherwise a parallel reader might read
// items that are not set yet.
snapshots_total_.store(snapshots.size(), std::memory_order_release);
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:p:end");
TEST_SYNC_POINT("WritePreparedTxnDB::UpdateSnapshots:s:end");
}
void WritePreparedTxnDB::CheckAgainstSnapshots(const CommitEntry& evicted) {
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:start");
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:start");
#ifndef NDEBUG
size_t sync_i = 0;
#endif
// First check the snapshot cache that is efficient for concurrent access
auto cnt = snapshots_total_.load(std::memory_order_acquire);
// The list might get updated concurrently as we are reading from it. The
// reader should be able to read all the snapshots that are still valid
// after the update. Since the survived snapshots are written in a higher
// place before gets overwritten the reader that reads bottom-up will
// eventully see it.
const bool next_is_larger = true;
SequenceNumber snapshot_seq = kMaxSequenceNumber;
size_t ip1 = std::min(cnt, SNAPSHOT_CACHE_SIZE);
for (; 0 < ip1; ip1--) {
snapshot_seq = snapshot_cache_[ip1 - 1].load(std::memory_order_acquire);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:",
++sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:", sync_i);
if (!MaybeUpdateOldCommitMap(evicted.prep_seq, evicted.commit_seq,
snapshot_seq, !next_is_larger)) {
break;
}
}
#ifndef NDEBUG
// Release the remaining sync points before accquiring the lock
for (++sync_i; sync_i <= 10; ++sync_i) {
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:", sync_i);
TEST_IDX_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:", sync_i);
}
#endif
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:p:end");
TEST_SYNC_POINT("WritePreparedTxnDB::CheckAgainstSnapshots:s:end");
if (UNLIKELY(SNAPSHOT_CACHE_SIZE < cnt && ip1 == SNAPSHOT_CACHE_SIZE &&
snapshot_seq < evicted.prep_seq)) {
// Then access the less efficient list of snapshots_
ReadLock rl(&snapshots_mutex_);
// Items could have moved from the snapshots_ to snapshot_cache_ before
// accquiring the lock. To make sure that we do not miss a valid snapshot,
// read snapshot_cache_ again while holding the lock.
for (size_t i = 0; i < SNAPSHOT_CACHE_SIZE; i++) {
snapshot_seq = snapshot_cache_[i].load(std::memory_order_acquire);
if (!MaybeUpdateOldCommitMap(evicted.prep_seq, evicted.commit_seq,
snapshot_seq, next_is_larger)) {
break;
}
}
for (auto snapshot_seq_2 : snapshots_) {
if (!MaybeUpdateOldCommitMap(evicted.prep_seq, evicted.commit_seq,
snapshot_seq_2, next_is_larger)) {
break;
}
}
}
}
bool WritePreparedTxnDB::MaybeUpdateOldCommitMap(
const uint64_t& prep_seq, const uint64_t& commit_seq,
const uint64_t& snapshot_seq, const bool next_is_larger = true) {
// If we do not store an entry in old_commit_map we assume it is committed in
// all snapshots. if commit_seq <= snapshot_seq, it is considered already in
// the snapshot so we need not to keep the entry around for this snapshot.
if (commit_seq <= snapshot_seq) {
// continue the search if the next snapshot could be smaller than commit_seq
return !next_is_larger;
}
// then snapshot_seq < commit_seq
if (prep_seq <= snapshot_seq) { // overlapping range
WriteLock wl(&old_commit_map_mutex_);
old_commit_map_empty_.store(false, std::memory_order_release);
old_commit_map_[prep_seq] = commit_seq;
// Storing once is enough. No need to check it for other snapshots.
return false;
}
// continue the search if the next snapshot could be larger than prep_seq
return next_is_larger;
}
WritePreparedTxnDB::~WritePreparedTxnDB() {
// At this point there could be running compaction/flush holding a
// SnapshotChecker, which holds a pointer back to WritePreparedTxnDB.
// Make sure those jobs finished before destructing WritePreparedTxnDB.
db_impl_->CancelAllBackgroundWork(true /*wait*/);
}
} // namespace rocksdb
#endif // ROCKSDB_LITE