rocksdb/db/db_impl_write.cc

1241 lines
46 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include "db/event_helpers.h"
#include "monitoring/perf_context_imp.h"
#include "options/options_helper.h"
#include "util/sync_point.h"
namespace rocksdb {
// Convenience methods
Status DBImpl::Put(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
return DB::Put(o, column_family, key, val);
}
Status DBImpl::Merge(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
if (!cfh->cfd()->ioptions()->merge_operator) {
return Status::NotSupported("Provide a merge_operator when opening DB");
} else {
return DB::Merge(o, column_family, key, val);
}
}
Status DBImpl::Delete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family, const Slice& key) {
return DB::Delete(write_options, column_family, key);
}
Status DBImpl::SingleDelete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family,
const Slice& key) {
return DB::SingleDelete(write_options, column_family, key);
}
Status DBImpl::Write(const WriteOptions& write_options, WriteBatch* my_batch) {
return WriteImpl(write_options, my_batch, nullptr, nullptr);
}
#ifndef ROCKSDB_LITE
Status DBImpl::WriteWithCallback(const WriteOptions& write_options,
WriteBatch* my_batch,
WriteCallback* callback) {
return WriteImpl(write_options, my_batch, callback, nullptr);
}
#endif // ROCKSDB_LITE
Status DBImpl::WriteImpl(const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback,
uint64_t* log_used, uint64_t log_ref,
bool disable_memtable) {
if (my_batch == nullptr) {
return Status::Corruption("Batch is nullptr!");
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (concurrent_prepare_ && immutable_db_options_.enable_pipelined_write) {
return Status::NotSupported(
"pipelined_writes is not compatible with concurrent prepares");
}
Status status;
if (write_options.low_pri) {
status = ThrottleLowPriWritesIfNeeded(write_options, my_batch);
if (!status.ok()) {
return status;
}
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (concurrent_prepare_ && disable_memtable) {
return WriteImplWALOnly(write_options, my_batch, callback, log_used,
log_ref);
}
if (immutable_db_options_.enable_pipelined_write) {
return PipelinedWriteImpl(write_options, my_batch, callback, log_used,
log_ref, disable_memtable);
}
PERF_TIMER_GUARD(write_pre_and_post_process_time);
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable);
if (!write_options.disableWAL) {
RecordTick(stats_, WRITE_WITH_WAL);
}
StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);
write_thread_.JoinBatchGroup(&w);
if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
// we are a non-leader in a parallel group
PERF_TIMER_GUARD(write_memtable_time);
if (w.ShouldWriteToMemtable()) {
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/, this,
true /*concurrent_memtable_writes*/);
}
if (write_thread_.CompleteParallelMemTableWriter(&w)) {
// we're responsible for exit batch group
auto last_sequence = w.write_group->last_sequence;
versions_->SetLastSequence(last_sequence);
MemTableInsertStatusCheck(w.status);
write_thread_.ExitAsBatchGroupFollower(&w);
}
assert(w.state == WriteThread::STATE_COMPLETED);
// STATE_COMPLETED conditional below handles exit
status = w.FinalStatus();
}
if (w.state == WriteThread::STATE_COMPLETED) {
if (log_used != nullptr) {
*log_used = w.log_used;
}
// write is complete and leader has updated sequence
return w.FinalStatus();
}
// else we are the leader of the write batch group
assert(w.state == WriteThread::STATE_GROUP_LEADER);
// Once reaches this point, the current writer "w" will try to do its write
// job. It may also pick up some of the remaining writers in the "writers_"
// when it finds suitable, and finish them in the same write batch.
// This is how a write job could be done by the other writer.
WriteContext write_context;
WriteThread::WriteGroup write_group;
bool in_parallel_group = false;
uint64_t last_sequence = kMaxSequenceNumber;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (!concurrent_prepare_) {
last_sequence = versions_->LastSequence();
}
mutex_.Lock();
bool need_log_sync = !write_options.disableWAL && write_options.sync;
bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (!concurrent_prepare_ || !disable_memtable) {
// With concurrent writes we do preprocess only in the write thread that
// also does write to memtable to avoid sync issue on shared data structure
// with the other thread
status = PreprocessWrite(write_options, &need_log_sync, &write_context);
}
log::Writer* log_writer = logs_.back().writer;
mutex_.Unlock();
// Add to log and apply to memtable. We can release the lock
// during this phase since &w is currently responsible for logging
// and protects against concurrent loggers and concurrent writes
// into memtables
last_batch_group_size_ =
write_thread_.EnterAsBatchGroupLeader(&w, &write_group);
if (status.ok()) {
// Rules for when we can update the memtable concurrently
// 1. supported by memtable
// 2. Puts are not okay if inplace_update_support
// 3. Merges are not okay
//
// Rules 1..2 are enforced by checking the options
// during startup (CheckConcurrentWritesSupported), so if
// options.allow_concurrent_memtable_write is true then they can be
// assumed to be true. Rule 3 is checked for each batch. We could
// relax rules 2 if we could prevent write batches from referring
// more than once to a particular key.
bool parallel = immutable_db_options_.allow_concurrent_memtable_write &&
write_group.size > 1;
int total_count = 0;
uint64_t total_byte_size = 0;
for (auto* writer : write_group) {
if (writer->CheckCallback(this)) {
if (writer->ShouldWriteToMemtable()) {
total_count += WriteBatchInternal::Count(writer->batch);
parallel = parallel && !writer->batch->HasMerge();
}
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
}
}
const bool concurrent_update = concurrent_prepare_;
// Update stats while we are an exclusive group leader, so we know
// that nobody else can be writing to these particular stats.
// We're optimistic, updating the stats before we successfully
// commit. That lets us release our leader status early.
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::NUMBER_KEYS_WRITTEN, total_count,
concurrent_update);
RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size,
concurrent_update);
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1, concurrent_update);
RecordTick(stats_, WRITE_DONE_BY_SELF);
auto write_done_by_other = write_group.size - 1;
if (write_done_by_other > 0) {
stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER, write_done_by_other,
concurrent_update);
RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
}
MeasureTime(stats_, BYTES_PER_WRITE, total_byte_size);
if (write_options.disableWAL) {
has_unpersisted_data_.store(true, std::memory_order_relaxed);
}
PERF_TIMER_STOP(write_pre_and_post_process_time);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (!concurrent_prepare_) {
if (status.ok() && !write_options.disableWAL) {
PERF_TIMER_GUARD(write_wal_time);
status = WriteToWAL(write_group, log_writer, log_used, need_log_sync,
need_log_dir_sync, last_sequence + 1);
}
} else {
if (status.ok() && !write_options.disableWAL) {
PERF_TIMER_GUARD(write_wal_time);
// LastToBeWrittenSequence is increased inside WriteToWAL under
// wal_write_mutex_ to ensure ordered events in WAL
status = ConcurrentWriteToWAL(write_group, log_used, &last_sequence,
total_count);
} else {
// Otherwise we inc seq number for memtable writes
last_sequence = versions_->FetchAddLastToBeWrittenSequence(total_count);
}
}
assert(last_sequence != kMaxSequenceNumber);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
const SequenceNumber current_sequence = last_sequence + 1;
last_sequence += total_count;
if (status.ok()) {
PERF_TIMER_GUARD(write_memtable_time);
if (!parallel) {
w.status = WriteBatchInternal::InsertInto(
write_group, current_sequence, column_family_memtables_.get(),
&flush_scheduler_, write_options.ignore_missing_column_families,
0 /*recovery_log_number*/, this);
} else {
SequenceNumber next_sequence = current_sequence;
for (auto* writer : write_group) {
if (writer->ShouldWriteToMemtable()) {
writer->sequence = next_sequence;
next_sequence += WriteBatchInternal::Count(writer->batch);
}
}
write_group.last_sequence = last_sequence;
write_group.running.store(static_cast<uint32_t>(write_group.size),
std::memory_order_relaxed);
write_thread_.LaunchParallelMemTableWriters(&write_group);
in_parallel_group = true;
// Each parallel follower is doing each own writes. The leader should
// also do its own.
if (w.ShouldWriteToMemtable()) {
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
assert(w.sequence == current_sequence);
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/,
this, true /*concurrent_memtable_writes*/);
}
}
}
}
PERF_TIMER_START(write_pre_and_post_process_time);
if (!w.CallbackFailed()) {
WriteCallbackStatusCheck(status);
}
if (need_log_sync) {
mutex_.Lock();
MarkLogsSynced(logfile_number_, need_log_dir_sync, status);
mutex_.Unlock();
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
// Requesting sync with concurrent_prepare_ is expected to be very rare. We
// hance provide a simple implementation that is not necessarily efficient.
if (concurrent_prepare_) {
if (manual_wal_flush_) {
status = FlushWAL(true);
} else {
status = SyncWAL();
}
}
}
bool should_exit_batch_group = true;
if (in_parallel_group) {
// CompleteParallelWorker returns true if this thread should
// handle exit, false means somebody else did
should_exit_batch_group = write_thread_.CompleteParallelMemTableWriter(&w);
}
if (should_exit_batch_group) {
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (status.ok()) {
versions_->SetLastSequence(last_sequence);
}
MemTableInsertStatusCheck(w.status);
write_thread_.ExitAsBatchGroupLeader(write_group, w.status);
}
if (status.ok()) {
status = w.FinalStatus();
}
return status;
}
Status DBImpl::PipelinedWriteImpl(const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback,
uint64_t* log_used, uint64_t log_ref,
bool disable_memtable) {
PERF_TIMER_GUARD(write_pre_and_post_process_time);
StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);
WriteContext write_context;
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable);
write_thread_.JoinBatchGroup(&w);
if (w.state == WriteThread::STATE_GROUP_LEADER) {
WriteThread::WriteGroup wal_write_group;
if (w.callback && !w.callback->AllowWriteBatching()) {
write_thread_.WaitForMemTableWriters();
}
mutex_.Lock();
bool need_log_sync = !write_options.disableWAL && write_options.sync;
bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
w.status = PreprocessWrite(write_options, &need_log_sync, &write_context);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
log::Writer* log_writer = logs_.back().writer;
mutex_.Unlock();
// This can set non-OK status if callback fail.
last_batch_group_size_ =
write_thread_.EnterAsBatchGroupLeader(&w, &wal_write_group);
const SequenceNumber current_sequence =
write_thread_.UpdateLastSequence(versions_->LastSequence()) + 1;
size_t total_count = 0;
size_t total_byte_size = 0;
if (w.status.ok()) {
SequenceNumber next_sequence = current_sequence;
for (auto writer : wal_write_group) {
if (writer->CheckCallback(this)) {
if (writer->ShouldWriteToMemtable()) {
writer->sequence = next_sequence;
size_t count = WriteBatchInternal::Count(writer->batch);
next_sequence += count;
total_count += count;
}
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
}
}
if (w.disable_wal) {
has_unpersisted_data_.store(true, std::memory_order_relaxed);
}
write_thread_.UpdateLastSequence(current_sequence + total_count - 1);
}
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::NUMBER_KEYS_WRITTEN, total_count);
RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size);
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
PERF_TIMER_STOP(write_pre_and_post_process_time);
if (w.ShouldWriteToWAL()) {
PERF_TIMER_GUARD(write_wal_time);
stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1);
RecordTick(stats_, WRITE_DONE_BY_SELF, 1);
if (wal_write_group.size > 1) {
stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER,
wal_write_group.size - 1);
RecordTick(stats_, WRITE_DONE_BY_OTHER, wal_write_group.size - 1);
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
w.status = WriteToWAL(wal_write_group, log_writer, log_used,
need_log_sync, need_log_dir_sync, current_sequence);
}
if (!w.CallbackFailed()) {
WriteCallbackStatusCheck(w.status);
}
if (need_log_sync) {
mutex_.Lock();
MarkLogsSynced(logfile_number_, need_log_dir_sync, w.status);
mutex_.Unlock();
}
write_thread_.ExitAsBatchGroupLeader(wal_write_group, w.status);
}
WriteThread::WriteGroup memtable_write_group;
if (w.state == WriteThread::STATE_MEMTABLE_WRITER_LEADER) {
PERF_TIMER_GUARD(write_memtable_time);
assert(w.status.ok());
write_thread_.EnterAsMemTableWriter(&w, &memtable_write_group);
if (memtable_write_group.size > 1 &&
immutable_db_options_.allow_concurrent_memtable_write) {
write_thread_.LaunchParallelMemTableWriters(&memtable_write_group);
} else {
memtable_write_group.status = WriteBatchInternal::InsertInto(
memtable_write_group, w.sequence, column_family_memtables_.get(),
&flush_scheduler_, write_options.ignore_missing_column_families,
0 /*log_number*/, this);
versions_->SetLastSequence(memtable_write_group.last_sequence);
write_thread_.ExitAsMemTableWriter(&w, memtable_write_group);
}
}
if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
assert(w.ShouldWriteToMemtable());
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/, this,
true /*concurrent_memtable_writes*/);
if (write_thread_.CompleteParallelMemTableWriter(&w)) {
MemTableInsertStatusCheck(w.status);
versions_->SetLastSequence(w.write_group->last_sequence);
write_thread_.ExitAsMemTableWriter(&w, *w.write_group);
}
}
assert(w.state == WriteThread::STATE_COMPLETED);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
return w.FinalStatus();
}
Status DBImpl::WriteImplWALOnly(const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback,
uint64_t* log_used, uint64_t log_ref) {
Status status;
PERF_TIMER_GUARD(write_pre_and_post_process_time);
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
true /* disable_memtable */);
if (write_options.disableWAL) {
return status;
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
RecordTick(stats_, WRITE_WITH_WAL);
StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
nonmem_write_thread_.JoinBatchGroup(&w);
assert(w.state != WriteThread::STATE_PARALLEL_MEMTABLE_WRITER);
if (w.state == WriteThread::STATE_COMPLETED) {
if (log_used != nullptr) {
*log_used = w.log_used;
}
return w.FinalStatus();
}
// else we are the leader of the write batch group
assert(w.state == WriteThread::STATE_GROUP_LEADER);
WriteContext write_context;
WriteThread::WriteGroup write_group;
uint64_t last_sequence;
nonmem_write_thread_.EnterAsBatchGroupLeader(&w, &write_group);
// Note: no need to update last_batch_group_size_ here since the batch writes
// to WAL only
uint64_t total_byte_size = 0;
for (auto* writer : write_group) {
if (writer->CheckCallback(this)) {
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
}
}
const bool concurrent_update = true;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
// Update stats while we are an exclusive group leader, so we know
// that nobody else can be writing to these particular stats.
// We're optimistic, updating the stats before we successfully
// commit. That lets us release our leader status early.
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size,
concurrent_update);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1, concurrent_update);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
RecordTick(stats_, WRITE_DONE_BY_SELF);
auto write_done_by_other = write_group.size - 1;
if (write_done_by_other > 0) {
stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER, write_done_by_other,
concurrent_update);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
}
MeasureTime(stats_, BYTES_PER_WRITE, total_byte_size);
PERF_TIMER_STOP(write_pre_and_post_process_time);
PERF_TIMER_GUARD(write_wal_time);
// LastToBeWrittenSequence is increased inside WriteToWAL under
// wal_write_mutex_ to ensure ordered events in WAL
status = ConcurrentWriteToWAL(write_group, log_used, &last_sequence,
0 /*total_count*/);
if (status.ok() && write_options.sync) {
// Requesting sync with concurrent_prepare_ is expected to be very rare. We
// hance provide a simple implementation that is not necessarily efficient.
if (manual_wal_flush_) {
status = FlushWAL(true);
} else {
status = SyncWAL();
}
}
PERF_TIMER_START(write_pre_and_post_process_time);
if (!w.CallbackFailed()) {
WriteCallbackStatusCheck(status);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
}
nonmem_write_thread_.ExitAsBatchGroupLeader(write_group, w.status);
if (status.ok()) {
status = w.FinalStatus();
}
return status;
}
void DBImpl::WriteCallbackStatusCheck(const Status& status) {
// Is setting bg_error_ enough here? This will at least stop
// compaction and fail any further writes.
if (immutable_db_options_.paranoid_checks && !status.ok() &&
!status.IsBusy() && !status.IsIncomplete()) {
mutex_.Lock();
if (bg_error_.ok()) {
Status new_bg_error = status;
// may temporarily unlock and lock the mutex.
EventHelpers::NotifyOnBackgroundError(immutable_db_options_.listeners,
BackgroundErrorReason::kWriteCallback,
&new_bg_error, &mutex_);
if (!new_bg_error.ok()) {
bg_error_ = new_bg_error; // stop compaction & fail any further writes
}
}
mutex_.Unlock();
}
}
void DBImpl::MemTableInsertStatusCheck(const Status& status) {
// A non-OK status here indicates that the state implied by the
// WAL has diverged from the in-memory state. This could be
// because of a corrupt write_batch (very bad), or because the
// client specified an invalid column family and didn't specify
// ignore_missing_column_families.
if (!status.ok()) {
mutex_.Lock();
assert(bg_error_.ok());
Status new_bg_error = status;
// may temporarily unlock and lock the mutex.
EventHelpers::NotifyOnBackgroundError(immutable_db_options_.listeners,
BackgroundErrorReason::kMemTable,
&new_bg_error, &mutex_);
if (!new_bg_error.ok()) {
bg_error_ = new_bg_error; // stop compaction & fail any further writes
}
mutex_.Unlock();
}
}
Status DBImpl::PreprocessWrite(const WriteOptions& write_options,
bool* need_log_sync,
WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr && need_log_sync != nullptr);
Status status;
assert(!single_column_family_mode_ ||
versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1);
if (UNLIKELY(status.ok() && !single_column_family_mode_ &&
total_log_size_ > GetMaxTotalWalSize())) {
status = HandleWALFull(write_context);
}
if (UNLIKELY(status.ok() && write_buffer_manager_->ShouldFlush())) {
// Before a new memtable is added in SwitchMemtable(),
// write_buffer_manager_->ShouldFlush() will keep returning true. If another
// thread is writing to another DB with the same write buffer, they may also
// be flushed. We may end up with flushing much more DBs than needed. It's
// suboptimal but still correct.
status = HandleWriteBufferFull(write_context);
}
if (UNLIKELY(status.ok() && !bg_error_.ok())) {
return bg_error_;
}
if (UNLIKELY(status.ok() && !flush_scheduler_.Empty())) {
status = ScheduleFlushes(write_context);
}
if (UNLIKELY(status.ok() && (write_controller_.IsStopped() ||
write_controller_.NeedsDelay()))) {
PERF_TIMER_GUARD(write_delay_time);
// We don't know size of curent batch so that we always use the size
// for previous one. It might create a fairness issue that expiration
// might happen for smaller writes but larger writes can go through.
// Can optimize it if it is an issue.
status = DelayWrite(last_batch_group_size_, write_options);
}
if (status.ok() && *need_log_sync) {
// Wait until the parallel syncs are finished. Any sync process has to sync
// the front log too so it is enough to check the status of front()
// We do a while loop since log_sync_cv_ is signalled when any sync is
// finished
// Note: there does not seem to be a reason to wait for parallel sync at
// this early step but it is not important since parallel sync (SyncWAL) and
// need_log_sync are usually not used together.
while (logs_.front().getting_synced) {
log_sync_cv_.Wait();
}
for (auto& log : logs_) {
assert(!log.getting_synced);
// This is just to prevent the logs to be synced by a parallel SyncWAL
// call. We will do the actual syncing later after we will write to the
// WAL.
// Note: there does not seem to be a reason to set this early before we
// actually write to the WAL
log.getting_synced = true;
}
} else {
*need_log_sync = false;
}
return status;
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
WriteBatch* DBImpl::MergeBatch(const WriteThread::WriteGroup& write_group,
WriteBatch* tmp_batch, size_t* write_with_wal) {
assert(write_with_wal != nullptr);
assert(tmp_batch != nullptr);
WriteBatch* merged_batch = nullptr;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
*write_with_wal = 0;
auto* leader = write_group.leader;
if (write_group.size == 1 && leader->ShouldWriteToWAL() &&
leader->batch->GetWalTerminationPoint().is_cleared()) {
// we simply write the first WriteBatch to WAL if the group only
// contains one batch, that batch should be written to the WAL,
// and the batch is not wanting to be truncated
merged_batch = leader->batch;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
*write_with_wal = 1;
} else {
// WAL needs all of the batches flattened into a single batch.
// We could avoid copying here with an iov-like AddRecord
// interface
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
merged_batch = tmp_batch;
for (auto writer : write_group) {
if (writer->ShouldWriteToWAL()) {
WriteBatchInternal::Append(merged_batch, writer->batch,
/*WAL_only*/ true);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
(*write_with_wal)++;
}
}
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
return merged_batch;
}
// When concurrent_prepare_ is disabled, this function is called from the only
// write thread. Otherwise this must be called holding log_write_mutex_.
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
Status DBImpl::WriteToWAL(const WriteBatch& merged_batch,
log::Writer* log_writer, uint64_t* log_used,
uint64_t* log_size) {
assert(log_size != nullptr);
Slice log_entry = WriteBatchInternal::Contents(&merged_batch);
*log_size = log_entry.size();
Status status = log_writer->AddRecord(log_entry);
if (log_used != nullptr) {
*log_used = logfile_number_;
}
total_log_size_ += log_entry.size();
// TODO(myabandeh): it might be unsafe to access alive_log_files_.back() here
// since alive_log_files_ might be modified concurrently
alive_log_files_.back().AddSize(log_entry.size());
log_empty_ = false;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
return status;
}
Status DBImpl::WriteToWAL(const WriteThread::WriteGroup& write_group,
log::Writer* log_writer, uint64_t* log_used,
bool need_log_sync, bool need_log_dir_sync,
SequenceNumber sequence) {
Status status;
size_t write_with_wal = 0;
WriteBatch* merged_batch =
MergeBatch(write_group, &tmp_batch_, &write_with_wal);
if (merged_batch == write_group.leader->batch) {
write_group.leader->log_used = logfile_number_;
} else if (write_with_wal > 1) {
for (auto writer : write_group) {
writer->log_used = logfile_number_;
}
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
WriteBatchInternal::SetSequence(merged_batch, sequence);
uint64_t log_size;
status = WriteToWAL(*merged_batch, log_writer, log_used, &log_size);
if (status.ok() && need_log_sync) {
StopWatch sw(env_, stats_, WAL_FILE_SYNC_MICROS);
// It's safe to access logs_ with unlocked mutex_ here because:
// - we've set getting_synced=true for all logs,
// so other threads won't pop from logs_ while we're here,
// - only writer thread can push to logs_, and we're in
// writer thread, so no one will push to logs_,
// - as long as other threads don't modify it, it's safe to read
// from std::deque from multiple threads concurrently.
for (auto& log : logs_) {
status = log.writer->file()->Sync(immutable_db_options_.use_fsync);
if (!status.ok()) {
break;
}
}
if (status.ok() && need_log_dir_sync) {
// We only sync WAL directory the first time WAL syncing is
// requested, so that in case users never turn on WAL sync,
// we can avoid the disk I/O in the write code path.
status = directories_.GetWalDir()->Fsync();
}
}
if (merged_batch == &tmp_batch_) {
tmp_batch_.Clear();
}
if (status.ok()) {
auto stats = default_cf_internal_stats_;
if (need_log_sync) {
stats->AddDBStats(InternalStats::WAL_FILE_SYNCED, 1);
RecordTick(stats_, WAL_FILE_SYNCED);
}
stats->AddDBStats(InternalStats::WAL_FILE_BYTES, log_size);
RecordTick(stats_, WAL_FILE_BYTES, log_size);
stats->AddDBStats(InternalStats::WRITE_WITH_WAL, write_with_wal);
RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
}
return status;
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
Status DBImpl::ConcurrentWriteToWAL(const WriteThread::WriteGroup& write_group,
uint64_t* log_used,
SequenceNumber* last_sequence,
int total_count) {
Status status;
WriteBatch tmp_batch;
size_t write_with_wal = 0;
WriteBatch* merged_batch =
MergeBatch(write_group, &tmp_batch, &write_with_wal);
// We need to lock log_write_mutex_ since logs_ and alive_log_files might be
// pushed back concurrently
log_write_mutex_.Lock();
if (merged_batch == write_group.leader->batch) {
write_group.leader->log_used = logfile_number_;
} else if (write_with_wal > 1) {
for (auto writer : write_group) {
writer->log_used = logfile_number_;
}
}
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
*last_sequence = versions_->FetchAddLastToBeWrittenSequence(total_count);
auto sequence = *last_sequence + 1;
WriteBatchInternal::SetSequence(merged_batch, sequence);
log::Writer* log_writer = logs_.back().writer;
uint64_t log_size;
status = WriteToWAL(*merged_batch, log_writer, log_used, &log_size);
log_write_mutex_.Unlock();
if (status.ok()) {
const bool concurrent = true;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::WAL_FILE_BYTES, log_size, concurrent);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
RecordTick(stats_, WAL_FILE_BYTES, log_size);
stats->AddDBStats(InternalStats::WRITE_WITH_WAL, write_with_wal,
concurrent);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
}
return status;
}
Status DBImpl::HandleWALFull(WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr);
Status status;
if (alive_log_files_.begin()->getting_flushed) {
return status;
}
auto oldest_alive_log = alive_log_files_.begin()->number;
auto oldest_log_with_uncommited_prep = FindMinLogContainingOutstandingPrep();
if (allow_2pc() &&
oldest_log_with_uncommited_prep > 0 &&
oldest_log_with_uncommited_prep <= oldest_alive_log) {
if (unable_to_flush_oldest_log_) {
// we already attempted to flush all column families dependent on
// the oldest alive log but the log still contained uncommited transactions.
// the oldest alive log STILL contains uncommited transaction so there
// is still nothing that we can do.
return status;
} else {
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"Unable to release oldest log due to uncommited transaction");
unable_to_flush_oldest_log_ = true;
}
} else {
// we only mark this log as getting flushed if we have successfully
// flushed all data in this log. If this log contains outstanding prepared
// transactions then we cannot flush this log until those transactions are commited.
unable_to_flush_oldest_log_ = false;
alive_log_files_.begin()->getting_flushed = true;
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Flushing all column families with data in WAL number %" PRIu64
". Total log size is %" PRIu64
" while max_total_wal_size is %" PRIu64,
oldest_alive_log, total_log_size_.load(), GetMaxTotalWalSize());
// no need to refcount because drop is happening in write thread, so can't
// happen while we're in the write thread
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (cfd->OldestLogToKeep() <= oldest_alive_log) {
status = SwitchMemtable(cfd, write_context);
if (!status.ok()) {
break;
}
cfd->imm()->FlushRequested();
SchedulePendingFlush(cfd);
}
}
MaybeScheduleFlushOrCompaction();
return status;
}
Status DBImpl::HandleWriteBufferFull(WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr);
Status status;
// Before a new memtable is added in SwitchMemtable(),
// write_buffer_manager_->ShouldFlush() will keep returning true. If another
// thread is writing to another DB with the same write buffer, they may also
// be flushed. We may end up with flushing much more DBs than needed. It's
// suboptimal but still correct.
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Flushing column family with largest mem table size. Write buffer is "
"using %" PRIu64 " bytes out of a total of %" PRIu64 ".",
write_buffer_manager_->memory_usage(),
write_buffer_manager_->buffer_size());
// no need to refcount because drop is happening in write thread, so can't
// happen while we're in the write thread
ColumnFamilyData* cfd_picked = nullptr;
SequenceNumber seq_num_for_cf_picked = kMaxSequenceNumber;
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (!cfd->mem()->IsEmpty()) {
// We only consider active mem table, hoping immutable memtable is
// already in the process of flushing.
uint64_t seq = cfd->mem()->GetCreationSeq();
if (cfd_picked == nullptr || seq < seq_num_for_cf_picked) {
cfd_picked = cfd;
seq_num_for_cf_picked = seq;
}
}
}
if (cfd_picked != nullptr) {
status = SwitchMemtable(cfd_picked, write_context);
if (status.ok()) {
cfd_picked->imm()->FlushRequested();
SchedulePendingFlush(cfd_picked);
MaybeScheduleFlushOrCompaction();
}
}
return status;
}
uint64_t DBImpl::GetMaxTotalWalSize() const {
mutex_.AssertHeld();
return mutable_db_options_.max_total_wal_size == 0
? 4 * max_total_in_memory_state_
: mutable_db_options_.max_total_wal_size;
}
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::DelayWrite(uint64_t num_bytes,
const WriteOptions& write_options) {
uint64_t time_delayed = 0;
bool delayed = false;
{
StopWatch sw(env_, stats_, WRITE_STALL, &time_delayed);
uint64_t delay = write_controller_.GetDelay(env_, num_bytes);
if (delay > 0) {
if (write_options.no_slowdown) {
return Status::Incomplete();
}
TEST_SYNC_POINT("DBImpl::DelayWrite:Sleep");
mutex_.Unlock();
// We will delay the write until we have slept for delay ms or
// we don't need a delay anymore
const uint64_t kDelayInterval = 1000;
uint64_t stall_end = sw.start_time() + delay;
while (write_controller_.NeedsDelay()) {
if (env_->NowMicros() >= stall_end) {
// We already delayed this write `delay` microseconds
break;
}
delayed = true;
// Sleep for 0.001 seconds
env_->SleepForMicroseconds(kDelayInterval);
}
mutex_.Lock();
}
while (bg_error_.ok() && write_controller_.IsStopped()) {
if (write_options.no_slowdown) {
return Status::Incomplete();
}
delayed = true;
TEST_SYNC_POINT("DBImpl::DelayWrite:Wait");
bg_cv_.Wait();
}
}
assert(!delayed || !write_options.no_slowdown);
if (delayed) {
default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_STALL_MICROS,
time_delayed);
RecordTick(stats_, STALL_MICROS, time_delayed);
}
return bg_error_;
}
Status DBImpl::ThrottleLowPriWritesIfNeeded(const WriteOptions& write_options,
WriteBatch* my_batch) {
assert(write_options.low_pri);
// This is called outside the DB mutex. Although it is safe to make the call,
// the consistency condition is not guaranteed to hold. It's OK to live with
// it in this case.
// If we need to speed compaction, it means the compaction is left behind
// and we start to limit low pri writes to a limit.
if (write_controller_.NeedSpeedupCompaction()) {
if (allow_2pc() && (my_batch->HasCommit() || my_batch->HasRollback())) {
// For 2PC, we only rate limit prepare, not commit.
return Status::OK();
}
if (write_options.no_slowdown) {
return Status::Incomplete();
} else {
assert(my_batch != nullptr);
// Rate limit those writes. The reason that we don't completely wait
// is that in case the write is heavy, low pri writes may never have
// a chance to run. Now we guarantee we are still slowly making
// progress.
write_controller_.low_pri_rate_limiter()->Request(
my_batch->GetDataSize(), Env::IO_HIGH, nullptr /* stats */,
RateLimiter::OpType::kWrite);
}
}
return Status::OK();
}
Status DBImpl::ScheduleFlushes(WriteContext* context) {
ColumnFamilyData* cfd;
while ((cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) {
auto status = SwitchMemtable(cfd, context);
if (cfd->Unref()) {
delete cfd;
}
if (!status.ok()) {
return status;
}
}
return Status::OK();
}
#ifndef ROCKSDB_LITE
void DBImpl::NotifyOnMemTableSealed(ColumnFamilyData* cfd,
const MemTableInfo& mem_table_info) {
if (immutable_db_options_.listeners.size() == 0U) {
return;
}
if (shutting_down_.load(std::memory_order_acquire)) {
return;
}
for (auto listener : immutable_db_options_.listeners) {
listener->OnMemTableSealed(mem_table_info);
}
}
#endif // ROCKSDB_LITE
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::SwitchMemtable(ColumnFamilyData* cfd, WriteContext* context) {
mutex_.AssertHeld();
WriteThread::Writer nonmem_w;
if (concurrent_prepare_) {
// SwitchMemtable is a rare event. To simply the reasoning, we make sure
// that there is no concurrent thread writing to WAL.
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
unique_ptr<WritableFile> lfile;
log::Writer* new_log = nullptr;
MemTable* new_mem = nullptr;
// In case of pipelined write is enabled, wait for all pending memtable
// writers.
if (immutable_db_options_.enable_pipelined_write) {
write_thread_.WaitForMemTableWriters();
}
// Attempt to switch to a new memtable and trigger flush of old.
// Do this without holding the dbmutex lock.
assert(versions_->prev_log_number() == 0);
if (concurrent_prepare_) {
log_write_mutex_.Lock();
}
bool creating_new_log = !log_empty_;
if (concurrent_prepare_) {
log_write_mutex_.Unlock();
}
uint64_t recycle_log_number = 0;
if (creating_new_log && immutable_db_options_.recycle_log_file_num &&
!log_recycle_files.empty()) {
recycle_log_number = log_recycle_files.front();
log_recycle_files.pop_front();
}
uint64_t new_log_number =
creating_new_log ? versions_->NewFileNumber() : logfile_number_;
SuperVersion* new_superversion = nullptr;
const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions();
// Set current_memtble_info for memtable sealed callback
#ifndef ROCKSDB_LITE
MemTableInfo memtable_info;
memtable_info.cf_name = cfd->GetName();
memtable_info.first_seqno = cfd->mem()->GetFirstSequenceNumber();
memtable_info.earliest_seqno = cfd->mem()->GetEarliestSequenceNumber();
memtable_info.num_entries = cfd->mem()->num_entries();
memtable_info.num_deletes = cfd->mem()->num_deletes();
#endif // ROCKSDB_LITE
// Log this later after lock release. It may be outdated, e.g., if background
// flush happens before logging, but that should be ok.
int num_imm_unflushed = cfd->imm()->NumNotFlushed();
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
const auto preallocate_block_size =
GetWalPreallocateBlockSize(mutable_cf_options.write_buffer_size);
mutex_.Unlock();
Status s;
{
if (creating_new_log) {
EnvOptions opt_env_opt =
env_->OptimizeForLogWrite(env_options_, db_options);
if (recycle_log_number) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"reusing log %" PRIu64 " from recycle list\n",
recycle_log_number);
s = env_->ReuseWritableFile(
LogFileName(immutable_db_options_.wal_dir, new_log_number),
LogFileName(immutable_db_options_.wal_dir, recycle_log_number),
&lfile, opt_env_opt);
} else {
s = NewWritableFile(
env_, LogFileName(immutable_db_options_.wal_dir, new_log_number),
&lfile, opt_env_opt);
}
if (s.ok()) {
// Our final size should be less than write_buffer_size
// (compression, etc) but err on the side of caution.
// use preallocate_block_size instead
// of calling GetWalPreallocateBlockSize()
lfile->SetPreallocationBlockSize(preallocate_block_size);
unique_ptr<WritableFileWriter> file_writer(
new WritableFileWriter(std::move(lfile), opt_env_opt));
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
new_log = new log::Writer(
std::move(file_writer), new_log_number,
immutable_db_options_.recycle_log_file_num > 0, manual_wal_flush_);
}
}
if (s.ok()) {
SequenceNumber seq = versions_->LastSequence();
new_mem = cfd->ConstructNewMemtable(mutable_cf_options, seq);
new_superversion = new SuperVersion();
}
#ifndef ROCKSDB_LITE
// PLEASE NOTE: We assume that there are no failable operations
// after lock is acquired below since we are already notifying
// client about mem table becoming immutable.
NotifyOnMemTableSealed(cfd, memtable_info);
#endif //ROCKSDB_LITE
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[%s] New memtable created with log file: #%" PRIu64
". Immutable memtables: %d.\n",
cfd->GetName().c_str(), new_log_number, num_imm_unflushed);
mutex_.Lock();
if (!s.ok()) {
// how do we fail if we're not creating new log?
assert(creating_new_log);
assert(!new_mem);
assert(!new_log);
if (concurrent_prepare_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
return s;
}
if (creating_new_log) {
log_write_mutex_.Lock();
logfile_number_ = new_log_number;
assert(new_log != nullptr);
log_empty_ = true;
log_dir_synced_ = false;
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
if (!logs_.empty()) {
// Alway flush the buffer of the last log before switching to a new one
log::Writer* cur_log_writer = logs_.back().writer;
cur_log_writer->WriteBuffer();
}
logs_.emplace_back(logfile_number_, new_log);
alive_log_files_.push_back(LogFileNumberSize(logfile_number_));
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
log_write_mutex_.Unlock();
}
for (auto loop_cfd : *versions_->GetColumnFamilySet()) {
// all this is just optimization to delete logs that
// are no longer needed -- if CF is empty, that means it
// doesn't need that particular log to stay alive, so we just
// advance the log number. no need to persist this in the manifest
if (loop_cfd->mem()->GetFirstSequenceNumber() == 0 &&
loop_cfd->imm()->NumNotFlushed() == 0) {
if (creating_new_log) {
loop_cfd->SetLogNumber(logfile_number_);
}
loop_cfd->mem()->SetCreationSeq(versions_->LastSequence());
}
}
cfd->mem()->SetNextLogNumber(logfile_number_);
cfd->imm()->Add(cfd->mem(), &context->memtables_to_free_);
new_mem->Ref();
cfd->SetMemtable(new_mem);
context->superversions_to_free_.push_back(InstallSuperVersionAndScheduleWork(
cfd, new_superversion, mutable_cf_options));
if (concurrent_prepare_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
return s;
}
size_t DBImpl::GetWalPreallocateBlockSize(uint64_t write_buffer_size) const {
mutex_.AssertHeld();
size_t bsize = write_buffer_size / 10 + write_buffer_size;
// Some users might set very high write_buffer_size and rely on
// max_total_wal_size or other parameters to control the WAL size.
if (mutable_db_options_.max_total_wal_size > 0) {
bsize = std::min<size_t>(bsize, mutable_db_options_.max_total_wal_size);
}
if (immutable_db_options_.db_write_buffer_size > 0) {
bsize = std::min<size_t>(bsize, immutable_db_options_.db_write_buffer_size);
}
if (immutable_db_options_.write_buffer_manager &&
immutable_db_options_.write_buffer_manager->enabled()) {
bsize = std::min<size_t>(
bsize, immutable_db_options_.write_buffer_manager->buffer_size());
}
return bsize;
}
// Default implementations of convenience methods that subclasses of DB
// can call if they wish
Status DB::Put(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
// Pre-allocate size of write batch conservatively.
// 8 bytes are taken by header, 4 bytes for count, 1 byte for type,
// and we allocate 11 extra bytes for key length, as well as value length.
WriteBatch batch(key.size() + value.size() + 24);
batch.Put(column_family, key, value);
return Write(opt, &batch);
}
Status DB::Delete(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key) {
WriteBatch batch;
batch.Delete(column_family, key);
return Write(opt, &batch);
}
Status DB::SingleDelete(const WriteOptions& opt,
ColumnFamilyHandle* column_family, const Slice& key) {
WriteBatch batch;
batch.SingleDelete(column_family, key);
return Write(opt, &batch);
}
Status DB::DeleteRange(const WriteOptions& opt,
ColumnFamilyHandle* column_family,
const Slice& begin_key, const Slice& end_key) {
WriteBatch batch;
batch.DeleteRange(column_family, begin_key, end_key);
return Write(opt, &batch);
}
Status DB::Merge(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
WriteBatch batch;
batch.Merge(column_family, key, value);
return Write(opt, &batch);
}
} // namespace rocksdb