rocksdb/tools/trace_analyzer_test.cc

867 lines
34 KiB
C++
Raw Normal View History

RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2012 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef ROCKSDB_LITE
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run trace_analyzer test\n");
return 0;
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
}
#else
#include <chrono>
#include <cstdio>
#include <cstdlib>
#include <sstream>
#include <thread>
#include "db/db_test_util.h"
#include "file/line_file_reader.h"
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/status.h"
#include "rocksdb/trace_reader_writer.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "tools/trace_analyzer_tool.h"
#include "trace_replay/trace_replay.h"
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
namespace ROCKSDB_NAMESPACE {
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
namespace {
static const int kMaxArgCount = 100;
static const size_t kArgBufferSize = 100000;
} // namespace
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// The helper functions for the test
class TraceAnalyzerTest : public testing::Test {
public:
TraceAnalyzerTest() : rnd_(0xFB) {
// test_path_ = test::TmpDir() + "trace_analyzer_test";
test_path_ = test::PerThreadDBPath("trace_analyzer_test");
env_ = ROCKSDB_NAMESPACE::Env::Default();
env_->CreateDir(test_path_).PermitUncheckedError();
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
dbname_ = test_path_ + "/db";
}
~TraceAnalyzerTest() override {}
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
void GenerateTrace(std::string trace_path) {
Options options;
options.create_if_missing = true;
options.merge_operator = MergeOperators::CreatePutOperator();
Slice upper_bound("a");
Slice lower_bound("abce");
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
ReadOptions ro;
ro.iterate_upper_bound = &upper_bound;
ro.iterate_lower_bound = &lower_bound;
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
WriteOptions wo;
TraceOptions trace_opt;
DB* db_ = nullptr;
std::string value;
std::unique_ptr<TraceWriter> trace_writer;
Iterator* single_iter = nullptr;
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
ASSERT_OK(
NewFileTraceWriter(env_, env_options_, trace_path, &trace_writer));
ASSERT_OK(DB::Open(options, dbname_, &db_));
ASSERT_OK(db_->StartTrace(trace_opt, std::move(trace_writer)));
WriteBatch batch;
ASSERT_OK(batch.Put("a", "aaaaaaaaa"));
ASSERT_OK(batch.Merge("b", "aaaaaaaaaaaaaaaaaaaa"));
ASSERT_OK(batch.Delete("c"));
ASSERT_OK(batch.SingleDelete("d"));
ASSERT_OK(batch.DeleteRange("e", "f"));
ASSERT_OK(db_->Write(wo, &batch));
std::vector<Slice> keys;
keys.push_back("a");
keys.push_back("b");
keys.push_back("df");
keys.push_back("gege");
keys.push_back("hjhjhj");
std::vector<std::string> values;
std::vector<Status> ss = db_->MultiGet(ro, keys, &values);
ASSERT_GE(ss.size(), 0);
ASSERT_OK(ss[0]);
ASSERT_NOK(ss[2]);
std::vector<ColumnFamilyHandle*> cfs(2, db_->DefaultColumnFamily());
std::vector<PinnableSlice> values2(keys.size());
db_->MultiGet(ro, 2, cfs.data(), keys.data(), values2.data(), ss.data(),
false);
ASSERT_OK(ss[0]);
db_->MultiGet(ro, db_->DefaultColumnFamily(), 2, keys.data() + 3,
values2.data(), ss.data(), false);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
ASSERT_OK(db_->Get(ro, "a", &value));
single_iter = db_->NewIterator(ro);
single_iter->Seek("a");
ASSERT_OK(single_iter->status());
single_iter->SeekForPrev("b");
ASSERT_OK(single_iter->status());
delete single_iter;
std::this_thread::sleep_for (std::chrono::seconds(1));
db_->Get(ro, "g", &value).PermitUncheckedError();
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
ASSERT_OK(db_->EndTrace());
ASSERT_OK(env_->FileExists(trace_path));
std::unique_ptr<WritableFile> whole_f;
std::string whole_path = test_path_ + "/0.txt";
ASSERT_OK(env_->NewWritableFile(whole_path, &whole_f, env_options_));
std::string whole_str = "0x61\n0x62\n0x63\n0x64\n0x65\n0x66\n";
ASSERT_OK(whole_f->Append(whole_str));
delete db_;
ASSERT_OK(DestroyDB(dbname_, options));
}
void RunTraceAnalyzer(const std::vector<std::string>& args) {
char arg_buffer[kArgBufferSize];
char* argv[kMaxArgCount];
int argc = 0;
int cursor = 0;
for (const auto& arg : args) {
ASSERT_LE(cursor + arg.size() + 1, kArgBufferSize);
ASSERT_LE(argc + 1, kMaxArgCount);
snprintf(arg_buffer + cursor, arg.size() + 1, "%s", arg.c_str());
argv[argc++] = arg_buffer + cursor;
cursor += static_cast<int>(arg.size()) + 1;
}
ASSERT_EQ(0, ROCKSDB_NAMESPACE::trace_analyzer_tool(argc, argv));
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
}
void CheckFileContent(const std::vector<std::string>& cnt,
std::string file_path, bool full_content) {
const auto& fs = env_->GetFileSystem();
FileOptions fopts(env_options_);
ASSERT_OK(fs->FileExists(file_path, fopts.io_options, nullptr));
std::unique_ptr<FSSequentialFile> file;
ASSERT_OK(fs->NewSequentialFile(file_path, fopts, &file, nullptr));
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
LineFileReader lf_reader(std::move(file), file_path,
4096 /* filereadahead_size */);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
std::vector<std::string> result;
std::string line;
while (lf_reader.ReadLine(&line)) {
result.push_back(line);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
}
ASSERT_OK(lf_reader.GetStatus());
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
ASSERT_EQ(cnt.size(), result.size());
for (int i = 0; i < static_cast<int>(result.size()); i++) {
if (full_content) {
ASSERT_EQ(result[i], cnt[i]);
} else {
ASSERT_EQ(result[i][0], cnt[i][0]);
}
}
return;
}
void AnalyzeTrace(std::vector<std::string>& paras_diff,
std::string output_path, std::string trace_path) {
std::vector<std::string> paras = {"./trace_analyzer",
"-convert_to_human_readable_trace",
"-output_key_stats",
"-output_access_count_stats",
"-output_prefix=test",
"-output_prefix_cut=1",
"-output_time_series",
"-output_value_distribution",
"-output_qps_stats",
"-no_key",
"-no_print"};
for (auto& para : paras_diff) {
paras.push_back(para);
}
Status s = env_->FileExists(trace_path);
if (!s.ok()) {
GenerateTrace(trace_path);
}
ASSERT_OK(env_->CreateDir(output_path));
RunTraceAnalyzer(paras);
}
ROCKSDB_NAMESPACE::Env* env_;
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
EnvOptions env_options_;
std::string test_path_;
std::string dbname_;
Random rnd_;
};
TEST_F(TraceAnalyzerTest, Get) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/get";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=true", "-analyze_put=false",
"-analyze_delete=false", "-analyze_single_delete=false",
"-analyze_range_delete=false", "-analyze_iterator=false",
"-analyze_multiget=false"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// check the key_stats file
std::vector<std::string> k_stats = {"0 10 0 1 1.000000", "0 10 1 1 1.000000"};
file_path = output_path + "/test-get-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 2"};
file_path = output_path + "/test-get-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30",
"1 1 1 1.000000 1.000000 0x61"};
file_path = output_path + "/test-get-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"0 1533000630 0", "0 1533000630 1"};
file_path = output_path + "/test-get-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"0 1"};
file_path = output_path + "/test-get-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-get-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"1 0 0 0 0 0 0 0 0 1"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of get
std::vector<std::string> get_qps = {"1"};
file_path = output_path + "/test-get-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 1",
"The prefix: 0x61 Access count: 1"};
file_path = output_path + "/test-get-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
}
// Test analyzing of Put
TEST_F(TraceAnalyzerTest, Put) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/put";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=true",
"-analyze_delete=false", "-analyze_single_delete=false",
"-analyze_range_delete=false", "-analyze_iterator=false",
"-analyze_multiget=false"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// check the key_stats file
std::vector<std::string> k_stats = {"0 9 0 1 1.000000"};
file_path = output_path + "/test-put-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 1"};
file_path = output_path + "/test-put-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30"};
file_path = output_path + "/test-put-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"1 1533056278 0"};
file_path = output_path + "/test-put-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"0 1"};
file_path = output_path + "/test-put-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-put-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"0 1 0 0 0 0 0 0 0 1"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of Put
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
std::vector<std::string> get_qps = {"1"};
file_path = output_path + "/test-put-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 1",
"The prefix: 0x61 Access count: 1"};
file_path = output_path + "/test-put-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
// Check the value size distribution
std::vector<std::string> value_dist = {
"Number_of_value_size_between 0 and 16 is: 1"};
file_path = output_path + "/test-put-0-accessed_value_size_distribution.txt";
CheckFileContent(value_dist, file_path, true);
}
// Test analyzing of delete
TEST_F(TraceAnalyzerTest, Delete) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/delete";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=false",
"-analyze_delete=true", "-analyze_single_delete=false",
"-analyze_range_delete=false", "-analyze_iterator=false",
"-analyze_multiget=false"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// check the key_stats file
std::vector<std::string> k_stats = {"0 10 0 1 1.000000"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-delete-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 1"};
file_path =
output_path + "/test-delete-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30"};
file_path = output_path + "/test-delete-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"2 1533000630 0"};
file_path = output_path + "/test-delete-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"2 1"};
file_path = output_path + "/test-delete-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-delete-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"0 0 1 0 0 0 0 0 0 1"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of Delete
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
std::vector<std::string> get_qps = {"1"};
file_path = output_path + "/test-delete-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 1",
"The prefix: 0x63 Access count: 1"};
file_path = output_path + "/test-delete-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
}
// Test analyzing of Merge
TEST_F(TraceAnalyzerTest, Merge) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/merge";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=false",
"-analyze_delete=false", "-analyze_merge=true",
"-analyze_single_delete=false", "-analyze_range_delete=false",
"-analyze_iterator=false", "-analyze_multiget=false"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// check the key_stats file
std::vector<std::string> k_stats = {"0 20 0 1 1.000000"};
file_path = output_path + "/test-merge-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 1"};
file_path = output_path + "/test-merge-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30"};
file_path = output_path + "/test-merge-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"5 1533000630 0"};
file_path = output_path + "/test-merge-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"1 1"};
file_path = output_path + "/test-merge-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-merge-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"0 0 0 0 0 1 0 0 0 1"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of Merge
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
std::vector<std::string> get_qps = {"1"};
file_path = output_path + "/test-merge-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 1",
"The prefix: 0x62 Access count: 1"};
file_path = output_path + "/test-merge-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
// Check the value size distribution
std::vector<std::string> value_dist = {
"Number_of_value_size_between 0 and 24 is: 1"};
file_path =
output_path + "/test-merge-0-accessed_value_size_distribution.txt";
CheckFileContent(value_dist, file_path, true);
}
// Test analyzing of SingleDelete
TEST_F(TraceAnalyzerTest, SingleDelete) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/single_delete";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=false",
"-analyze_delete=false", "-analyze_merge=false",
"-analyze_single_delete=true", "-analyze_range_delete=false",
"-analyze_iterator=false", "-analyze_multiget=false"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// check the key_stats file
std::vector<std::string> k_stats = {"0 10 0 1 1.000000"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-single_delete-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 1"};
file_path =
output_path + "/test-single_delete-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30"};
file_path = output_path + "/test-single_delete-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"3 1533000630 0"};
file_path = output_path + "/test-single_delete-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"3 1"};
file_path = output_path + "/test-single_delete-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-single_delete-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"0 0 0 1 0 0 0 0 0 1"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of SingleDelete
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
std::vector<std::string> get_qps = {"1"};
file_path = output_path + "/test-single_delete-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 1",
"The prefix: 0x64 Access count: 1"};
file_path =
output_path + "/test-single_delete-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
}
// Test analyzing of delete
TEST_F(TraceAnalyzerTest, DeleteRange) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/range_delete";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=false",
"-analyze_delete=false", "-analyze_merge=false",
"-analyze_single_delete=false", "-analyze_range_delete=true",
"-analyze_iterator=false", "-analyze_multiget=false"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
// check the key_stats file
std::vector<std::string> k_stats = {"0 10 0 1 1.000000", "0 10 1 1 1.000000"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-range_delete-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 2"};
file_path =
output_path + "/test-range_delete-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30",
"1 1 1 1.000000 1.000000 0x65"};
file_path = output_path + "/test-range_delete-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"4 1533000630 0", "4 1533060100 1"};
file_path = output_path + "/test-range_delete-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"4 1", "5 1"};
file_path = output_path + "/test-range_delete-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-range_delete-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"0 0 0 0 2 0 0 0 0 2"};
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of DeleteRange
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
std::vector<std::string> get_qps = {"2"};
file_path = output_path + "/test-range_delete-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 2",
"The prefix: 0x65 Access count: 1",
"The prefix: 0x66 Access count: 1"};
file_path =
output_path + "/test-range_delete-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
}
// Test analyzing of Iterator
TEST_F(TraceAnalyzerTest, Iterator) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/iterator";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=false",
"-analyze_delete=false", "-analyze_merge=false",
"-analyze_single_delete=false", "-analyze_range_delete=false",
"-analyze_iterator=true", "-analyze_multiget=false"};
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
// Check the output of Seek
// check the key_stats file
std::vector<std::string> k_stats = {"0 10 0 1 1.000000"};
file_path = output_path + "/test-iterator_Seek-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 1"};
file_path =
output_path + "/test-iterator_Seek-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {"0 0 0 0.000000 0.000000 0x30"};
file_path = output_path + "/test-iterator_Seek-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"6 1 0"};
file_path = output_path + "/test-iterator_Seek-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"0 1"};
file_path = output_path + "/test-iterator_Seek-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-iterator_Seek-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps
std::vector<std::string> all_qps = {"0 0 0 0 0 0 1 1 0 2"};
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of Iterator_Seek
std::vector<std::string> get_qps = {"1"};
file_path = output_path + "/test-iterator_Seek-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {"At time: 0 with QPS: 1",
"The prefix: 0x61 Access count: 1"};
file_path =
output_path + "/test-iterator_Seek-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
// Check the output of SeekForPrev
// check the key_stats file
k_stats = {"0 10 0 1 1.000000"};
file_path =
output_path + "/test-iterator_SeekForPrev-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
k_dist = {"access_count: 1 num: 1"};
file_path =
output_path +
"/test-iterator_SeekForPrev-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the prefix
k_prefix = {"0 0 0 0.000000 0.000000 0x30"};
file_path =
output_path + "/test-iterator_SeekForPrev-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
k_series = {"7 0 0"};
file_path = output_path + "/test-iterator_SeekForPrev-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
k_whole_access = {"1 1"};
file_path = output_path + "/test-iterator_SeekForPrev-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63", "3 0x64", "4 0x65", "5 0x66"};
file_path =
output_path + "/test-iterator_SeekForPrev-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the qps of Iterator_SeekForPrev
get_qps = {"1"};
file_path = output_path + "/test-iterator_SeekForPrev-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
top_qps = {"At time: 0 with QPS: 1", "The prefix: 0x62 Access count: 1"};
file_path = output_path +
"/test-iterator_SeekForPrev-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
}
// Test analyzing of multiget
TEST_F(TraceAnalyzerTest, MultiGet) {
std::string trace_path = test_path_ + "/trace";
std::string output_path = test_path_ + "/multiget";
std::string file_path;
std::vector<std::string> paras = {
"-analyze_get=false", "-analyze_put=false",
"-analyze_delete=false", "-analyze_merge=false",
"-analyze_single_delete=false", "-analyze_range_delete=true",
"-analyze_iterator=false", "-analyze_multiget=true"};
paras.push_back("-output_dir=" + output_path);
paras.push_back("-trace_path=" + trace_path);
paras.push_back("-key_space_dir=" + test_path_);
AnalyzeTrace(paras, output_path, trace_path);
// check the key_stats file
std::vector<std::string> k_stats = {"0 10 0 2 1.000000", "0 10 1 2 1.000000",
"0 10 2 1 1.000000", "0 10 3 2 1.000000",
"0 10 4 2 1.000000"};
file_path = output_path + "/test-multiget-0-accessed_key_stats.txt";
CheckFileContent(k_stats, file_path, true);
// Check the access count distribution
std::vector<std::string> k_dist = {"access_count: 1 num: 1",
"access_count: 2 num: 4"};
file_path =
output_path + "/test-multiget-0-accessed_key_count_distribution.txt";
CheckFileContent(k_dist, file_path, true);
// Check the trace sequence
std::vector<std::string> k_sequence = {"1", "5", "2", "3", "4", "8",
"8", "8", "8", "8", "8", "8",
"8", "8", "0", "6", "7", "0"};
file_path = output_path + "/test-human_readable_trace.txt";
CheckFileContent(k_sequence, file_path, false);
// Check the prefix
std::vector<std::string> k_prefix = {
"0 0 0 0.000000 0.000000 0x30", "1 2 1 2.000000 1.000000 0x61",
"2 2 1 2.000000 1.000000 0x62", "3 1 1 1.000000 1.000000 0x64",
"4 2 1 2.000000 1.000000 0x67"};
file_path = output_path + "/test-multiget-0-accessed_key_prefix_cut.txt";
CheckFileContent(k_prefix, file_path, true);
// Check the time series
std::vector<std::string> k_series = {"8 0 0", "8 0 1", "8 0 2",
"8 0 3", "8 0 4", "8 0 0",
"8 0 1", "8 0 3", "8 0 4"};
file_path = output_path + "/test-multiget-0-time_series.txt";
CheckFileContent(k_series, file_path, false);
// Check the accessed key in whole key space
std::vector<std::string> k_whole_access = {"0 2", "1 2"};
file_path = output_path + "/test-multiget-0-whole_key_stats.txt";
CheckFileContent(k_whole_access, file_path, true);
// Check the whole key prefix cut
std::vector<std::string> k_whole_prefix = {"0 0x61", "1 0x62", "2 0x63",
"3 0x64", "4 0x65", "5 0x66"};
file_path = output_path + "/test-multiget-0-whole_key_prefix_cut.txt";
CheckFileContent(k_whole_prefix, file_path, true);
// Check the overall qps. We have 3 MultiGet queries and it requested 9 keys
// in total
std::vector<std::string> all_qps = {"0 0 0 0 2 0 0 0 9 11"};
file_path = output_path + "/test-qps_stats.txt";
CheckFileContent(all_qps, file_path, true);
// Check the qps of DeleteRange
std::vector<std::string> get_qps = {"9"};
file_path = output_path + "/test-multiget-0-qps_stats.txt";
CheckFileContent(get_qps, file_path, true);
// Check the top k qps prefix cut
std::vector<std::string> top_qps = {
"At time: 0 with QPS: 9", "The prefix: 0x61 Access count: 2",
"The prefix: 0x62 Access count: 2", "The prefix: 0x64 Access count: 1",
"The prefix: 0x67 Access count: 2", "The prefix: 0x68 Access count: 2"};
file_path =
output_path + "/test-multiget-0-accessed_top_k_qps_prefix_cut.txt";
CheckFileContent(top_qps, file_path, true);
}
} // namespace ROCKSDB_NAMESPACE
RocksDB Trace Analyzer (#4091) Summary: A framework of trace analyzing for RocksDB After collecting the trace by using the tool of [PR #3837](https://github.com/facebook/rocksdb/pull/3837). User can use the Trace Analyzer to interpret, analyze, and characterize the collected workload. **Input:** 1. trace file 2. Whole keys space file **Statistics:** 1. Access count of each operation (Get, Put, Delete, SingleDelete, DeleteRange, Merge) in each column family. 2. Key hotness (access count) of each one 3. Key space separation based on given prefix 4. Key size distribution 5. Value size distribution if appliable 6. Top K accessed keys 7. QPS statistics including the average QPS and peak QPS 8. Top K accessed prefix 9. The query correlation analyzing, output the number of X after Y and the corresponding average time intervals **Output:** 1. key access heat map (either in the accessed key space or whole key space) 2. trace sequence file (interpret the raw trace file to line base text file for future use) 3. Time serial (The key space ID and its access time) 4. Key access count distritbution 5. Key size distribution 6. Value size distribution (in each intervals) 7. whole key space separation by the prefix 8. Accessed key space separation by the prefix 9. QPS of each operation and each column family 10. Top K QPS and their accessed prefix range **Test:** 1. Added the unit test of analyzing Get, Put, Delete, SingleDelete, DeleteRange, Merge 2. Generated the trace and analyze the trace **Implemented but not tested (due to the limitation of trace_replay):** 1. Analyzing Iterator, supporting Seek() and SeekForPrev() analyzing 2. Analyzing the number of Key found by Get **Future Work:** 1. Support execution time analyzing of each requests 2. Support cache hit situation and block read situation of Get Pull Request resolved: https://github.com/facebook/rocksdb/pull/4091 Differential Revision: D9256157 Pulled By: zhichao-cao fbshipit-source-id: f0ceacb7eedbc43a3eee6e85b76087d7832a8fe6
2018-08-13 20:32:04 +02:00
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#endif // GFLAG
#else
#include <stdio.h>
int main(int /*argc*/, char** /*argv*/) {
fprintf(stderr, "Trace_analyzer test is not supported in ROCKSDB_LITE\n");
return 0;
}
#endif // !ROCKSDB_LITE return RUN_ALL_TESTS();