rocksdb/port/win/win_logger.cc

195 lines
5.3 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// Logger implementation that can be shared by all environments
// where enough posix functionality is available.
#if defined(OS_WIN)
#include "port/win/win_logger.h"
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 10:48:24 -08:00
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 10:48:24 -08:00
#include <algorithm>
#include <atomic>
#include "monitoring/iostats_context_imp.h"
#include "port/sys_time.h"
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 10:48:24 -08:00
#include "port/win/env_win.h"
#include "port/win/io_win.h"
#include "rocksdb/env.h"
namespace ROCKSDB_NAMESPACE {
namespace port {
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 10:48:24 -08:00
WinLogger::WinLogger(uint64_t (*gettid)(),
const std::shared_ptr<WinClock>& clock, HANDLE file,
const InfoLogLevel log_level)
: Logger(log_level),
file_(file),
gettid_(gettid),
log_size_(0),
last_flush_micros_(0),
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 10:48:24 -08:00
clock_(clock),
flush_pending_(false) {
assert(file_ != NULL);
assert(file_ != INVALID_HANDLE_VALUE);
}
void WinLogger::DebugWriter(const char* str, int len) {
assert(file_ != INVALID_HANDLE_VALUE);
DWORD bytesWritten = 0;
BOOL ret = WriteFile(file_, str, len, &bytesWritten, NULL);
if (ret == FALSE) {
std::string errSz = GetWindowsErrSz(GetLastError());
fprintf(stderr, "%s", errSz.c_str());
}
}
WinLogger::~WinLogger() { CloseInternal().PermitUncheckedError(); }
Status WinLogger::CloseImpl() {
return CloseInternal();
}
Status WinLogger::CloseInternal() {
Status s;
if (INVALID_HANDLE_VALUE != file_) {
BOOL ret = FlushFileBuffers(file_);
if (ret == 0) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("Failed to flush LOG on Close() ", lastError);
}
ret = CloseHandle(file_);
// On error the return value is zero
if (ret == 0 && s.ok()) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("Failed to flush LOG on Close() ", lastError);
}
file_ = INVALID_HANDLE_VALUE;
closed_ = true;
}
return s;
}
void WinLogger::Flush() {
assert(file_ != INVALID_HANDLE_VALUE);
if (flush_pending_) {
flush_pending_ = false;
// With Windows API writes go to OS buffers directly so no fflush needed
// unlike with C runtime API. We don't flush all the way to disk
// for perf reasons.
}
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 10:48:24 -08:00
last_flush_micros_ = clock_->NowMicros();
}
void WinLogger::Logv(const char* format, va_list ap) {
IOSTATS_TIMER_GUARD(logger_nanos);
assert(file_ != INVALID_HANDLE_VALUE);
const uint64_t thread_id = (*gettid_)();
// We try twice: the first time with a fixed-size stack allocated buffer,
// and the second time with a much larger dynamically allocated buffer.
char buffer[500];
std::unique_ptr<char[]> largeBuffer;
for (int iter = 0; iter < 2; ++iter) {
char* base;
int bufsize;
if (iter == 0) {
bufsize = sizeof(buffer);
base = buffer;
} else {
bufsize = 30000;
largeBuffer.reset(new char[bufsize]);
base = largeBuffer.get();
}
char* p = base;
char* limit = base + bufsize;
struct timeval now_tv;
gettimeofday(&now_tv, nullptr);
const time_t seconds = now_tv.tv_sec;
struct tm t;
localtime_s(&t, &seconds);
p += snprintf(p, limit - p, "%04d/%02d/%02d-%02d:%02d:%02d.%06d %llx ",
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour,
t.tm_min, t.tm_sec, static_cast<int>(now_tv.tv_usec),
static_cast<long long unsigned int>(thread_id));
// Print the message
if (p < limit) {
va_list backup_ap;
va_copy(backup_ap, ap);
int done = vsnprintf(p, limit - p, format, backup_ap);
if (done > 0) {
p += done;
} else {
continue;
}
va_end(backup_ap);
}
// Truncate to available space if necessary
if (p >= limit) {
if (iter == 0) {
continue; // Try again with larger buffer
} else {
p = limit - 1;
}
}
// Add newline if necessary
if (p == base || p[-1] != '\n') {
*p++ = '\n';
}
assert(p <= limit);
const size_t write_size = p - base;
DWORD bytesWritten = 0;
BOOL ret = WriteFile(file_, base, static_cast<DWORD>(write_size),
&bytesWritten, NULL);
if (ret == FALSE) {
std::string errSz = GetWindowsErrSz(GetLastError());
fprintf(stderr, "%s", errSz.c_str());
}
flush_pending_ = true;
assert((bytesWritten == write_size) || (ret == FALSE));
if (bytesWritten > 0) {
log_size_ += write_size;
}
uint64_t now_micros =
static_cast<uint64_t>(now_tv.tv_sec) * 1000000 + now_tv.tv_usec;
if (now_micros - last_flush_micros_ >= flush_every_seconds_ * 1000000) {
flush_pending_ = false;
// With Windows API writes go to OS buffers directly so no fflush needed
// unlike with C runtime API. We don't flush all the way to disk
// for perf reasons.
last_flush_micros_ = now_micros;
}
break;
}
}
size_t WinLogger::GetLogFileSize() const { return log_size_; }
}
} // namespace ROCKSDB_NAMESPACE
#endif