rocksdb/db/db_test.cc

4545 lines
137 KiB
C++
Raw Normal View History

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <algorithm>
#include <set>
#include "rocksdb/db.h"
#include "rocksdb/filter_policy.h"
#include "db/db_impl.h"
#include "db/filename.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "db/db_statistics.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/env.h"
#include "table/table.h"
#include "util/hash.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "utilities/merge_operators.h"
namespace rocksdb {
static bool SnappyCompressionSupported(const CompressionOptions& options) {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Snappy_Compress(options, in.data(), in.size(), &out);
}
static bool ZlibCompressionSupported(const CompressionOptions& options) {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Zlib_Compress(options, in.data(), in.size(), &out);
}
static bool BZip2CompressionSupported(const CompressionOptions& options) {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::BZip2_Compress(options, in.data(), in.size(), &out);
}
Allow having different compression algorithms on different levels. Summary: The leveldb API is enhanced to support different compression algorithms at different levels. This adds the option min_level_to_compress to db_bench that specifies the minimum level for which compression should be done when compression is enabled. This can be used to disable compression for levels 0 and 1 which are likely to suffer from stalls because of the CPU load for memtable flushes and (L0,L1) compaction. Level 0 is special as it gets frequent memtable flushes. Level 1 is special as it frequently gets all:all file compactions between it and level 0. But all other levels could be the same. For any level N where N > 1, the rate of sequential IO for that level should be the same. The last level is the exception because it might not be full and because files from it are not read to compact with the next larger level. The same amount of time will be spent doing compaction at any level N excluding N=0, 1 or the last level. By this standard all of those levels should use the same compression. The difference is that the loss (using more disk space) from a faster compression algorithm is less significant for N=2 than for N=3. So we might be willing to trade disk space for faster write rates with no compression for L0 and L1, snappy for L2, zlib for L3. Using a faster compression algorithm for the mid levels also allows us to reclaim some cpu without trading off much loss in disk space overhead. Also note that little is to be gained by compressing levels 0 and 1. For a 4-level tree they account for 10% of the data. For a 5-level tree they account for 1% of the data. With compression enabled: * memtable flush rate is ~18MB/second * (L0,L1) compaction rate is ~30MB/second With compression enabled but min_level_to_compress=2 * memtable flush rate is ~320MB/second * (L0,L1) compaction rate is ~560MB/second This practicaly takes the same code from https://reviews.facebook.net/D6225 but makes the leveldb api more general purpose with a few additional lines of code. Test Plan: make check Differential Revision: https://reviews.facebook.net/D6261
2012-10-27 23:13:17 -07:00
static std::string RandomString(Random* rnd, int len) {
std::string r;
test::RandomString(rnd, len, &r);
return r;
}
static std::string CompressibleString(Random* rnd, int len) {
std::string r;
test::CompressibleString(rnd, 0.8, len, &r);
return r;
}
namespace anon {
class AtomicCounter {
private:
port::Mutex mu_;
int count_;
public:
AtomicCounter() : count_(0) { }
void Increment() {
MutexLock l(&mu_);
count_++;
}
int Read() {
MutexLock l(&mu_);
return count_;
}
void Reset() {
MutexLock l(&mu_);
count_ = 0;
}
};
}
// Special Env used to delay background operations
class SpecialEnv : public EnvWrapper {
public:
// sstable Sync() calls are blocked while this pointer is non-nullptr.
port::AtomicPointer delay_sstable_sync_;
// Simulate no-space errors while this pointer is non-nullptr.
port::AtomicPointer no_space_;
// Simulate non-writable file system while this pointer is non-nullptr
port::AtomicPointer non_writable_;
// Force sync of manifest files to fail while this pointer is non-nullptr
port::AtomicPointer manifest_sync_error_;
// Force write to manifest files to fail while this pointer is non-nullptr
port::AtomicPointer manifest_write_error_;
bool count_random_reads_;
anon::AtomicCounter random_read_counter_;
anon::AtomicCounter sleep_counter_;
explicit SpecialEnv(Env* base) : EnvWrapper(base) {
delay_sstable_sync_.Release_Store(nullptr);
no_space_.Release_Store(nullptr);
non_writable_.Release_Store(nullptr);
count_random_reads_ = false;
manifest_sync_error_.Release_Store(nullptr);
manifest_write_error_.Release_Store(nullptr);
}
Status NewWritableFile(const std::string& f, unique_ptr<WritableFile>* r,
const EnvOptions& soptions) {
class SSTableFile : public WritableFile {
private:
SpecialEnv* env_;
unique_ptr<WritableFile> base_;
public:
SSTableFile(SpecialEnv* env, unique_ptr<WritableFile>&& base)
: env_(env),
base_(std::move(base)) {
}
Status Append(const Slice& data) {
if (env_->no_space_.Acquire_Load() != nullptr) {
// Drop writes on the floor
return Status::OK();
} else {
return base_->Append(data);
}
}
Status Close() { return base_->Close(); }
Status Flush() { return base_->Flush(); }
Status Sync() {
while (env_->delay_sstable_sync_.Acquire_Load() != nullptr) {
env_->SleepForMicroseconds(100000);
}
return base_->Sync();
}
};
class ManifestFile : public WritableFile {
private:
SpecialEnv* env_;
unique_ptr<WritableFile> base_;
public:
ManifestFile(SpecialEnv* env, unique_ptr<WritableFile>&& b)
: env_(env), base_(std::move(b)) { }
Status Append(const Slice& data) {
if (env_->manifest_write_error_.Acquire_Load() != nullptr) {
return Status::IOError("simulated writer error");
} else {
return base_->Append(data);
}
}
Status Close() { return base_->Close(); }
Status Flush() { return base_->Flush(); }
Status Sync() {
if (env_->manifest_sync_error_.Acquire_Load() != nullptr) {
return Status::IOError("simulated sync error");
} else {
return base_->Sync();
}
}
};
if (non_writable_.Acquire_Load() != nullptr) {
return Status::IOError("simulated write error");
}
Status s = target()->NewWritableFile(f, r, soptions);
if (s.ok()) {
if (strstr(f.c_str(), ".sst") != nullptr) {
r->reset(new SSTableFile(this, std::move(*r)));
} else if (strstr(f.c_str(), "MANIFEST") != nullptr) {
r->reset(new ManifestFile(this, std::move(*r)));
}
}
return s;
}
Status NewRandomAccessFile(const std::string& f,
unique_ptr<RandomAccessFile>* r,
const EnvOptions& soptions) {
class CountingFile : public RandomAccessFile {
private:
unique_ptr<RandomAccessFile> target_;
anon::AtomicCounter* counter_;
public:
CountingFile(unique_ptr<RandomAccessFile>&& target,
anon::AtomicCounter* counter)
: target_(std::move(target)), counter_(counter) {
}
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
counter_->Increment();
return target_->Read(offset, n, result, scratch);
}
};
Status s = target()->NewRandomAccessFile(f, r, soptions);
if (s.ok() && count_random_reads_) {
r->reset(new CountingFile(std::move(*r), &random_read_counter_));
}
return s;
}
virtual void SleepForMicroseconds(int micros) {
sleep_counter_.Increment();
target()->SleepForMicroseconds(micros);
}
};
class DBTest {
private:
const FilterPolicy* filter_policy_;
protected:
// Sequence of option configurations to try
enum OptionConfig {
kDefault,
kVectorRep,
kUnsortedRep,
kMergePut,
kFilter,
kUncompressed,
kNumLevel_3,
kDBLogDir,
kWalDir,
kManifestFileSize,
kCompactOnFlush,
kPerfOptions,
kDeletesFilterFirst,
kPrefixHashRep,
kUniversalCompaction,
kEnd
};
int option_config_;
public:
std::string dbname_;
SpecialEnv* env_;
DB* db_;
Options last_options_;
// Skip some options, as they may not be applicable to a specific test.
// To add more skip constants, use values 4, 8, 16, etc.
enum OptionSkip {
kNoSkip = 0,
kSkipDeletesFilterFirst = 1,
kSkipUniversalCompaction = 2,
kSkipMergePut = 4
};
DBTest() : option_config_(kDefault),
env_(new SpecialEnv(Env::Default())) {
filter_policy_ = NewBloomFilterPolicy(10);
dbname_ = test::TmpDir() + "/db_test";
ASSERT_OK(DestroyDB(dbname_, Options()));
db_ = nullptr;
Reopen();
}
~DBTest() {
delete db_;
ASSERT_OK(DestroyDB(dbname_, Options()));
delete env_;
delete filter_policy_;
}
// Switch to a fresh database with the next option configuration to
// test. Return false if there are no more configurations to test.
bool ChangeOptions(int skip_mask = kNoSkip) {
option_config_++;
// skip some options
if (skip_mask & kSkipDeletesFilterFirst &&
option_config_ == kDeletesFilterFirst) {
option_config_++;
}
if (skip_mask & kSkipUniversalCompaction &&
option_config_ == kUniversalCompaction) {
option_config_++;
}
if (skip_mask & kSkipMergePut && option_config_ == kMergePut) {
option_config_++;
}
if (option_config_ >= kEnd) {
Destroy(&last_options_);
return false;
} else {
DestroyAndReopen();
return true;
}
}
// Switch between different compaction styles (we have only 2 now).
bool ChangeCompactOptions(Options* prev_options = nullptr) {
if (option_config_ == kDefault) {
option_config_ = kUniversalCompaction;
if (prev_options == nullptr) {
prev_options = &last_options_;
}
Destroy(prev_options);
TryReopen();
return true;
} else {
return false;
}
}
// Return the current option configuration.
Options CurrentOptions() {
Options options;
switch (option_config_) {
case kPrefixHashRep:
options.memtable_factory.reset(new
PrefixHashRepFactory(NewFixedPrefixTransform(1)));
break;
case kMergePut:
options.merge_operator = MergeOperators::CreatePutOperator();
break;
case kFilter:
options.filter_policy = filter_policy_;
break;
case kUncompressed:
options.compression = kNoCompression;
break;
case kNumLevel_3:
options.num_levels = 3;
break;
case kDBLogDir:
options.db_log_dir = test::TmpDir();
break;
case kWalDir:
options.wal_dir = "/tmp/wal";
break;
case kManifestFileSize:
options.max_manifest_file_size = 50; // 50 bytes
case kCompactOnFlush:
options.purge_redundant_kvs_while_flush =
!options.purge_redundant_kvs_while_flush;
break;
case kPerfOptions:
options.hard_rate_limit = 2.0;
options.rate_limit_delay_max_milliseconds = 2;
// TODO -- test more options
break;
case kDeletesFilterFirst:
options.filter_deletes = true;
break;
case kUnsortedRep:
options.memtable_factory.reset(new UnsortedRepFactory);
break;
case kVectorRep:
options.memtable_factory.reset(new VectorRepFactory(100));
break;
case kUniversalCompaction:
options.compaction_style = kCompactionStyleUniversal;
break;
default:
break;
}
return options;
}
DBImpl* dbfull() {
return reinterpret_cast<DBImpl*>(db_);
}
void Reopen(Options* options = nullptr) {
ASSERT_OK(TryReopen(options));
}
void Close() {
delete db_;
db_ = nullptr;
}
void DestroyAndReopen(Options* options = nullptr) {
//Destroy using last options
Destroy(&last_options_);
ASSERT_OK(TryReopen(options));
}
void Destroy(Options* options) {
delete db_;
db_ = nullptr;
ASSERT_OK(DestroyDB(dbname_, *options));
}
Status PureReopen(Options* options, DB** db) {
return DB::Open(*options, dbname_, db);
}
Status TryReopen(Options* options = nullptr) {
delete db_;
db_ = nullptr;
Options opts;
if (options != nullptr) {
opts = *options;
} else {
opts = CurrentOptions();
opts.create_if_missing = true;
}
last_options_ = opts;
return DB::Open(opts, dbname_, &db_);
}
Status Put(const Slice& k, const Slice& v) {
if (kMergePut == option_config_ ) {
return db_->Merge(WriteOptions(), k, v);
} else {
return db_->Put(WriteOptions(), k, v);
}
}
Status Delete(const std::string& k) {
return db_->Delete(WriteOptions(), k);
}
std::string Get(const std::string& k, const Snapshot* snapshot = nullptr) {
ReadOptions options;
options.snapshot = snapshot;
std::string result;
Status s = db_->Get(options, k, &result);
if (s.IsNotFound()) {
result = "NOT_FOUND";
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
// Return a string that contains all key,value pairs in order,
// formatted like "(k1->v1)(k2->v2)".
std::string Contents() {
std::vector<std::string> forward;
std::string result;
Iterator* iter = db_->NewIterator(ReadOptions());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
std::string s = IterStatus(iter);
result.push_back('(');
result.append(s);
result.push_back(')');
forward.push_back(s);
}
// Check reverse iteration results are the reverse of forward results
unsigned int matched = 0;
for (iter->SeekToLast(); iter->Valid(); iter->Prev()) {
ASSERT_LT(matched, forward.size());
ASSERT_EQ(IterStatus(iter), forward[forward.size() - matched - 1]);
matched++;
}
ASSERT_EQ(matched, forward.size());
delete iter;
return result;
}
std::string AllEntriesFor(const Slice& user_key) {
Iterator* iter = dbfull()->TEST_NewInternalIterator();
InternalKey target(user_key, kMaxSequenceNumber, kTypeValue);
iter->Seek(target.Encode());
std::string result;
if (!iter->status().ok()) {
result = iter->status().ToString();
} else {
result = "[ ";
bool first = true;
while (iter->Valid()) {
ParsedInternalKey ikey;
if (!ParseInternalKey(iter->key(), &ikey)) {
result += "CORRUPTED";
} else {
if (last_options_.comparator->Compare(ikey.user_key, user_key) != 0) {
break;
}
if (!first) {
result += ", ";
}
first = false;
switch (ikey.type) {
case kTypeValue:
result += iter->value().ToString();
break;
case kTypeMerge:
// keep it the same as kTypeValue for testing kMergePut
result += iter->value().ToString();
break;
case kTypeDeletion:
result += "DEL";
break;
case kTypeLogData:
assert(false);
break;
}
}
iter->Next();
}
if (!first) {
result += " ";
}
result += "]";
}
delete iter;
return result;
}
int NumTableFilesAtLevel(int level) {
std::string property;
ASSERT_TRUE(
db_->GetProperty("rocksdb.num-files-at-level" + NumberToString(level),
&property));
return atoi(property.c_str());
}
int TotalTableFiles() {
int result = 0;
for (int level = 0; level < db_->NumberLevels(); level++) {
result += NumTableFilesAtLevel(level);
}
return result;
}
// Return spread of files per level
std::string FilesPerLevel() {
std::string result;
int last_non_zero_offset = 0;
for (int level = 0; level < db_->NumberLevels(); level++) {
int f = NumTableFilesAtLevel(level);
char buf[100];
snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f);
result += buf;
if (f > 0) {
last_non_zero_offset = result.size();
}
}
result.resize(last_non_zero_offset);
return result;
}
int CountFiles() {
std::vector<std::string> files;
env_->GetChildren(dbname_, &files);
std::vector<std::string> logfiles;
if (dbname_ != last_options_.wal_dir) {
env_->GetChildren(last_options_.wal_dir, &logfiles);
}
return static_cast<int>(files.size() + logfiles.size());
}
int CountLiveFiles() {
std::vector<std::string> files;
uint64_t manifest_file_size;
db_->GetLiveFiles(files, &manifest_file_size);
return files.size();
}
uint64_t Size(const Slice& start, const Slice& limit) {
Range r(start, limit);
uint64_t size;
db_->GetApproximateSizes(&r, 1, &size);
return size;
}
void Compact(const Slice& start, const Slice& limit) {
db_->CompactRange(&start, &limit);
}
// Do n memtable compactions, each of which produces an sstable
// covering the range [small,large].
void MakeTables(int n, const std::string& small, const std::string& large) {
for (int i = 0; i < n; i++) {
Put(small, "begin");
Put(large, "end");
dbfull()->TEST_FlushMemTable();
}
}
// Prevent pushing of new sstables into deeper levels by adding
// tables that cover a specified range to all levels.
void FillLevels(const std::string& smallest, const std::string& largest) {
MakeTables(db_->NumberLevels(), smallest, largest);
}
void DumpFileCounts(const char* label) {
fprintf(stderr, "---\n%s:\n", label);
fprintf(stderr, "maxoverlap: %lld\n",
static_cast<long long>(
dbfull()->TEST_MaxNextLevelOverlappingBytes()));
for (int level = 0; level < db_->NumberLevels(); level++) {
int num = NumTableFilesAtLevel(level);
if (num > 0) {
fprintf(stderr, " level %3d : %d files\n", level, num);
}
}
}
std::string DumpSSTableList() {
std::string property;
db_->GetProperty("rocksdb.sstables", &property);
return property;
}
std::string IterStatus(Iterator* iter) {
std::string result;
if (iter->Valid()) {
result = iter->key().ToString() + "->" + iter->value().ToString();
} else {
result = "(invalid)";
}
return result;
}
Options OptionsForLogIterTest() {
Options options = CurrentOptions();
options.create_if_missing = true;
options.WAL_ttl_seconds = 1000;
return options;
}
std::unique_ptr<TransactionLogIterator> OpenTransactionLogIter(
const SequenceNumber seq) {
unique_ptr<TransactionLogIterator> iter;
Status status = dbfull()->GetUpdatesSince(seq, &iter);
ASSERT_OK(status);
ASSERT_TRUE(iter->Valid());
return std::move(iter);
}
std::string DummyString(size_t len, char c = 'a') {
return std::string(len, c);
}
void VerifyIterLast(std::string expected_key) {
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), expected_key);
delete iter;
}
};
TEST(DBTest, Empty) {
do {
ASSERT_TRUE(db_ != nullptr);
ASSERT_EQ("NOT_FOUND", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, ReadWrite) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
} while (ChangeOptions());
}
static std::string Key(int i) {
char buf[100];
snprintf(buf, sizeof(buf), "key%06d", i);
return std::string(buf);
}
TEST(DBTest, LevelLimitReopen) {
Options options = CurrentOptions();
Reopen(&options);
const std::string value(1024 * 1024, ' ');
int i = 0;
while (NumTableFilesAtLevel(2) == 0) {
ASSERT_OK(Put(Key(i++), value));
}
options.num_levels = 1;
options.max_bytes_for_level_multiplier_additional.resize(1, 1);
Status s = TryReopen(&options);
ASSERT_EQ(s.IsCorruption(), true);
ASSERT_EQ(s.ToString(),
"Corruption: VersionEdit: db already has "
"more levels than options.num_levels");
options.num_levels = 10;
options.max_bytes_for_level_multiplier_additional.resize(10, 1);
ASSERT_OK(TryReopen(&options));
}
TEST(DBTest, Preallocation) {
const std::string src = dbname_ + "/alloc_test";
unique_ptr<WritableFile> srcfile;
const EnvOptions soptions;
ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions));
srcfile->SetPreallocationBlockSize(1024 * 1024);
// No writes should mean no preallocation
size_t block_size, last_allocated_block;
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 0UL);
// Small write should preallocate one block
srcfile->Append("test");
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 1UL);
// Write an entire preallocation block, make sure we increased by two.
std::string buf(block_size, ' ');
srcfile->Append(buf);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 2UL);
// Write five more blocks at once, ensure we're where we need to be.
buf = std::string(block_size * 5, ' ');
srcfile->Append(buf);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 7UL);
}
TEST(DBTest, PutDeleteGet) {
do {
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
ASSERT_OK(db_->Delete(WriteOptions(), "foo"));
ASSERT_EQ("NOT_FOUND", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetFromImmutableLayer) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
env_->delay_sstable_sync_.Release_Store(env_); // Block sync calls
Put("k1", std::string(100000, 'x')); // Fill memtable
Put("k2", std::string(100000, 'y')); // Trigger compaction
ASSERT_EQ("v1", Get("foo"));
env_->delay_sstable_sync_.Release_Store(nullptr); // Release sync calls
} while (ChangeOptions());
}
TEST(DBTest, GetFromVersions) {
do {
ASSERT_OK(Put("foo", "v1"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("v1", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetSnapshot) {
do {
// Try with both a short key and a long key
for (int i = 0; i < 2; i++) {
std::string key = (i == 0) ? std::string("foo") : std::string(200, 'x');
ASSERT_OK(Put(key, "v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(Put(key, "v2"));
ASSERT_EQ("v2", Get(key));
ASSERT_EQ("v1", Get(key, s1));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("v2", Get(key));
ASSERT_EQ("v1", Get(key, s1));
db_->ReleaseSnapshot(s1);
}
} while (ChangeOptions());
}
TEST(DBTest, GetLevel0Ordering) {
do {
// Check that we process level-0 files in correct order. The code
// below generates two level-0 files where the earlier one comes
// before the later one in the level-0 file list since the earlier
// one has a smaller "smallest" key.
ASSERT_OK(Put("bar", "b"));
ASSERT_OK(Put("foo", "v1"));
dbfull()->TEST_FlushMemTable();
ASSERT_OK(Put("foo", "v2"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("v2", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetOrderedByLevels) {
do {
ASSERT_OK(Put("foo", "v1"));
Compact("a", "z");
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("v2", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetPicksCorrectFile) {
do {
// Arrange to have multiple files in a non-level-0 level.
ASSERT_OK(Put("a", "va"));
Compact("a", "b");
ASSERT_OK(Put("x", "vx"));
Compact("x", "y");
ASSERT_OK(Put("f", "vf"));
Compact("f", "g");
ASSERT_EQ("va", Get("a"));
ASSERT_EQ("vf", Get("f"));
ASSERT_EQ("vx", Get("x"));
} while (ChangeOptions());
}
TEST(DBTest, GetEncountersEmptyLevel) {
do {
// Arrange for the following to happen:
// * sstable A in level 0
// * nothing in level 1
// * sstable B in level 2
// Then do enough Get() calls to arrange for an automatic compaction
// of sstable A. A bug would cause the compaction to be marked as
// occuring at level 1 (instead of the correct level 0).
// Step 1: First place sstables in levels 0 and 2
int compaction_count = 0;
while (NumTableFilesAtLevel(0) == 0 ||
NumTableFilesAtLevel(2) == 0) {
ASSERT_LE(compaction_count, 100) << "could not fill levels 0 and 2";
compaction_count++;
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_FlushMemTable();
}
// Step 2: clear level 1 if necessary.
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 1);
// Step 3: read a bunch of times
for (int i = 0; i < 1000; i++) {
ASSERT_EQ("NOT_FOUND", Get("missing"));
}
// Step 4: Wait for compaction to finish
env_->SleepForMicroseconds(1000000);
ASSERT_EQ(NumTableFilesAtLevel(0), 1); // XXX
} while (ChangeOptions(kSkipUniversalCompaction));
}
// KeyMayExist can lead to a few false positives, but not false negatives.
// To make test deterministic, use a much larger number of bits per key-20 than
// bits in the key, so that false positives are eliminated
TEST(DBTest, KeyMayExist) {
do {
ReadOptions ropts;
std::string value;
Options options = CurrentOptions();
options.filter_policy = NewBloomFilterPolicy(20);
options.statistics = rocksdb::CreateDBStatistics();
Reopen(&options);
ASSERT_TRUE(!db_->KeyMayExist(ropts, "a", &value));
ASSERT_OK(db_->Put(WriteOptions(), "a", "b"));
bool value_found = false;
ASSERT_TRUE(db_->KeyMayExist(ropts, "a", &value, &value_found));
ASSERT_TRUE(value_found);
ASSERT_EQ("b", value);
dbfull()->Flush(FlushOptions());
value.clear();
long numopen = options.statistics.get()->getTickerCount(NO_FILE_OPENS);
long cache_miss =
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS);
ASSERT_TRUE(db_->KeyMayExist(ropts, "a", &value, &value_found));
ASSERT_TRUE(!value_found);
// assert that no new files were opened and no new blocks were
// read into block cache.
ASSERT_EQ(numopen, options.statistics.get()->getTickerCount(NO_FILE_OPENS));
ASSERT_EQ(cache_miss,
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS));
ASSERT_OK(db_->Delete(WriteOptions(), "a"));
numopen = options.statistics.get()->getTickerCount(NO_FILE_OPENS);
cache_miss = options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS);
ASSERT_TRUE(!db_->KeyMayExist(ropts, "a", &value));
ASSERT_EQ(numopen, options.statistics.get()->getTickerCount(NO_FILE_OPENS));
ASSERT_EQ(cache_miss,
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS));
dbfull()->Flush(FlushOptions());
dbfull()->CompactRange(nullptr, nullptr);
numopen = options.statistics.get()->getTickerCount(NO_FILE_OPENS);
cache_miss = options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS);
ASSERT_TRUE(!db_->KeyMayExist(ropts, "a", &value));
ASSERT_EQ(numopen, options.statistics.get()->getTickerCount(NO_FILE_OPENS));
ASSERT_EQ(cache_miss,
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS));
ASSERT_OK(db_->Delete(WriteOptions(), "c"));
numopen = options.statistics.get()->getTickerCount(NO_FILE_OPENS);
cache_miss = options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS);
ASSERT_TRUE(!db_->KeyMayExist(ropts, "c", &value));
ASSERT_EQ(numopen, options.statistics.get()->getTickerCount(NO_FILE_OPENS));
ASSERT_EQ(cache_miss,
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS));
delete options.filter_policy;
} while (ChangeOptions());
}
TEST(DBTest, NonBlockingIteration) {
do {
ReadOptions non_blocking_opts, regular_opts;
Options options = CurrentOptions();
options.statistics = rocksdb::CreateDBStatistics();
non_blocking_opts.read_tier = kBlockCacheTier;
Reopen(&options);
// write one kv to the database.
ASSERT_OK(db_->Put(WriteOptions(), "a", "b"));
// scan using non-blocking iterator. We should find it because
// it is in memtable.
Iterator* iter = db_->NewIterator(non_blocking_opts);
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
count++;
}
ASSERT_EQ(count, 1);
delete iter;
// flush memtable to storage. Now, the key should not be in the
// memtable neither in the block cache.
dbfull()->Flush(FlushOptions());
// verify that a non-blocking iterator does not find any
// kvs. Neither does it do any IOs to storage.
long numopen = options.statistics.get()->getTickerCount(NO_FILE_OPENS);
long cache_miss =
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS);
iter = db_->NewIterator(non_blocking_opts);
count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
count++;
}
ASSERT_EQ(count, 0);
ASSERT_TRUE(iter->status().IsIncomplete());
ASSERT_EQ(numopen, options.statistics.get()->getTickerCount(NO_FILE_OPENS));
ASSERT_EQ(cache_miss,
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS));
delete iter;
// read in the specified block via a regular get
ASSERT_EQ(Get("a"), "b");
// verify that we can find it via a non-blocking scan
numopen = options.statistics.get()->getTickerCount(NO_FILE_OPENS);
cache_miss = options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS);
iter = db_->NewIterator(non_blocking_opts);
count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
count++;
}
ASSERT_EQ(count, 1);
ASSERT_EQ(numopen, options.statistics.get()->getTickerCount(NO_FILE_OPENS));
ASSERT_EQ(cache_miss,
options.statistics.get()->getTickerCount(BLOCK_CACHE_MISS));
delete iter;
} while (ChangeOptions());
}
// A delete is skipped for key if KeyMayExist(key) returns False
// Tests Writebatch consistency and proper delete behaviour
TEST(DBTest, FilterDeletes) {
do {
Options options = CurrentOptions();
options.filter_policy = NewBloomFilterPolicy(20);
options.filter_deletes = true;
Reopen(&options);
WriteBatch batch;
batch.Delete("a");
dbfull()->Write(WriteOptions(), &batch);
ASSERT_EQ(AllEntriesFor("a"), "[ ]"); // Delete skipped
batch.Clear();
batch.Put("a", "b");
batch.Delete("a");
dbfull()->Write(WriteOptions(), &batch);
ASSERT_EQ(Get("a"), "NOT_FOUND");
ASSERT_EQ(AllEntriesFor("a"), "[ DEL, b ]"); // Delete issued
batch.Clear();
batch.Delete("c");
batch.Put("c", "d");
dbfull()->Write(WriteOptions(), &batch);
ASSERT_EQ(Get("c"), "d");
ASSERT_EQ(AllEntriesFor("c"), "[ d ]"); // Delete skipped
batch.Clear();
dbfull()->Flush(FlushOptions()); // A stray Flush
batch.Delete("c");
dbfull()->Write(WriteOptions(), &batch);
ASSERT_EQ(AllEntriesFor("c"), "[ DEL, d ]"); // Delete issued
batch.Clear();
delete options.filter_policy;
} while (ChangeCompactOptions());
}
TEST(DBTest, IterEmpty) {
do {
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("foo");
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
} while (ChangeCompactOptions());
}
TEST(DBTest, IterSingle) {
do {
ASSERT_OK(Put("a", "va"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("a");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("b");
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
} while (ChangeCompactOptions());
}
TEST(DBTest, IterMulti) {
do {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Put("c", "vc"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Seek("a");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Seek("ax");
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Seek("b");
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Seek("z");
ASSERT_EQ(IterStatus(iter), "(invalid)");
// Switch from reverse to forward
iter->SeekToLast();
iter->Prev();
iter->Prev();
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
// Switch from forward to reverse
iter->SeekToFirst();
iter->Next();
iter->Next();
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
// Make sure iter stays at snapshot
ASSERT_OK(Put("a", "va2"));
ASSERT_OK(Put("a2", "va3"));
ASSERT_OK(Put("b", "vb2"));
ASSERT_OK(Put("c", "vc2"));
ASSERT_OK(Delete("b"));
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
} while (ChangeCompactOptions());
}
// Check that we can skip over a run of user keys
// by using reseek rather than sequential scan
TEST(DBTest, IterReseek) {
Options options = CurrentOptions();
options.max_sequential_skip_in_iterations = 3;
options.create_if_missing = true;
options.statistics = rocksdb::CreateDBStatistics();
DestroyAndReopen(&options);
// insert two keys with same userkey and verify that
// reseek is not invoked. For each of these test cases,
// verify that we can find the next key "b".
ASSERT_OK(Put("a", "one"));
ASSERT_OK(Put("a", "two"));
ASSERT_OK(Put("b", "bone"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), 0);
ASSERT_EQ(IterStatus(iter), "a->two");
iter->Next();
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), 0);
ASSERT_EQ(IterStatus(iter), "b->bone");
delete iter;
// insert a total of three keys with same userkey and verify
// that reseek is still not invoked.
ASSERT_OK(Put("a", "three"));
iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->three");
iter->Next();
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), 0);
ASSERT_EQ(IterStatus(iter), "b->bone");
delete iter;
// insert a total of four keys with same userkey and verify
// that reseek is invoked.
ASSERT_OK(Put("a", "four"));
iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->four");
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), 0);
iter->Next();
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), 1);
ASSERT_EQ(IterStatus(iter), "b->bone");
delete iter;
// Testing reverse iterator
// At this point, we have three versions of "a" and one version of "b".
// The reseek statistics is already at 1.
int num_reseeks = (int)options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION);
// Insert another version of b and assert that reseek is not invoked
ASSERT_OK(Put("b", "btwo"));
iter = db_->NewIterator(ReadOptions());
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "b->btwo");
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), num_reseeks);
iter->Prev();
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), num_reseeks+1);
ASSERT_EQ(IterStatus(iter), "a->four");
delete iter;
// insert two more versions of b. This makes a total of 4 versions
// of b and 4 versions of a.
ASSERT_OK(Put("b", "bthree"));
ASSERT_OK(Put("b", "bfour"));
iter = db_->NewIterator(ReadOptions());
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "b->bfour");
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), num_reseeks + 2);
iter->Prev();
// the previous Prev call should have invoked reseek
ASSERT_EQ(options.statistics.get()->getTickerCount(
NUMBER_OF_RESEEKS_IN_ITERATION), num_reseeks + 3);
ASSERT_EQ(IterStatus(iter), "a->four");
delete iter;
}
TEST(DBTest, IterSmallAndLargeMix) {
do {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", std::string(100000, 'b')));
ASSERT_OK(Put("c", "vc"));
ASSERT_OK(Put("d", std::string(100000, 'd')));
ASSERT_OK(Put("e", std::string(100000, 'e')));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->" + std::string(100000, 'b'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "d->" + std::string(100000, 'd'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "e->" + std::string(100000, 'e'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "e->" + std::string(100000, 'e'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "d->" + std::string(100000, 'd'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->" + std::string(100000, 'b'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
} while (ChangeCompactOptions());
}
TEST(DBTest, IterMultiWithDelete) {
do {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Put("c", "vc"));
ASSERT_OK(Delete("b"));
ASSERT_EQ("NOT_FOUND", Get("b"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->Seek("c");
ASSERT_EQ(IterStatus(iter), "c->vc");
if (!CurrentOptions().merge_operator) {
// TODO: merge operator does not support backward iteration yet
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
}
delete iter;
} while (ChangeOptions());
}
TEST(DBTest, IterPrevMaxSkip) {
do {
for (int i = 0; i < 2; i++) {
db_->Put(WriteOptions(), "key1", "v1");
db_->Put(WriteOptions(), "key2", "v2");
db_->Put(WriteOptions(), "key3", "v3");
db_->Put(WriteOptions(), "key4", "v4");
db_->Put(WriteOptions(), "key5", "v5");
}
VerifyIterLast("key5->v5");
ASSERT_OK(db_->Delete(WriteOptions(), "key5"));
VerifyIterLast("key4->v4");
ASSERT_OK(db_->Delete(WriteOptions(), "key4"));
VerifyIterLast("key3->v3");
ASSERT_OK(db_->Delete(WriteOptions(), "key3"));
VerifyIterLast("key2->v2");
ASSERT_OK(db_->Delete(WriteOptions(), "key2"));
VerifyIterLast("key1->v1");
ASSERT_OK(db_->Delete(WriteOptions(), "key1"));
VerifyIterLast("(invalid)");
} while (ChangeOptions(kSkipMergePut));
}
TEST(DBTest, IterWithSnapshot) {
do {
ASSERT_OK(Put("key1", "val1"));
ASSERT_OK(Put("key2", "val2"));
ASSERT_OK(Put("key3", "val3"));
ASSERT_OK(Put("key4", "val4"));
ASSERT_OK(Put("key5", "val5"));
const Snapshot *snapshot = db_->GetSnapshot();
ReadOptions options;
options.snapshot = snapshot;
Iterator* iter = db_->NewIterator(options);
// Put more values after the snapshot
ASSERT_OK(Put("key100", "val100"));
ASSERT_OK(Put("key101", "val101"));
iter->Seek("key5");
ASSERT_EQ(IterStatus(iter), "key5->val5");
if (!CurrentOptions().merge_operator) {
// TODO: merge operator does not support backward iteration yet
iter->Prev();
ASSERT_EQ(IterStatus(iter), "key4->val4");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "key3->val3");
iter->Next();
ASSERT_EQ(IterStatus(iter), "key4->val4");
iter->Next();
ASSERT_EQ(IterStatus(iter), "key5->val5");
iter->Next();
ASSERT_TRUE(!iter->Valid());
}
db_->ReleaseSnapshot(snapshot);
delete iter;
} while (ChangeOptions());
}
TEST(DBTest, Recover) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("baz", "v5"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v5", Get("baz"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
ASSERT_OK(Put("foo", "v4"));
ASSERT_EQ("v4", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v5", Get("baz"));
} while (ChangeOptions());
}
TEST(DBTest, RollLog) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("baz", "v5"));
Reopen();
for (int i = 0; i < 10; i++) {
Reopen();
}
ASSERT_OK(Put("foo", "v4"));
for (int i = 0; i < 10; i++) {
Reopen();
}
} while (ChangeOptions());
}
TEST(DBTest, WAL) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v1"));
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v1"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("bar"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v2"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v2"));
Reopen();
// Both value's should be present.
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v2", Get("foo"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v3"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v3"));
Reopen();
// again both values should be present.
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v3", Get("bar"));
} while (ChangeCompactOptions());
}
TEST(DBTest, CheckLock) {
do {
DB* localdb;
Options options = CurrentOptions();
ASSERT_OK(TryReopen(&options));
// second open should fail
ASSERT_TRUE(!(PureReopen(&options, &localdb)).ok());
} while (ChangeCompactOptions());
}
TEST(DBTest, FlushMultipleMemtable) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
Reopen(&options);
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v1"));
dbfull()->Flush(FlushOptions());
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("bar"));
dbfull()->Flush(FlushOptions());
} while (ChangeCompactOptions());
}
TEST(DBTest, NumImmutableMemTable) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
options.write_buffer_size = 1000000;
Reopen(&options);
std::string big_value(1000000, 'x');
std::string num;
ASSERT_OK(dbfull()->Put(writeOpt, "k1", big_value));
ASSERT_TRUE(dbfull()->GetProperty("rocksdb.num-immutable-mem-table", &num));
ASSERT_EQ(num, "0");
ASSERT_OK(dbfull()->Put(writeOpt, "k2", big_value));
ASSERT_TRUE(dbfull()->GetProperty("rocksdb.num-immutable-mem-table", &num));
ASSERT_EQ(num, "1");
ASSERT_OK(dbfull()->Put(writeOpt, "k3", big_value));
ASSERT_TRUE(dbfull()->GetProperty("rocksdb.num-immutable-mem-table", &num));
ASSERT_EQ(num, "2");
dbfull()->Flush(FlushOptions());
ASSERT_TRUE(dbfull()->GetProperty("rocksdb.num-immutable-mem-table", &num));
ASSERT_EQ(num, "0");
} while (ChangeCompactOptions());
}
TEST(DBTest, FLUSH) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v1"));
// this will now also flush the last 2 writes
dbfull()->Flush(FlushOptions());
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v1"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("bar"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v2"));
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v2"));
dbfull()->Flush(FlushOptions());
Reopen();
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v2", Get("foo"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v3"));
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v3"));
dbfull()->Flush(FlushOptions());
Reopen();
// 'foo' should be there because its put
// has WAL enabled.
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v3", Get("bar"));
} while (ChangeCompactOptions());
}
TEST(DBTest, RecoveryWithEmptyLog) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("foo", "v2"));
Reopen();
Reopen();
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
} while (ChangeOptions());
}
// Check that writes done during a memtable compaction are recovered
// if the database is shutdown during the memtable compaction.
TEST(DBTest, RecoverDuringMemtableCompaction) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 1000000;
Reopen(&options);
// Trigger a long memtable compaction and reopen the database during it
ASSERT_OK(Put("foo", "v1")); // Goes to 1st log file
ASSERT_OK(Put("big1", std::string(10000000, 'x'))); // Fills memtable
ASSERT_OK(Put("big2", std::string(1000, 'y'))); // Triggers compaction
ASSERT_OK(Put("bar", "v2")); // Goes to new log file
Reopen(&options);
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ(std::string(10000000, 'x'), Get("big1"));
ASSERT_EQ(std::string(1000, 'y'), Get("big2"));
} while (ChangeOptions());
}
TEST(DBTest, MinorCompactionsHappen) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 10000;
Reopen(&options);
const int N = 500;
int starting_num_tables = TotalTableFiles();
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(1000, 'v')));
}
int ending_num_tables = TotalTableFiles();
ASSERT_GT(ending_num_tables, starting_num_tables);
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
Reopen();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
} while (ChangeCompactOptions());
}
TEST(DBTest, ManifestRollOver) {
do {
Options options = CurrentOptions();
options.max_manifest_file_size = 10 ; // 10 bytes
Reopen(&options);
{
ASSERT_OK(Put("manifest_key1", std::string(1000, '1')));
ASSERT_OK(Put("manifest_key2", std::string(1000, '2')));
ASSERT_OK(Put("manifest_key3", std::string(1000, '3')));
Dbid feature Summary: Create a new type of file on startup if it doesn't already exist called DBID. This will store a unique number generated from boost library's uuid header file. The use-case is to identify the case of a db losing all its data and coming back up either empty or from an image(backup/live replica's recovery) the key point to note is that DBID is not stored in a backup or db snapshot It's preferable to use Boost for uuid because: 1) A non-standard way of generating uuid is not good 2) /proc/sys/kernel/random/uuid generates a uuid but only on linux environments and the solution would not be clean 3) c++ doesn't have any direct way to get a uuid 4) Boost is a very good library that was already having linkage in rocksdb from third-party Note: I had to update the TOOLCHAIN_REV in build files to get latest verison of boost from third-party as the older version had a bug. I had to put Wno-uninitialized in Makefile because boost-1.51 has an unitialized variable and rocksdb would not comiple otherwise. Latet open-source for boost is 1.54 but is not there in third-party. I have notified the concerned people in fbcode about it. @kailiu : While releasing to third-party, an additional dependency will need to be created for boost in TARGETS file. I can help identify. Test Plan: Expand db_test to test 2 cases 1) Restarting db with Id file present - verify that no change to Id 2)Restarting db with Id file deleted - verify that a different Id is there after reopen Also run make all check Reviewers: dhruba, haobo, kailiu, sdong Reviewed By: dhruba CC: leveldb Differential Revision: https://reviews.facebook.net/D13587
2013-10-18 14:50:54 -07:00
uint64_t manifest_before_flush =
dbfull()->TEST_Current_Manifest_FileNo();
dbfull()->Flush(FlushOptions()); // This should trigger LogAndApply.
uint64_t manifest_after_flush =
dbfull()->TEST_Current_Manifest_FileNo();
Dbid feature Summary: Create a new type of file on startup if it doesn't already exist called DBID. This will store a unique number generated from boost library's uuid header file. The use-case is to identify the case of a db losing all its data and coming back up either empty or from an image(backup/live replica's recovery) the key point to note is that DBID is not stored in a backup or db snapshot It's preferable to use Boost for uuid because: 1) A non-standard way of generating uuid is not good 2) /proc/sys/kernel/random/uuid generates a uuid but only on linux environments and the solution would not be clean 3) c++ doesn't have any direct way to get a uuid 4) Boost is a very good library that was already having linkage in rocksdb from third-party Note: I had to update the TOOLCHAIN_REV in build files to get latest verison of boost from third-party as the older version had a bug. I had to put Wno-uninitialized in Makefile because boost-1.51 has an unitialized variable and rocksdb would not comiple otherwise. Latet open-source for boost is 1.54 but is not there in third-party. I have notified the concerned people in fbcode about it. @kailiu : While releasing to third-party, an additional dependency will need to be created for boost in TARGETS file. I can help identify. Test Plan: Expand db_test to test 2 cases 1) Restarting db with Id file present - verify that no change to Id 2)Restarting db with Id file deleted - verify that a different Id is there after reopen Also run make all check Reviewers: dhruba, haobo, kailiu, sdong Reviewed By: dhruba CC: leveldb Differential Revision: https://reviews.facebook.net/D13587
2013-10-18 14:50:54 -07:00
ASSERT_GT(manifest_after_flush, manifest_before_flush);
Reopen(&options);
ASSERT_GT(dbfull()->TEST_Current_Manifest_FileNo(),
manifest_after_flush);
// check if a new manifest file got inserted or not.
ASSERT_EQ(std::string(1000, '1'), Get("manifest_key1"));
ASSERT_EQ(std::string(1000, '2'), Get("manifest_key2"));
ASSERT_EQ(std::string(1000, '3'), Get("manifest_key3"));
}
} while (ChangeCompactOptions());
}
Dbid feature Summary: Create a new type of file on startup if it doesn't already exist called DBID. This will store a unique number generated from boost library's uuid header file. The use-case is to identify the case of a db losing all its data and coming back up either empty or from an image(backup/live replica's recovery) the key point to note is that DBID is not stored in a backup or db snapshot It's preferable to use Boost for uuid because: 1) A non-standard way of generating uuid is not good 2) /proc/sys/kernel/random/uuid generates a uuid but only on linux environments and the solution would not be clean 3) c++ doesn't have any direct way to get a uuid 4) Boost is a very good library that was already having linkage in rocksdb from third-party Note: I had to update the TOOLCHAIN_REV in build files to get latest verison of boost from third-party as the older version had a bug. I had to put Wno-uninitialized in Makefile because boost-1.51 has an unitialized variable and rocksdb would not comiple otherwise. Latet open-source for boost is 1.54 but is not there in third-party. I have notified the concerned people in fbcode about it. @kailiu : While releasing to third-party, an additional dependency will need to be created for boost in TARGETS file. I can help identify. Test Plan: Expand db_test to test 2 cases 1) Restarting db with Id file present - verify that no change to Id 2)Restarting db with Id file deleted - verify that a different Id is there after reopen Also run make all check Reviewers: dhruba, haobo, kailiu, sdong Reviewed By: dhruba CC: leveldb Differential Revision: https://reviews.facebook.net/D13587
2013-10-18 14:50:54 -07:00
TEST(DBTest, IdentityAcrossRestarts) {
do {
std::string idfilename = IdentityFileName(dbname_);
unique_ptr<SequentialFile> idfile;
const EnvOptions soptions;
ASSERT_OK(env_->NewSequentialFile(idfilename, &idfile, soptions));
char buffer1[100];
Slice id1;
ASSERT_OK(idfile->Read(100, &id1, buffer1));
Options options = CurrentOptions();
Reopen(&options);
char buffer2[100];
Slice id2;
ASSERT_OK(env_->NewSequentialFile(idfilename, &idfile, soptions));
ASSERT_OK(idfile->Read(100, &id2, buffer2));
// id1 should match id2 because identity was not regenerated
ASSERT_EQ(id1.ToString(), id2.ToString());
ASSERT_OK(env_->DeleteFile(idfilename));
Reopen(&options);
char buffer3[100];
Slice id3;
ASSERT_OK(env_->NewSequentialFile(idfilename, &idfile, soptions));
ASSERT_OK(idfile->Read(100, &id3, buffer3));
// id1 should NOT match id2 because identity was regenerated
ASSERT_NE(id1.ToString(0), id3.ToString());
} while (ChangeCompactOptions());
}
TEST(DBTest, RecoverWithLargeLog) {
do {
{
Options options = CurrentOptions();
Reopen(&options);
ASSERT_OK(Put("big1", std::string(200000, '1')));
ASSERT_OK(Put("big2", std::string(200000, '2')));
ASSERT_OK(Put("small3", std::string(10, '3')));
ASSERT_OK(Put("small4", std::string(10, '4')));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
}
// Make sure that if we re-open with a small write buffer size that
// we flush table files in the middle of a large log file.
Options options = CurrentOptions();
options.write_buffer_size = 100000;
Reopen(&options);
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
ASSERT_EQ(std::string(200000, '1'), Get("big1"));
ASSERT_EQ(std::string(200000, '2'), Get("big2"));
ASSERT_EQ(std::string(10, '3'), Get("small3"));
ASSERT_EQ(std::string(10, '4'), Get("small4"));
ASSERT_GT(NumTableFilesAtLevel(0), 1);
} while (ChangeCompactOptions());
}
TEST(DBTest, CompactionsGenerateMultipleFiles) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
Reopen(&options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), values[i]));
}
// Reopening moves updates to level-0
Reopen(&options);
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 1);
for (int i = 0; i < 80; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
TEST(DBTest, CompactionTrigger) {
Options options = CurrentOptions();
options.write_buffer_size = 100<<10; //100KB
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.level0_file_num_compaction_trigger = 3;
Reopen(&options);
Random rnd(301);
for (int num = 0;
num < options.level0_file_num_compaction_trigger - 1;
num++) {
std::vector<std::string> values;
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
values.push_back(RandomString(&rnd, 10000));
ASSERT_OK(Put(Key(i), values[i]));
}
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(0), num + 1);
}
//generate one more file in level-0, and should trigger level-0 compaction
std::vector<std::string> values;
for (int i = 0; i < 12; i++) {
values.push_back(RandomString(&rnd, 10000));
ASSERT_OK(Put(Key(i), values[i]));
}
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
}
TEST(DBTest, UniversalCompactionTrigger) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
// trigger compaction if there are >= 4 files
options.level0_file_num_compaction_trigger = 4;
Reopen(&options);
Random rnd(301);
int key_idx = 0;
// Stage 1:
// Generate a set of files at level 0, but don't trigger level-0
// compaction.
for (int num = 0;
num < options.level0_file_num_compaction_trigger-1;
num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(0), num + 1);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForCompact();
// Suppose each file flushed from mem table has size 1. Now we compact
// (level0_file_num_compaction_trigger+1)=4 files and should have a big
// file of size 4.
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
for (int i = 1; i < options.num_levels ; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
// Stage 2:
// Now we have one file at level 0, with size 4. We also have some data in
// mem table. Let's continue generating new files at level 0, but don't
// trigger level-0 compaction.
// First, clean up memtable before inserting new data. This will generate
// a level-0 file, with size around 0.4 (according to previously written
// data amount).
dbfull()->Flush(FlushOptions());
for (int num = 0;
num < options.level0_file_num_compaction_trigger-3;
num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(0), num + 3);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForCompact();
// Before compaction, we have 4 files at level 0, with size 4, 0.4, 1, 1.
// After comapction, we should have 2 files, with size 4, 2.4.
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
for (int i = 1; i < options.num_levels ; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
// Stage 3:
// Now we have 2 files at level 0, with size 4 and 2.4. Continue
// generating new files at level 0.
for (int num = 0;
num < options.level0_file_num_compaction_trigger-3;
num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(0), num + 3);
}
// Generate one more file at level-0, which should trigger level-0
// compaction.
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForCompact();
// Before compaction, we have 4 files at level 0, with size 4, 2.4, 1, 1.
// After comapction, we should have 3 files, with size 4, 2.4, 2.
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
for (int i = 1; i < options.num_levels ; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
// Stage 4:
// Now we have 3 files at level 0, with size 4, 2.4, 2. Let's generate a
// new file of size 1.
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForCompact();
// Level-0 compaction is triggered, but no file will be picked up.
ASSERT_EQ(NumTableFilesAtLevel(0), 4);
for (int i = 1; i < options.num_levels ; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
// Stage 5:
// Now we have 4 files at level 0, with size 4, 2.4, 2, 1. Let's generate
// a new file of size 1.
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForCompact();
// All files at level 0 will be compacted into a single one.
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
for (int i = 1; i < options.num_levels ; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
}
TEST(DBTest, UniversalCompactionSizeAmplification) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 3;
// Trigger compaction if size amplification exceeds 110%
options.compaction_options_universal.
max_size_amplification_percent = 110;
Reopen(&options);
Random rnd(301);
int key_idx = 0;
// Generate two files in Level 0. Both files are approx the same size.
for (int num = 0;
num < options.level0_file_num_compaction_trigger-1;
num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(0), num + 1);
}
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
// Flush whatever is remaining in memtable. This is typically
// small, which should not trigger size ratio based compaction
// but will instead trigger size amplification.
dbfull()->Flush(FlushOptions());
dbfull()->TEST_WaitForCompact();
// Verify that size amplification did occur
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
}
TEST(DBTest, UniversalCompactionOptions) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 1;
options.compaction_options_universal.compression_size_percent = -1;
Reopen(&options);
Random rnd(301);
int key_idx = 0;
for (int num = 0;
num < options.level0_file_num_compaction_trigger;
num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), RandomString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
if (num < options.level0_file_num_compaction_trigger - 1) {
ASSERT_EQ(NumTableFilesAtLevel(0), num + 1);
}
}
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
for (int i = 1; i < options.num_levels ; i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
}
TEST(DBTest, UniversalCompactionCompressRatio1) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
options.compaction_options_universal.compression_size_percent = 70;
Reopen(&options);
Random rnd(301);
int key_idx = 0;
// The first compaction (2) is compressed.
for (int num = 0; num < 2; num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
}
ASSERT_LT((int ) dbfull()->TEST_GetLevel0TotalSize(), 120000 * 2 * 0.9);
// The second compaction (4) is compressed
for (int num = 0; num < 2; num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
}
ASSERT_LT((int ) dbfull()->TEST_GetLevel0TotalSize(), 120000 * 4 * 0.9);
// The third compaction (2 4) is compressed since this time it is
// (1 1 3.2) and 3.2/5.2 doesn't reach ratio.
for (int num = 0; num < 2; num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
}
ASSERT_LT((int ) dbfull()->TEST_GetLevel0TotalSize(), 120000 * 6 * 0.9);
// When we start for the compaction up to (2 4 8), the latest
// compressed is not compressed.
for (int num = 0; num < 8; num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
}
ASSERT_GT((int ) dbfull()->TEST_GetLevel0TotalSize(),
120000 * 12 * 0.8 + 110000 * 2);
}
TEST(DBTest, UniversalCompactionCompressRatio2) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 1;
options.compaction_options_universal.compression_size_percent = 95;
Reopen(&options);
Random rnd(301);
int key_idx = 0;
// When we start for the compaction up to (2 4 8), the latest
// compressed is compressed given the size ratio to compress.
for (int num = 0; num < 14; num++) {
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
ASSERT_OK(Put(Key(key_idx), CompressibleString(&rnd, 10000)));
key_idx++;
}
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
}
ASSERT_LT((int ) dbfull()->TEST_GetLevel0TotalSize(),
120000 * 12 * 0.8 + 110000 * 2);
}
TEST(DBTest, ConvertCompactionStyle) {
Random rnd(301);
int max_key_level_insert = 200;
int max_key_universal_insert = 600;
// Stage 1: generate a db with level compaction
Options options = CurrentOptions();
options.write_buffer_size = 100<<10; //100KB
options.num_levels = 4;
options.level0_file_num_compaction_trigger = 3;
options.max_bytes_for_level_base = 500<<10; // 500KB
options.max_bytes_for_level_multiplier = 1;
options.target_file_size_base = 200<<10; // 200KB
options.target_file_size_multiplier = 1;
Reopen(&options);
for (int i = 0; i <= max_key_level_insert; i++) {
// each value is 10K
ASSERT_OK(Put(Key(i), RandomString(&rnd, 10000)));
}
dbfull()->Flush(FlushOptions());
dbfull()->TEST_WaitForCompact();
ASSERT_GT(TotalTableFiles(), 1);
int non_level0_num_files = 0;
for (int i = 1; i < dbfull()->NumberLevels(); i++) {
non_level0_num_files += NumTableFilesAtLevel(i);
}
ASSERT_GT(non_level0_num_files, 0);
// Stage 2: reopen with universal compaction - should fail
options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
Status s = TryReopen(&options);
ASSERT_TRUE(s.IsInvalidArgument());
// Stage 3: compact into a single file and move the file to level 0
options = CurrentOptions();
options.disable_auto_compactions = true;
options.target_file_size_base = INT_MAX;
options.target_file_size_multiplier = 1;
options.max_bytes_for_level_base = INT_MAX;
options.max_bytes_for_level_multiplier = 1;
Reopen(&options);
dbfull()->CompactRange(nullptr, nullptr,
true /* reduce level */,
0 /* reduce to level 0 */);
for (int i = 0; i < dbfull()->NumberLevels(); i++) {
int num = NumTableFilesAtLevel(i);
if (i == 0) {
ASSERT_EQ(num, 1);
} else {
ASSERT_EQ(num, 0);
}
}
// Stage 4: re-open in universal compaction style and do some db operations
options = CurrentOptions();
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 100<<10; //100KB
options.level0_file_num_compaction_trigger = 3;
Reopen(&options);
for (int i = max_key_level_insert / 2; i <= max_key_universal_insert; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, 10000)));
}
dbfull()->Flush(FlushOptions());
dbfull()->TEST_WaitForCompact();
for (int i = 1; i < dbfull()->NumberLevels(); i++) {
ASSERT_EQ(NumTableFilesAtLevel(i), 0);
}
// verify keys inserted in both level compaction style and universal
// compaction style
std::string keys_in_db;
Iterator* iter = dbfull()->NewIterator(ReadOptions());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
keys_in_db.append(iter->key().ToString());
keys_in_db.push_back(',');
}
delete iter;
std::string expected_keys;
for (int i = 0; i <= max_key_universal_insert; i++) {
expected_keys.append(Key(i));
expected_keys.push_back(',');
}
ASSERT_EQ(keys_in_db, expected_keys);
}
void MinLevelHelper(DBTest* self, Options& options) {
Random rnd(301);
for (int num = 0;
num < options.level0_file_num_compaction_trigger - 1;
num++)
{
std::vector<std::string> values;
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
values.push_back(RandomString(&rnd, 10000));
ASSERT_OK(self->Put(Key(i), values[i]));
}
self->dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(self->NumTableFilesAtLevel(0), num + 1);
}
//generate one more file in level-0, and should trigger level-0 compaction
std::vector<std::string> values;
for (int i = 0; i < 12; i++) {
values.push_back(RandomString(&rnd, 10000));
ASSERT_OK(self->Put(Key(i), values[i]));
}
self->dbfull()->TEST_WaitForCompact();
ASSERT_EQ(self->NumTableFilesAtLevel(0), 0);
ASSERT_EQ(self->NumTableFilesAtLevel(1), 1);
}
// returns false if the calling-Test should be skipped
bool MinLevelToCompress(CompressionType& type, Options& options, int wbits,
int lev, int strategy) {
fprintf(stderr, "Test with compression options : window_bits = %d, level = %d, strategy = %d}\n", wbits, lev, strategy);
options.write_buffer_size = 100<<10; //100KB
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.level0_file_num_compaction_trigger = 3;
Allow having different compression algorithms on different levels. Summary: The leveldb API is enhanced to support different compression algorithms at different levels. This adds the option min_level_to_compress to db_bench that specifies the minimum level for which compression should be done when compression is enabled. This can be used to disable compression for levels 0 and 1 which are likely to suffer from stalls because of the CPU load for memtable flushes and (L0,L1) compaction. Level 0 is special as it gets frequent memtable flushes. Level 1 is special as it frequently gets all:all file compactions between it and level 0. But all other levels could be the same. For any level N where N > 1, the rate of sequential IO for that level should be the same. The last level is the exception because it might not be full and because files from it are not read to compact with the next larger level. The same amount of time will be spent doing compaction at any level N excluding N=0, 1 or the last level. By this standard all of those levels should use the same compression. The difference is that the loss (using more disk space) from a faster compression algorithm is less significant for N=2 than for N=3. So we might be willing to trade disk space for faster write rates with no compression for L0 and L1, snappy for L2, zlib for L3. Using a faster compression algorithm for the mid levels also allows us to reclaim some cpu without trading off much loss in disk space overhead. Also note that little is to be gained by compressing levels 0 and 1. For a 4-level tree they account for 10% of the data. For a 5-level tree they account for 1% of the data. With compression enabled: * memtable flush rate is ~18MB/second * (L0,L1) compaction rate is ~30MB/second With compression enabled but min_level_to_compress=2 * memtable flush rate is ~320MB/second * (L0,L1) compaction rate is ~560MB/second This practicaly takes the same code from https://reviews.facebook.net/D6225 but makes the leveldb api more general purpose with a few additional lines of code. Test Plan: make check Differential Revision: https://reviews.facebook.net/D6261
2012-10-27 23:13:17 -07:00
options.create_if_missing = true;
if (SnappyCompressionSupported(CompressionOptions(wbits, lev, strategy))) {
type = kSnappyCompression;
fprintf(stderr, "using snappy\n");
} else if (ZlibCompressionSupported(
CompressionOptions(wbits, lev, strategy))) {
type = kZlibCompression;
fprintf(stderr, "using zlib\n");
} else if (BZip2CompressionSupported(
CompressionOptions(wbits, lev, strategy))) {
type = kBZip2Compression;
fprintf(stderr, "using bzip2\n");
} else {
fprintf(stderr, "skipping test, compression disabled\n");
return false;
}
options.compression_per_level.resize(options.num_levels);
Allow having different compression algorithms on different levels. Summary: The leveldb API is enhanced to support different compression algorithms at different levels. This adds the option min_level_to_compress to db_bench that specifies the minimum level for which compression should be done when compression is enabled. This can be used to disable compression for levels 0 and 1 which are likely to suffer from stalls because of the CPU load for memtable flushes and (L0,L1) compaction. Level 0 is special as it gets frequent memtable flushes. Level 1 is special as it frequently gets all:all file compactions between it and level 0. But all other levels could be the same. For any level N where N > 1, the rate of sequential IO for that level should be the same. The last level is the exception because it might not be full and because files from it are not read to compact with the next larger level. The same amount of time will be spent doing compaction at any level N excluding N=0, 1 or the last level. By this standard all of those levels should use the same compression. The difference is that the loss (using more disk space) from a faster compression algorithm is less significant for N=2 than for N=3. So we might be willing to trade disk space for faster write rates with no compression for L0 and L1, snappy for L2, zlib for L3. Using a faster compression algorithm for the mid levels also allows us to reclaim some cpu without trading off much loss in disk space overhead. Also note that little is to be gained by compressing levels 0 and 1. For a 4-level tree they account for 10% of the data. For a 5-level tree they account for 1% of the data. With compression enabled: * memtable flush rate is ~18MB/second * (L0,L1) compaction rate is ~30MB/second With compression enabled but min_level_to_compress=2 * memtable flush rate is ~320MB/second * (L0,L1) compaction rate is ~560MB/second This practicaly takes the same code from https://reviews.facebook.net/D6225 but makes the leveldb api more general purpose with a few additional lines of code. Test Plan: make check Differential Revision: https://reviews.facebook.net/D6261
2012-10-27 23:13:17 -07:00
// do not compress L0
for (int i = 0; i < 1; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 1; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
return true;
}
TEST(DBTest, MinLevelToCompress1) {
Options options = CurrentOptions();
CompressionType type;
if (!MinLevelToCompress(type, options, -14, -1, 0)) {
return;
}
Reopen(&options);
MinLevelHelper(this, options);
// do not compress L0 and L1
for (int i = 0; i < 2; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 2; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
DestroyAndReopen(&options);
MinLevelHelper(this, options);
}
TEST(DBTest, MinLevelToCompress2) {
Options options = CurrentOptions();
CompressionType type;
if (!MinLevelToCompress(type, options, 15, -1, 0)) {
return;
}
Reopen(&options);
MinLevelHelper(this, options);
Allow having different compression algorithms on different levels. Summary: The leveldb API is enhanced to support different compression algorithms at different levels. This adds the option min_level_to_compress to db_bench that specifies the minimum level for which compression should be done when compression is enabled. This can be used to disable compression for levels 0 and 1 which are likely to suffer from stalls because of the CPU load for memtable flushes and (L0,L1) compaction. Level 0 is special as it gets frequent memtable flushes. Level 1 is special as it frequently gets all:all file compactions between it and level 0. But all other levels could be the same. For any level N where N > 1, the rate of sequential IO for that level should be the same. The last level is the exception because it might not be full and because files from it are not read to compact with the next larger level. The same amount of time will be spent doing compaction at any level N excluding N=0, 1 or the last level. By this standard all of those levels should use the same compression. The difference is that the loss (using more disk space) from a faster compression algorithm is less significant for N=2 than for N=3. So we might be willing to trade disk space for faster write rates with no compression for L0 and L1, snappy for L2, zlib for L3. Using a faster compression algorithm for the mid levels also allows us to reclaim some cpu without trading off much loss in disk space overhead. Also note that little is to be gained by compressing levels 0 and 1. For a 4-level tree they account for 10% of the data. For a 5-level tree they account for 1% of the data. With compression enabled: * memtable flush rate is ~18MB/second * (L0,L1) compaction rate is ~30MB/second With compression enabled but min_level_to_compress=2 * memtable flush rate is ~320MB/second * (L0,L1) compaction rate is ~560MB/second This practicaly takes the same code from https://reviews.facebook.net/D6225 but makes the leveldb api more general purpose with a few additional lines of code. Test Plan: make check Differential Revision: https://reviews.facebook.net/D6261
2012-10-27 23:13:17 -07:00
// do not compress L0 and L1
for (int i = 0; i < 2; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 2; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
DestroyAndReopen(&options);
MinLevelHelper(this, options);
}
Allow having different compression algorithms on different levels. Summary: The leveldb API is enhanced to support different compression algorithms at different levels. This adds the option min_level_to_compress to db_bench that specifies the minimum level for which compression should be done when compression is enabled. This can be used to disable compression for levels 0 and 1 which are likely to suffer from stalls because of the CPU load for memtable flushes and (L0,L1) compaction. Level 0 is special as it gets frequent memtable flushes. Level 1 is special as it frequently gets all:all file compactions between it and level 0. But all other levels could be the same. For any level N where N > 1, the rate of sequential IO for that level should be the same. The last level is the exception because it might not be full and because files from it are not read to compact with the next larger level. The same amount of time will be spent doing compaction at any level N excluding N=0, 1 or the last level. By this standard all of those levels should use the same compression. The difference is that the loss (using more disk space) from a faster compression algorithm is less significant for N=2 than for N=3. So we might be willing to trade disk space for faster write rates with no compression for L0 and L1, snappy for L2, zlib for L3. Using a faster compression algorithm for the mid levels also allows us to reclaim some cpu without trading off much loss in disk space overhead. Also note that little is to be gained by compressing levels 0 and 1. For a 4-level tree they account for 10% of the data. For a 5-level tree they account for 1% of the data. With compression enabled: * memtable flush rate is ~18MB/second * (L0,L1) compaction rate is ~30MB/second With compression enabled but min_level_to_compress=2 * memtable flush rate is ~320MB/second * (L0,L1) compaction rate is ~560MB/second This practicaly takes the same code from https://reviews.facebook.net/D6225 but makes the leveldb api more general purpose with a few additional lines of code. Test Plan: make check Differential Revision: https://reviews.facebook.net/D6261
2012-10-27 23:13:17 -07:00
TEST(DBTest, RepeatedWritesToSameKey) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
Reopen(&options);
// We must have at most one file per level except for level-0,
// which may have up to kL0_StopWritesTrigger files.
const int kMaxFiles = dbfull()->NumberLevels() +
dbfull()->Level0StopWriteTrigger();
Random rnd(301);
std::string value = RandomString(&rnd, 2 * options.write_buffer_size);
for (int i = 0; i < 5 * kMaxFiles; i++) {
Put("key", value);
ASSERT_LE(TotalTableFiles(), kMaxFiles);
}
} while (ChangeCompactOptions());
}
// This is a static filter used for filtering
// kvs during the compaction process.
static int cfilter_count;
static std::string NEW_VALUE = "NewValue";
class KeepFilter : public CompactionFilter {
public:
virtual bool Filter(int level, const Slice& key,
const Slice& value, std::string* new_value,
bool* value_changed) const override {
cfilter_count++;
return false;
}
virtual const char* Name() const override {
return "KeepFilter";
}
};
class DeleteFilter : public CompactionFilter {
public:
virtual bool Filter(int level, const Slice& key,
const Slice& value, std::string* new_value,
bool* value_changed) const override {
cfilter_count++;
return true;
}
virtual const char* Name() const override {
return "DeleteFilter";
}
};
class ChangeFilter : public CompactionFilter {
public:
explicit ChangeFilter(int argv) : argv_(argv) {}
virtual bool Filter(int level, const Slice& key,
const Slice& value, std::string* new_value,
bool* value_changed) const override {
assert(argv_ == 100);
assert(new_value != nullptr);
*new_value = NEW_VALUE;
*value_changed = true;
return false;
}
virtual const char* Name() const override {
return "ChangeFilter";
}
private:
const int argv_;
};
class KeepFilterFactory : public CompactionFilterFactory {
public:
virtual std::unique_ptr<CompactionFilter>
CreateCompactionFilter() override {
return std::unique_ptr<CompactionFilter>(new KeepFilter());
}
virtual const char* Name() const override {
return "KeepFilterFactory";
}
};
class DeleteFilterFactory : public CompactionFilterFactory {
public:
virtual std::unique_ptr<CompactionFilter>
CreateCompactionFilter() override {
return std::unique_ptr<CompactionFilter>(new DeleteFilter());
}
virtual const char* Name() const override {
return "DeleteFilterFactory";
}
};
class ChangeFilterFactory : public CompactionFilterFactory {
public:
explicit ChangeFilterFactory(int argv) : argv_(argv) {}
virtual std::unique_ptr<CompactionFilter>
CreateCompactionFilter() override {
return std::unique_ptr<CompactionFilter>(new ChangeFilter(argv_));
}
virtual const char* Name() const override {
return "ChangeFilterFactory";
}
private:
const int argv_;
};
TEST(DBTest, CompactionFilter) {
Options options = CurrentOptions();
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.compaction_filter_factory = std::make_shared<KeepFilterFactory>();
Reopen(&options);
// Write 100K keys, these are written to a few files in L0.
const std::string value(10, 'x');
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
dbfull()->TEST_FlushMemTable();
// Push all files to the highest level L2. Verify that
// the compaction is each level invokes the filter for
// all the keys in that level.
cfilter_count = 0;
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
ASSERT_EQ(cfilter_count, 100000);
cfilter_count = 0;
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_EQ(cfilter_count, 100000);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_NE(NumTableFilesAtLevel(2), 0);
cfilter_count = 0;
// All the files are in the lowest level.
// Verify that all but the 100001st record
// has sequence number zero. The 100001st record
// is at the tip of this snapshot and cannot
// be zeroed out.
// TODO: figure out sequence number squashtoo
int count = 0;
int total = 0;
Iterator* iter = dbfull()->TEST_NewInternalIterator();
iter->SeekToFirst();
ASSERT_OK(iter->status());
while (iter->Valid()) {
ParsedInternalKey ikey;
ikey.sequence = -1;
ASSERT_EQ(ParseInternalKey(iter->key(), &ikey), true);
total++;
if (ikey.sequence != 0) {
count++;
}
iter->Next();
}
ASSERT_EQ(total, 100000);
ASSERT_EQ(count, 1);
delete iter;
// overwrite all the 100K keys once again.
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
dbfull()->TEST_FlushMemTable();
// push all files to the highest level L2. This
// means that all keys should pass at least once
// via the compaction filter
cfilter_count = 0;
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
ASSERT_EQ(cfilter_count, 100000);
cfilter_count = 0;
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_EQ(cfilter_count, 100000);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_NE(NumTableFilesAtLevel(2), 0);
// create a new database with the compaction
// filter in such a way that it deletes all keys
options.compaction_filter_factory = std::make_shared<DeleteFilterFactory>();
options.create_if_missing = true;
DestroyAndReopen(&options);
// write all the keys once again.
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
dbfull()->TEST_FlushMemTable();
ASSERT_NE(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
// Push all files to the highest level L2. This
// triggers the compaction filter to delete all keys,
// verify that at the end of the compaction process,
// nothing is left.
cfilter_count = 0;
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
ASSERT_EQ(cfilter_count, 100000);
cfilter_count = 0;
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_EQ(cfilter_count, 0);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
// Scan the entire database to ensure that nothing is left
iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
count = 0;
while (iter->Valid()) {
count++;
iter->Next();
}
ASSERT_EQ(count, 0);
delete iter;
// The sequence number of the remaining record
// is not zeroed out even though it is at the
// level Lmax because this record is at the tip
// TODO: remove the following or design a different
// test
count = 0;
iter = dbfull()->TEST_NewInternalIterator();
iter->SeekToFirst();
ASSERT_OK(iter->status());
while (iter->Valid()) {
ParsedInternalKey ikey;
ASSERT_EQ(ParseInternalKey(iter->key(), &ikey), true);
ASSERT_NE(ikey.sequence, (unsigned)0);
count++;
iter->Next();
}
ASSERT_EQ(count, 0);
delete iter;
}
TEST(DBTest, CompactionFilterWithValueChange) {
do {
Options options = CurrentOptions();
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.compaction_filter_factory =
std::make_shared<ChangeFilterFactory>(100);
Reopen(&options);
// Write 100K+1 keys, these are written to a few files
// in L0. We do this so that the current snapshot points
// to the 100001 key.The compaction filter is not invoked
// on keys that are visible via a snapshot because we
// anyways cannot delete it.
const std::string value(10, 'x');
for (int i = 0; i < 100001; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
// push all files to lower levels
dbfull()->TEST_FlushMemTable();
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
// re-write all data again
for (int i = 0; i < 100001; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
// push all files to lower levels. This should
// invoke the compaction filter for all 100000 keys.
dbfull()->TEST_FlushMemTable();
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
// verify that all keys now have the new value that
// was set by the compaction process.
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
std::string newvalue = Get(key);
ASSERT_EQ(newvalue.compare(NEW_VALUE), 0);
}
} while (ChangeCompactOptions());
}
TEST(DBTest, SparseMerge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
Reopen(&options);
FillLevels("A", "Z");
// Suppose there is:
// small amount of data with prefix A
// large amount of data with prefix B
// small amount of data with prefix C
// and that recent updates have made small changes to all three prefixes.
// Check that we do not do a compaction that merges all of B in one shot.
const std::string value(1000, 'x');
Put("A", "va");
// Write approximately 100MB of "B" values
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
Put("C", "vc");
dbfull()->TEST_FlushMemTable();
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
// Make sparse update
Put("A", "va2");
Put("B100", "bvalue2");
Put("C", "vc2");
dbfull()->TEST_FlushMemTable();
// Compactions should not cause us to create a situation where
// a file overlaps too much data at the next level.
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
} while (ChangeCompactOptions());
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
TEST(DBTest, ApproximateSizes) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
DestroyAndReopen();
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
Reopen(&options);
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
const int N = 80;
static const int S1 = 100000;
static const int S2 = 105000; // Allow some expansion from metadata
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, S1)));
}
// 0 because GetApproximateSizes() does not account for memtable space
ASSERT_TRUE(Between(Size("", Key(50)), 0, 0));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
for (int compact_start = 0; compact_start < N; compact_start += 10) {
for (int i = 0; i < N; i += 10) {
ASSERT_TRUE(Between(Size("", Key(i)), S1*i, S2*i));
ASSERT_TRUE(Between(Size("", Key(i)+".suffix"), S1*(i+1), S2*(i+1)));
ASSERT_TRUE(Between(Size(Key(i), Key(i+10)), S1*10, S2*10));
}
ASSERT_TRUE(Between(Size("", Key(50)), S1*50, S2*50));
ASSERT_TRUE(Between(Size("", Key(50)+".suffix"), S1*50, S2*50));
std::string cstart_str = Key(compact_start);
std::string cend_str = Key(compact_start + 9);
Slice cstart = cstart_str;
Slice cend = cend_str;
dbfull()->TEST_CompactRange(0, &cstart, &cend);
}
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 0);
}
} while (ChangeOptions(kSkipUniversalCompaction));
}
TEST(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
Reopen();
Random rnd(301);
std::string big1 = RandomString(&rnd, 100000);
ASSERT_OK(Put(Key(0), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(1), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(2), big1));
ASSERT_OK(Put(Key(3), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(4), big1));
ASSERT_OK(Put(Key(5), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(6), RandomString(&rnd, 300000)));
ASSERT_OK(Put(Key(7), RandomString(&rnd, 10000)));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
ASSERT_TRUE(Between(Size("", Key(0)), 0, 0));
ASSERT_TRUE(Between(Size("", Key(1)), 10000, 11000));
ASSERT_TRUE(Between(Size("", Key(2)), 20000, 21000));
ASSERT_TRUE(Between(Size("", Key(3)), 120000, 121000));
ASSERT_TRUE(Between(Size("", Key(4)), 130000, 131000));
ASSERT_TRUE(Between(Size("", Key(5)), 230000, 231000));
ASSERT_TRUE(Between(Size("", Key(6)), 240000, 241000));
ASSERT_TRUE(Between(Size("", Key(7)), 540000, 541000));
ASSERT_TRUE(Between(Size("", Key(8)), 550000, 560000));
ASSERT_TRUE(Between(Size(Key(3), Key(5)), 110000, 111000));
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
}
} while (ChangeOptions());
}
TEST(DBTest, IteratorPinsRef) {
do {
Put("foo", "hello");
// Get iterator that will yield the current contents of the DB.
Iterator* iter = db_->NewIterator(ReadOptions());
// Write to force compactions
Put("foo", "newvalue1");
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(100000, 'v'))); // 100K values
}
Put("foo", "newvalue2");
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("hello", iter->value().ToString());
iter->Next();
ASSERT_TRUE(!iter->Valid());
delete iter;
} while (ChangeCompactOptions());
}
TEST(DBTest, Snapshot) {
do {
Put("foo", "v1");
const Snapshot* s1 = db_->GetSnapshot();
Put("foo", "v2");
const Snapshot* s2 = db_->GetSnapshot();
Put("foo", "v3");
const Snapshot* s3 = db_->GetSnapshot();
Put("foo", "v4");
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v3", Get("foo", s3));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s3);
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s2);
ASSERT_EQ("v4", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, HiddenValuesAreRemoved) {
do {
Random rnd(301);
FillLevels("a", "z");
std::string big = RandomString(&rnd, 50000);
Put("foo", big);
Put("pastfoo", "v");
const Snapshot* snapshot = db_->GetSnapshot();
Put("foo", "tiny");
Put("pastfoo2", "v2"); // Advance sequence number one more
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_GT(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(big, Get("foo", snapshot));
ASSERT_TRUE(Between(Size("", "pastfoo"), 50000, 60000));
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny, " + big + " ]");
Slice x("x");
dbfull()->TEST_CompactRange(0, nullptr, &x);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GE(NumTableFilesAtLevel(1), 1);
dbfull()->TEST_CompactRange(1, nullptr, &x);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_TRUE(Between(Size("", "pastfoo"), 0, 1000));
} while (ChangeOptions(kSkipUniversalCompaction));
}
TEST(DBTest, CompactBetweenSnapshots) {
do {
Random rnd(301);
FillLevels("a", "z");
Put("foo", "first");
const Snapshot* snapshot1 = db_->GetSnapshot();
Put("foo", "second");
Put("foo", "third");
Put("foo", "fourth");
const Snapshot* snapshot2 = db_->GetSnapshot();
Put("foo", "fifth");
Put("foo", "sixth");
// All entries (including duplicates) exist
// before any compaction is triggered.
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ("sixth", Get("foo"));
ASSERT_EQ("fourth", Get("foo", snapshot2));
ASSERT_EQ("first", Get("foo", snapshot1));
ASSERT_EQ(AllEntriesFor("foo"),
"[ sixth, fifth, fourth, third, second, first ]");
// After a compaction, "second", "third" and "fifth" should
// be removed
FillLevels("a", "z");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ("sixth", Get("foo"));
ASSERT_EQ("fourth", Get("foo", snapshot2));
ASSERT_EQ("first", Get("foo", snapshot1));
ASSERT_EQ(AllEntriesFor("foo"), "[ sixth, fourth, first ]");
// after we release the snapshot1, only two values left
db_->ReleaseSnapshot(snapshot1);
FillLevels("a", "z");
dbfull()->CompactRange(nullptr, nullptr);
// We have only one valid snapshot snapshot2. Since snapshot1 is
// not valid anymore, "first" should be removed by a compaction.
ASSERT_EQ("sixth", Get("foo"));
ASSERT_EQ("fourth", Get("foo", snapshot2));
ASSERT_EQ(AllEntriesFor("foo"), "[ sixth, fourth ]");
// after we release the snapshot2, only one value should be left
db_->ReleaseSnapshot(snapshot2);
FillLevels("a", "z");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ("sixth", Get("foo"));
ASSERT_EQ(AllEntriesFor("foo"), "[ sixth ]");
} while (ChangeOptions());
}
TEST(DBTest, DeletionMarkers1) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
const int last = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo => v1 is now in last level
// Place a table at level last-1 to prevent merging with preceding mutation
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_FlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(last), 1);
ASSERT_EQ(NumTableFilesAtLevel(last-1), 1);
Delete("foo");
Put("foo", "v2");
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_FlushMemTable()); // Moves to level last-2
if (CurrentOptions().purge_redundant_kvs_while_flush) {
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]");
} else {
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
}
Slice z("z");
dbfull()->TEST_CompactRange(last-2, nullptr, &z);
// DEL eliminated, but v1 remains because we aren't compacting that level
// (DEL can be eliminated because v2 hides v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]");
dbfull()->TEST_CompactRange(last-1, nullptr, nullptr);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2 ]");
}
TEST(DBTest, DeletionMarkers2) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
const int last = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo => v1 is now in last level
// Place a table at level last-1 to prevent merging with preceding mutation
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_FlushMemTable();
ASSERT_EQ(NumTableFilesAtLevel(last), 1);
ASSERT_EQ(NumTableFilesAtLevel(last-1), 1);
Delete("foo");
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_FlushMemTable()); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last-2, nullptr, nullptr);
// DEL kept: "last" file overlaps
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last-1, nullptr, nullptr);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
}
TEST(DBTest, OverlapInLevel0) {
do {
int tmp = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(tmp, 2) << "Fix test to match config";
//Fill levels 1 and 2 to disable the pushing of new memtables to levels > 0.
ASSERT_OK(Put("100", "v100"));
ASSERT_OK(Put("999", "v999"));
dbfull()->TEST_FlushMemTable();
ASSERT_OK(Delete("100"));
ASSERT_OK(Delete("999"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("0,1,1", FilesPerLevel());
// Make files spanning the following ranges in level-0:
// files[0] 200 .. 900
// files[1] 300 .. 500
// Note that files are sorted by smallest key.
ASSERT_OK(Put("300", "v300"));
ASSERT_OK(Put("500", "v500"));
dbfull()->TEST_FlushMemTable();
ASSERT_OK(Put("200", "v200"));
ASSERT_OK(Put("600", "v600"));
ASSERT_OK(Put("900", "v900"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("2,1,1", FilesPerLevel());
// Compact away the placeholder files we created initially
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
dbfull()->TEST_CompactRange(2, nullptr, nullptr);
ASSERT_EQ("2", FilesPerLevel());
// Do a memtable compaction. Before bug-fix, the compaction would
// not detect the overlap with level-0 files and would incorrectly place
// the deletion in a deeper level.
ASSERT_OK(Delete("600"));
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("3", FilesPerLevel());
ASSERT_EQ("NOT_FOUND", Get("600"));
} while (ChangeOptions(kSkipUniversalCompaction));
}
TEST(DBTest, L0_CompactionBug_Issue44_a) {
do {
Reopen();
ASSERT_OK(Put("b", "v"));
Reopen();
ASSERT_OK(Delete("b"));
ASSERT_OK(Delete("a"));
Reopen();
ASSERT_OK(Delete("a"));
Reopen();
ASSERT_OK(Put("a", "v"));
Reopen();
Reopen();
ASSERT_EQ("(a->v)", Contents());
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ASSERT_EQ("(a->v)", Contents());
} while (ChangeCompactOptions());
}
TEST(DBTest, L0_CompactionBug_Issue44_b) {
do {
Reopen();
Put("","");
Reopen();
Delete("e");
Put("","");
Reopen();
Put("c", "cv");
Reopen();
Put("","");
Reopen();
Put("","");
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
Reopen();
Put("d","dv");
Reopen();
Put("","");
Reopen();
Delete("d");
Delete("b");
Reopen();
ASSERT_EQ("(->)(c->cv)", Contents());
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ASSERT_EQ("(->)(c->cv)", Contents());
} while (ChangeCompactOptions());
}
TEST(DBTest, ComparatorCheck) {
class NewComparator : public Comparator {
public:
virtual const char* Name() const { return "rocksdb.NewComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return BytewiseComparator()->Compare(a, b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
BytewiseComparator()->FindShortestSeparator(s, l);
}
virtual void FindShortSuccessor(std::string* key) const {
BytewiseComparator()->FindShortSuccessor(key);
}
};
Options new_options;
NewComparator cmp;
do {
new_options = CurrentOptions();
new_options.comparator = &cmp;
Status s = TryReopen(&new_options);
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
<< s.ToString();
} while (ChangeCompactOptions(&new_options));
}
TEST(DBTest, CustomComparator) {
class NumberComparator : public Comparator {
public:
virtual const char* Name() const { return "test.NumberComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return ToNumber(a) - ToNumber(b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
ToNumber(*s); // Check format
ToNumber(l); // Check format
}
virtual void FindShortSuccessor(std::string* key) const {
ToNumber(*key); // Check format
}
private:
static int ToNumber(const Slice& x) {
// Check that there are no extra characters.
ASSERT_TRUE(x.size() >= 2 && x[0] == '[' && x[x.size()-1] == ']')
<< EscapeString(x);
int val;
char ignored;
ASSERT_TRUE(sscanf(x.ToString().c_str(), "[%i]%c", &val, &ignored) == 1)
<< EscapeString(x);
return val;
}
};
Options new_options;
NumberComparator cmp;
do {
new_options = CurrentOptions();
new_options.create_if_missing = true;
new_options.comparator = &cmp;
new_options.filter_policy = nullptr; // Cannot use bloom filters
new_options.write_buffer_size = 1000; // Compact more often
DestroyAndReopen(&new_options);
ASSERT_OK(Put("[10]", "ten"));
ASSERT_OK(Put("[0x14]", "twenty"));
for (int i = 0; i < 2; i++) {
ASSERT_EQ("ten", Get("[10]"));
ASSERT_EQ("ten", Get("[0xa]"));
ASSERT_EQ("twenty", Get("[20]"));
ASSERT_EQ("twenty", Get("[0x14]"));
ASSERT_EQ("NOT_FOUND", Get("[15]"));
ASSERT_EQ("NOT_FOUND", Get("[0xf]"));
Compact("[0]", "[9999]");
}
for (int run = 0; run < 2; run++) {
for (int i = 0; i < 1000; i++) {
char buf[100];
snprintf(buf, sizeof(buf), "[%d]", i*10);
ASSERT_OK(Put(buf, buf));
}
Compact("[0]", "[1000000]");
}
} while (ChangeCompactOptions(&new_options));
}
TEST(DBTest, ManualCompaction) {
ASSERT_EQ(dbfull()->MaxMemCompactionLevel(), 2)
<< "Need to update this test to match kMaxMemCompactLevel";
MakeTables(3, "p", "q");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range falls before files
Compact("", "c");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range falls after files
Compact("r", "z");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range overlaps files
Compact("p1", "p9");
ASSERT_EQ("0,0,1", FilesPerLevel());
// Populate a different range
MakeTables(3, "c", "e");
ASSERT_EQ("1,1,2", FilesPerLevel());
// Compact just the new range
Compact("b", "f");
ASSERT_EQ("0,0,2", FilesPerLevel());
// Compact all
MakeTables(1, "a", "z");
ASSERT_EQ("0,1,2", FilesPerLevel());
db_->CompactRange(nullptr, nullptr);
ASSERT_EQ("0,0,1", FilesPerLevel());
}
TEST(DBTest, DBOpen_Options) {
std::string dbname = test::TmpDir() + "/db_options_test";
ASSERT_OK(DestroyDB(dbname, Options()));
// Does not exist, and create_if_missing == false: error
DB* db = nullptr;
Options opts;
opts.create_if_missing = false;
Status s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does not exist, and create_if_missing == true: OK
opts.create_if_missing = true;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
// Does exist, and error_if_exists == true: error
opts.create_if_missing = false;
opts.error_if_exists = true;
s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does exist, and error_if_exists == false: OK
opts.create_if_missing = true;
opts.error_if_exists = false;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
}
TEST(DBTest, DBOpen_Change_NumLevels) {
std::string dbname = test::TmpDir() + "/db_change_num_levels";
ASSERT_OK(DestroyDB(dbname, Options()));
Options opts;
Status s;
DB* db = nullptr;
opts.create_if_missing = true;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
db->Put(WriteOptions(), "a", "123");
db->Put(WriteOptions(), "b", "234");
db->CompactRange(nullptr, nullptr);
delete db;
db = nullptr;
opts.create_if_missing = false;
opts.num_levels = 2;
s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "Corruption") != nullptr);
ASSERT_TRUE(db == nullptr);
}
TEST(DBTest, DestroyDBMetaDatabase) {
std::string dbname = test::TmpDir() + "/db_meta";
std::string metadbname = MetaDatabaseName(dbname, 0);
std::string metametadbname = MetaDatabaseName(metadbname, 0);
// Destroy previous versions if they exist. Using the long way.
ASSERT_OK(DestroyDB(metametadbname, Options()));
ASSERT_OK(DestroyDB(metadbname, Options()));
ASSERT_OK(DestroyDB(dbname, Options()));
// Setup databases
Options opts;
opts.create_if_missing = true;
DB* db = nullptr;
ASSERT_OK(DB::Open(opts, dbname, &db));
delete db;
db = nullptr;
ASSERT_OK(DB::Open(opts, metadbname, &db));
delete db;
db = nullptr;
ASSERT_OK(DB::Open(opts, metametadbname, &db));
delete db;
db = nullptr;
// Delete databases
ASSERT_OK(DestroyDB(dbname, Options()));
// Check if deletion worked.
opts.create_if_missing = false;
ASSERT_TRUE(!(DB::Open(opts, dbname, &db)).ok());
ASSERT_TRUE(!(DB::Open(opts, metadbname, &db)).ok());
ASSERT_TRUE(!(DB::Open(opts, metametadbname, &db)).ok());
}
// Check that number of files does not grow when we are out of space
TEST(DBTest, NoSpace) {
do {
Options options = CurrentOptions();
options.env = env_;
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
Compact("a", "z");
const int num_files = CountFiles();
env_->no_space_.Release_Store(env_); // Force out-of-space errors
env_->sleep_counter_.Reset();
for (int i = 0; i < 5; i++) {
for (int level = 0; level < dbfull()->NumberLevels()-1; level++) {
dbfull()->TEST_CompactRange(level, nullptr, nullptr);
}
}
env_->no_space_.Release_Store(nullptr);
ASSERT_LT(CountFiles(), num_files + 3);
// Check that compaction attempts slept after errors
ASSERT_GE(env_->sleep_counter_.Read(), 5);
} while (ChangeCompactOptions());
}
TEST(DBTest, NonWritableFileSystem) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 1000;
options.env = env_;
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
env_->non_writable_.Release_Store(env_); // Force errors for new files
std::string big(100000, 'x');
int errors = 0;
for (int i = 0; i < 20; i++) {
if (!Put("foo", big).ok()) {
errors++;
env_->SleepForMicroseconds(100000);
}
}
ASSERT_GT(errors, 0);
env_->non_writable_.Release_Store(nullptr);
} while (ChangeCompactOptions());
}
TEST(DBTest, ManifestWriteError) {
// Test for the following problem:
// (a) Compaction produces file F
// (b) Log record containing F is written to MANIFEST file, but Sync() fails
// (c) GC deletes F
// (d) After reopening DB, reads fail since deleted F is named in log record
// We iterate twice. In the second iteration, everything is the
// same except the log record never makes it to the MANIFEST file.
for (int iter = 0; iter < 2; iter++) {
port::AtomicPointer* error_type = (iter == 0)
? &env_->manifest_sync_error_
: &env_->manifest_write_error_;
// Insert foo=>bar mapping
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.error_if_exists = false;
DestroyAndReopen(&options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_EQ("bar", Get("foo"));
// Memtable compaction (will succeed)
dbfull()->TEST_FlushMemTable();
ASSERT_EQ("bar", Get("foo"));
const int last = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo=>bar is now in last level
// Merging compaction (will fail)
error_type->Release_Store(env_);
dbfull()->TEST_CompactRange(last, nullptr, nullptr); // Should fail
ASSERT_EQ("bar", Get("foo"));
// Recovery: should not lose data
error_type->Release_Store(nullptr);
Reopen(&options);
ASSERT_EQ("bar", Get("foo"));
}
}
TEST(DBTest, FilesDeletedAfterCompaction) {
do {
ASSERT_OK(Put("foo", "v2"));
Compact("a", "z");
const int num_files = CountLiveFiles();
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put("foo", "v2"));
Compact("a", "z");
}
ASSERT_EQ(CountLiveFiles(), num_files);
} while (ChangeCompactOptions());
}
TEST(DBTest, BloomFilter) {
do {
env_->count_random_reads_ = true;
Options options = CurrentOptions();
options.env = env_;
options.block_cache = NewLRUCache(0); // Prevent cache hits
options.filter_policy = NewBloomFilterPolicy(10);
Reopen(&options);
// Populate multiple layers
const int N = 10000;
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i)));
}
Compact("a", "z");
for (int i = 0; i < N; i += 100) {
ASSERT_OK(Put(Key(i), Key(i)));
}
dbfull()->TEST_FlushMemTable();
// Prevent auto compactions triggered by seeks
env_->delay_sstable_sync_.Release_Store(env_);
// Lookup present keys. Should rarely read from small sstable.
env_->random_read_counter_.Reset();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i), Get(Key(i)));
}
int reads = env_->random_read_counter_.Read();
fprintf(stderr, "%d present => %d reads\n", N, reads);
ASSERT_GE(reads, N);
ASSERT_LE(reads, N + 2*N/100);
// Lookup present keys. Should rarely read from either sstable.
env_->random_read_counter_.Reset();
for (int i = 0; i < N; i++) {
ASSERT_EQ("NOT_FOUND", Get(Key(i) + ".missing"));
}
reads = env_->random_read_counter_.Read();
fprintf(stderr, "%d missing => %d reads\n", N, reads);
ASSERT_LE(reads, 3*N/100);
env_->delay_sstable_sync_.Release_Store(nullptr);
Close();
delete options.filter_policy;
} while (ChangeCompactOptions());
}
TEST(DBTest, SnapshotFiles) {
do {
Options options = CurrentOptions();
const EnvOptions soptions;
options.write_buffer_size = 100000000; // Large write buffer
Reopen(&options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), values[i]));
}
// assert that nothing makes it to disk yet.
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
// get a file snapshot
uint64_t manifest_number = 0;
uint64_t manifest_size = 0;
std::vector<std::string> files;
dbfull()->DisableFileDeletions();
dbfull()->GetLiveFiles(files, &manifest_size);
// CURRENT, MANIFEST, *.sst files
ASSERT_EQ(files.size(), 3U);
uint64_t number = 0;
FileType type;
// copy these files to a new snapshot directory
std::string snapdir = dbname_ + ".snapdir/";
std::string mkdir = "mkdir -p " + snapdir;
ASSERT_EQ(system(mkdir.c_str()), 0);
for (unsigned int i = 0; i < files.size(); i++) {
std::string src = dbname_ + "/" + files[i];
std::string dest = snapdir + "/" + files[i];
uint64_t size;
ASSERT_OK(env_->GetFileSize(src, &size));
// record the number and the size of the
// latest manifest file
if (ParseFileName(files[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
if (number > manifest_number) {
manifest_number = number;
ASSERT_GE(size, manifest_size);
size = manifest_size; // copy only valid MANIFEST data
}
}
}
unique_ptr<SequentialFile> srcfile;
ASSERT_OK(env_->NewSequentialFile(src, &srcfile, soptions));
unique_ptr<WritableFile> destfile;
ASSERT_OK(env_->NewWritableFile(dest, &destfile, soptions));
char buffer[4096];
Slice slice;
while (size > 0) {
uint64_t one = std::min(sizeof(buffer), size);
ASSERT_OK(srcfile->Read(one, &slice, buffer));
ASSERT_OK(destfile->Append(slice));
size -= slice.size();
}
ASSERT_OK(destfile->Close());
}
// release file snapshot
dbfull()->DisableFileDeletions();
// overwrite one key, this key should not appear in the snapshot
std::vector<std::string> extras;
for (unsigned int i = 0; i < 1; i++) {
extras.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), extras[i]));
}
// verify that data in the snapshot are correct
Options opts;
DB* snapdb;
opts.create_if_missing = false;
Status stat = DB::Open(opts, snapdir, &snapdb);
ASSERT_OK(stat);
ReadOptions roptions;
std::string val;
for (unsigned int i = 0; i < 80; i++) {
stat = snapdb->Get(roptions, Key(i), &val);
ASSERT_EQ(values[i].compare(val), 0);
}
delete snapdb;
// look at the new live files after we added an 'extra' key
// and after we took the first snapshot.
uint64_t new_manifest_number = 0;
uint64_t new_manifest_size = 0;
std::vector<std::string> newfiles;
dbfull()->DisableFileDeletions();
dbfull()->GetLiveFiles(newfiles, &new_manifest_size);
// find the new manifest file. assert that this manifest file is
// the same one as in the previous snapshot. But its size should be
// larger because we added an extra key after taking the
// previous shapshot.
for (unsigned int i = 0; i < newfiles.size(); i++) {
std::string src = dbname_ + "/" + newfiles[i];
// record the lognumber and the size of the
// latest manifest file
if (ParseFileName(newfiles[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
if (number > new_manifest_number) {
uint64_t size;
new_manifest_number = number;
ASSERT_OK(env_->GetFileSize(src, &size));
ASSERT_GE(size, new_manifest_size);
}
}
}
}
ASSERT_EQ(manifest_number, new_manifest_number);
ASSERT_GT(new_manifest_size, manifest_size);
// release file snapshot
dbfull()->DisableFileDeletions();
} while (ChangeCompactOptions());
}
TEST(DBTest, CompactOnFlush) {
do {
Options options = CurrentOptions();
options.purge_redundant_kvs_while_flush = true;
options.disable_auto_compactions = true;
Reopen(&options);
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ v1 ]");
// Write two new keys
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_FlushMemTable();
// Case1: Delete followed by a put
Delete("foo");
Put("foo", "v2");
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
// After the current memtable is flushed, the DEL should
// have been removed
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ(AllEntriesFor("foo"), "[ v2 ]");
// Case 2: Delete followed by another delete
Delete("foo");
Delete("foo");
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, DEL, v2 ]");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v2 ]");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
// Case 3: Put followed by a delete
Put("foo", "v3");
Delete("foo");
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v3 ]");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL ]");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
// Case 4: Put followed by another Put
Put("foo", "v4");
Put("foo", "v5");
ASSERT_EQ(AllEntriesFor("foo"), "[ v5, v4 ]");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ v5 ]");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ(AllEntriesFor("foo"), "[ v5 ]");
// clear database
Delete("foo");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
// Case 5: Put followed by snapshot followed by another Put
// Both puts should remain.
Put("foo", "v6");
const Snapshot* snapshot = db_->GetSnapshot();
Put("foo", "v7");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ v7, v6 ]");
db_->ReleaseSnapshot(snapshot);
// clear database
Delete("foo");
dbfull()->CompactRange(nullptr, nullptr);
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
// Case 5: snapshot followed by a put followed by another Put
// Only the last put should remain.
const Snapshot* snapshot1 = db_->GetSnapshot();
Put("foo", "v8");
Put("foo", "v9");
ASSERT_OK(dbfull()->TEST_FlushMemTable());
ASSERT_EQ(AllEntriesFor("foo"), "[ v9 ]");
db_->ReleaseSnapshot(snapshot1);
} while (ChangeCompactOptions());
}
std::vector<std::uint64_t> ListLogFiles(Env* env, const std::string& path) {
std::vector<std::string> files;
std::vector<uint64_t> log_files;
env->GetChildren(path, &files);
uint64_t number;
FileType type;
for (size_t i = 0; i < files.size(); ++i) {
if (ParseFileName(files[i], &number, &type)) {
if (type == kLogFile) {
log_files.push_back(number);
}
}
}
return std::move(log_files);
}
TEST(DBTest, WALArchival) {
do {
std::string value(1024, '1');
Options options = CurrentOptions();
options.create_if_missing = true;
options.WAL_ttl_seconds = 1000;
DestroyAndReopen(&options);
// TEST : Create DB with a ttl.
// Put some keys. Count the log files present in the DB just after insert.
// Re-open db. Causes deletion/archival to take place.
// Assert that the files moved under "/archive".
std::string archiveDir = ArchivalDirectory(dbname_);
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 10; ++j) {
ASSERT_OK(Put(Key(10*i+j), value));
}
std::vector<uint64_t> logFiles = ListLogFiles(env_, dbname_);
options.create_if_missing = false;
Reopen(&options);
std::vector<uint64_t> logs = ListLogFiles(env_, archiveDir);
std::set<uint64_t> archivedFiles(logs.begin(), logs.end());
for (auto& log : logFiles) {
ASSERT_TRUE(archivedFiles.find(log) != archivedFiles.end());
}
}
std::vector<uint64_t> logFiles = ListLogFiles(env_, archiveDir);
ASSERT_TRUE(logFiles.size() > 0);
options.WAL_ttl_seconds = 1;
env_->SleepForMicroseconds(2*1000*1000);
Reopen(&options);
logFiles = ListLogFiles(env_, archiveDir);
ASSERT_TRUE(logFiles.size() == 0);
} while (ChangeCompactOptions());
}
TEST(DBTest, WALClear) {
do {
Options options = CurrentOptions();
options.create_if_missing = true;
options.WAL_ttl_seconds = 1;
for (int j = 0; j < 10; ++j)
for (int i = 0; i < 10; ++i)
ASSERT_OK(Put(Key(10*i+j), DummyString(1024)));
Reopen(&options);
std::string archive_dir = ArchivalDirectory(dbname_);
std::vector<std::uint64_t> log_files = ListLogFiles(env_, archive_dir);
ASSERT_TRUE(!log_files.empty());
env_->SleepForMicroseconds(2 * 1000 * 1000);
dbfull()->TEST_PurgeObsoleteteWAL();
log_files = ListLogFiles(env_, archive_dir);
ASSERT_TRUE(log_files.empty());
} while (ChangeCompactOptions());
}
void ExpectRecords(
const int expected_no_records,
std::unique_ptr<TransactionLogIterator>& iter) {
int i = 0;
SequenceNumber lastSequence = 0;
while (iter->Valid()) {
BatchResult res = iter->GetBatch();
ASSERT_TRUE(res.sequence > lastSequence);
++i;
lastSequence = res.sequence;
ASSERT_OK(iter->status());
iter->Next();
}
ASSERT_EQ(i, expected_no_records);
}
TEST(DBTest, TransactionLogIterator) {
do {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
Put("key1", DummyString(1024));
Put("key2", DummyString(1024));
Put("key2", DummyString(1024));
ASSERT_EQ(dbfull()->GetLatestSequenceNumber(), 3U);
{
auto iter = OpenTransactionLogIter(0);
ExpectRecords(3, iter);
}
Reopen(&options);
env_->SleepForMicroseconds(2 * 1000 * 1000);{
Put("key4", DummyString(1024));
Put("key5", DummyString(1024));
Put("key6", DummyString(1024));
}
{
auto iter = OpenTransactionLogIter(0);
ExpectRecords(6, iter);
}
} while (ChangeCompactOptions());
}
TEST(DBTest, TransactionLogIteratorMoveOverZeroFiles) {
do {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
// Do a plain Reopen.
Put("key1", DummyString(1024));
// Two reopens should create a zero record WAL file.
Reopen(&options);
Reopen(&options);
Put("key2", DummyString(1024));
auto iter = OpenTransactionLogIter(0);
ExpectRecords(2, iter);
} while (ChangeCompactOptions());
}
TEST(DBTest, TransactionLogIteratorStallAtLastRecord) {
do {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
Put("key1", DummyString(1024));
auto iter = OpenTransactionLogIter(0);
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
iter->Next();
ASSERT_TRUE(!iter->Valid());
ASSERT_OK(iter->status());
Put("key2", DummyString(1024));
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
} while (ChangeCompactOptions());
}
TEST(DBTest, TransactionLogIteratorJustEmptyFile) {
do {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
unique_ptr<TransactionLogIterator> iter;
Status status = dbfull()->GetUpdatesSince(0, &iter);
// Check that an empty iterator is returned
ASSERT_TRUE(!iter->Valid());
} while (ChangeCompactOptions());
}
TEST(DBTest, TransactionLogIteratorCheckAfterRestart) {
do {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
Put("key1", DummyString(1024));
Put("key2", DummyString(1023));
dbfull()->Flush(FlushOptions());
Reopen(&options);
auto iter = OpenTransactionLogIter(0);
ExpectRecords(2, iter);
} while (ChangeCompactOptions());
}
TEST(DBTest, TransactionLogIteratorBatchOperations) {
do {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
WriteBatch batch;
batch.Put("key1", DummyString(1024));
batch.Put("key2", DummyString(1024));
batch.Put("key3", DummyString(1024));
batch.Delete("key2");
dbfull()->Write(WriteOptions(), &batch);
dbfull()->Flush(FlushOptions());
Reopen(&options);
Put("key4", DummyString(1024));
auto iter = OpenTransactionLogIter(3);
ExpectRecords(2, iter);
} while (ChangeCompactOptions());
}
TEST(DBTest, TransactionLogIteratorBlobs) {
Options options = OptionsForLogIterTest();
DestroyAndReopen(&options);
{
WriteBatch batch;
batch.Put("key1", DummyString(1024));
batch.Put("key2", DummyString(1024));
batch.PutLogData(Slice("blob1"));
batch.Put("key3", DummyString(1024));
batch.PutLogData(Slice("blob2"));
batch.Delete("key2");
dbfull()->Write(WriteOptions(), &batch);
Reopen(&options);
}
auto res = OpenTransactionLogIter(0)->GetBatch();
struct Handler : public WriteBatch::Handler {
std::string seen;
virtual void Put(const Slice& key, const Slice& value) {
seen += "Put(" + key.ToString() + ", " + std::to_string(value.size()) +
")";
}
virtual void Merge(const Slice& key, const Slice& value) {
seen += "Merge(" + key.ToString() + ", " + std::to_string(value.size()) +
")";
}
virtual void LogData(const Slice& blob) {
seen += "LogData(" + blob.ToString() + ")";
}
virtual void Delete(const Slice& key) {
seen += "Delete(" + key.ToString() + ")";
}
} handler;
res.writeBatchPtr->Iterate(&handler);
ASSERT_EQ("Put(key1, 1024)"
"Put(key2, 1024)"
"LogData(blob1)"
"Put(key3, 1024)"
"LogData(blob2)"
"Delete(key2)", handler.seen);
}
TEST(DBTest, ReadCompaction) {
std::string value(4096, '4'); // a string of size 4K
{
Options options = CurrentOptions();
options.create_if_missing = true;
options.max_open_files = 20; // only 10 file in file-cache
options.target_file_size_base = 512;
options.write_buffer_size = 64 * 1024;
options.filter_policy = nullptr;
options.block_size = 4096;
options.block_cache = NewLRUCache(0); // Prevent cache hits
Reopen(&options);
// Write 8MB (2000 values, each 4K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 2000; i++) {
ASSERT_OK(Put(Key(i), value));
}
// clear level 0 and 1 if necessary.
dbfull()->TEST_FlushMemTable();
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
// write some new keys into level 0
for (int i = 0; i < 2000; i = i + 16) {
ASSERT_OK(Put(Key(i), value));
}
dbfull()->Flush(FlushOptions());
// Wait for any write compaction to finish
dbfull()->TEST_WaitForCompact();
// remember number of files in each level
int l1 = NumTableFilesAtLevel(0);
int l2 = NumTableFilesAtLevel(1);
int l3 = NumTableFilesAtLevel(3);
ASSERT_NE(NumTableFilesAtLevel(0), 0);
ASSERT_NE(NumTableFilesAtLevel(1), 0);
ASSERT_NE(NumTableFilesAtLevel(2), 0);
// read a bunch of times, trigger read compaction
for (int j = 0; j < 100; j++) {
for (int i = 0; i < 2000; i++) {
Get(Key(i));
}
}
// wait for read compaction to finish
env_->SleepForMicroseconds(1000000);
// verify that the number of files have decreased
// in some level, indicating that there was a compaction
ASSERT_TRUE(NumTableFilesAtLevel(0) < l1 ||
NumTableFilesAtLevel(1) < l2 ||
NumTableFilesAtLevel(2) < l3);
}
}
// Multi-threaded test:
namespace {
static const int kNumThreads = 4;
static const int kTestSeconds = 10;
static const int kNumKeys = 1000;
struct MTState {
DBTest* test;
port::AtomicPointer stop;
port::AtomicPointer counter[kNumThreads];
port::AtomicPointer thread_done[kNumThreads];
};
struct MTThread {
MTState* state;
int id;
};
static void MTThreadBody(void* arg) {
MTThread* t = reinterpret_cast<MTThread*>(arg);
int id = t->id;
DB* db = t->state->test->db_;
uintptr_t counter = 0;
fprintf(stderr, "... starting thread %d\n", id);
Random rnd(1000 + id);
std::string value;
char valbuf[1500];
while (t->state->stop.Acquire_Load() == nullptr) {
t->state->counter[id].Release_Store(reinterpret_cast<void*>(counter));
int key = rnd.Uniform(kNumKeys);
char keybuf[20];
snprintf(keybuf, sizeof(keybuf), "%016d", key);
if (rnd.OneIn(2)) {
// Write values of the form <key, my id, counter>.
// We add some padding for force compactions.
snprintf(valbuf, sizeof(valbuf), "%d.%d.%-1000d",
key, id, static_cast<int>(counter));
ASSERT_OK(t->state->test->Put(Slice(keybuf), Slice(valbuf)));
} else {
// Read a value and verify that it matches the pattern written above.
Status s = db->Get(ReadOptions(), Slice(keybuf), &value);
if (s.IsNotFound()) {
// Key has not yet been written
} else {
// Check that the writer thread counter is >= the counter in the value
ASSERT_OK(s);
int k, w, c;
ASSERT_EQ(3, sscanf(value.c_str(), "%d.%d.%d", &k, &w, &c)) << value;
ASSERT_EQ(k, key);
ASSERT_GE(w, 0);
ASSERT_LT(w, kNumThreads);
ASSERT_LE((unsigned int)c, reinterpret_cast<uintptr_t>(
t->state->counter[w].Acquire_Load()));
}
}
counter++;
}
t->state->thread_done[id].Release_Store(t);
fprintf(stderr, "... stopping thread %d after %d ops\n", id, int(counter));
}
} // namespace
TEST(DBTest, MultiThreaded) {
do {
// Initialize state
MTState mt;
mt.test = this;
mt.stop.Release_Store(0);
for (int id = 0; id < kNumThreads; id++) {
mt.counter[id].Release_Store(0);
mt.thread_done[id].Release_Store(0);
}
// Start threads
MTThread thread[kNumThreads];
for (int id = 0; id < kNumThreads; id++) {
thread[id].state = &mt;
thread[id].id = id;
env_->StartThread(MTThreadBody, &thread[id]);
}
// Let them run for a while
env_->SleepForMicroseconds(kTestSeconds * 1000000);
// Stop the threads and wait for them to finish
mt.stop.Release_Store(&mt);
for (int id = 0; id < kNumThreads; id++) {
while (mt.thread_done[id].Acquire_Load() == nullptr) {
env_->SleepForMicroseconds(100000);
}
}
} while (ChangeOptions());
}
namespace {
typedef std::map<std::string, std::string> KVMap;
}
class ModelDB: public DB {
public:
class ModelSnapshot : public Snapshot {
public:
KVMap map_;
};
explicit ModelDB(const Options& options): options_(options) { }
virtual Status Put(const WriteOptions& o, const Slice& k, const Slice& v) {
return DB::Put(o, k, v);
}
virtual Status Merge(const WriteOptions& o, const Slice& k, const Slice& v) {
return DB::Merge(o, k, v);
}
virtual Status Delete(const WriteOptions& o, const Slice& key) {
return DB::Delete(o, key);
}
virtual Status Get(const ReadOptions& options,
const Slice& key, std::string* value) {
return Status::NotSupported(key);
}
virtual std::vector<Status> MultiGet(const ReadOptions& options,
const std::vector<Slice>& keys,
std::vector<std::string>* values) {
std::vector<Status> s(keys.size(),
Status::NotSupported("Not implemented."));
return s;
}
virtual bool KeyMayExist(const ReadOptions& options,
const Slice& key,
std::string* value,
bool* value_found = nullptr) {
if (value_found != nullptr) {
*value_found = false;
}
return true; // Not Supported directly
}
virtual Iterator* NewIterator(const ReadOptions& options) {
if (options.snapshot == nullptr) {
KVMap* saved = new KVMap;
*saved = map_;
return new ModelIter(saved, true);
} else {
const KVMap* snapshot_state =
&(reinterpret_cast<const ModelSnapshot*>(options.snapshot)->map_);
return new ModelIter(snapshot_state, false);
}
}
virtual const Snapshot* GetSnapshot() {
ModelSnapshot* snapshot = new ModelSnapshot;
snapshot->map_ = map_;
return snapshot;
}
virtual void ReleaseSnapshot(const Snapshot* snapshot) {
delete reinterpret_cast<const ModelSnapshot*>(snapshot);
}
virtual Status Write(const WriteOptions& options, WriteBatch* batch) {
class Handler : public WriteBatch::Handler {
public:
KVMap* map_;
virtual void Put(const Slice& key, const Slice& value) {
(*map_)[key.ToString()] = value.ToString();
}
virtual void Merge(const Slice& key, const Slice& value) {
// ignore merge for now
//(*map_)[key.ToString()] = value.ToString();
}
virtual void Delete(const Slice& key) {
map_->erase(key.ToString());
}
};
Handler handler;
handler.map_ = &map_;
return batch->Iterate(&handler);
}
virtual bool GetProperty(const Slice& property, std::string* value) {
return false;
}
virtual void GetApproximateSizes(const Range* r, int n, uint64_t* sizes) {
for (int i = 0; i < n; i++) {
sizes[i] = 0;
}
}
virtual void CompactRange(const Slice* start, const Slice* end,
bool reduce_level, int target_level) {
}
virtual int NumberLevels()
{
return 1;
}
virtual int MaxMemCompactionLevel()
{
return 1;
}
virtual int Level0StopWriteTrigger()
{
return -1;
}
virtual Status Flush(const rocksdb::FlushOptions& options) {
Status ret;
return ret;
}
virtual Status DisableFileDeletions() {
return Status::OK();
}
virtual Status EnableFileDeletions() {
return Status::OK();
}
virtual Status GetLiveFiles(std::vector<std::string>&, uint64_t* size,
bool flush_memtable = true) {
return Status::OK();
}
virtual Status GetSortedWalFiles(VectorLogPtr& files) {
return Status::OK();
}
virtual Status DeleteWalFiles(const VectorLogPtr& files) {
return Status::OK();
}
virtual SequenceNumber GetLatestSequenceNumber() {
return 0;
}
virtual Status GetUpdatesSince(rocksdb::SequenceNumber,
unique_ptr<rocksdb::TransactionLogIterator>*) {
return Status::NotSupported("Not supported in Model DB");
}
private:
class ModelIter: public Iterator {
public:
ModelIter(const KVMap* map, bool owned)
: map_(map), owned_(owned), iter_(map_->end()) {
}
~ModelIter() {
if (owned_) delete map_;
}
virtual bool Valid() const { return iter_ != map_->end(); }
virtual void SeekToFirst() { iter_ = map_->begin(); }
virtual void SeekToLast() {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
virtual void Seek(const Slice& k) {
iter_ = map_->lower_bound(k.ToString());
}
virtual void Next() { ++iter_; }
virtual void Prev() { --iter_; }
virtual Slice key() const { return iter_->first; }
virtual Slice value() const { return iter_->second; }
virtual Status status() const { return Status::OK(); }
private:
const KVMap* const map_;
const bool owned_; // Do we own map_
KVMap::const_iterator iter_;
};
const Options options_;
KVMap map_;
};
static std::string RandomKey(Random* rnd, int minimum = 0) {
int len;
do {
len = (rnd->OneIn(3)
? 1 // Short sometimes to encourage collisions
: (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
} while (len < minimum);
return test::RandomKey(rnd, len);
}
static bool CompareIterators(int step,
DB* model,
DB* db,
const Snapshot* model_snap,
const Snapshot* db_snap) {
ReadOptions options;
options.snapshot = model_snap;
Iterator* miter = model->NewIterator(options);
options.snapshot = db_snap;
Iterator* dbiter = db->NewIterator(options);
bool ok = true;
int count = 0;
for (miter->SeekToFirst(), dbiter->SeekToFirst();
ok && miter->Valid() && dbiter->Valid();
miter->Next(), dbiter->Next()) {
count++;
if (miter->key().compare(dbiter->key()) != 0) {
fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(dbiter->key()).c_str());
ok = false;
break;
}
if (miter->value().compare(dbiter->value()) != 0) {
fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(miter->value()).c_str(),
EscapeString(miter->value()).c_str());
ok = false;
}
}
if (ok) {
if (miter->Valid() != dbiter->Valid()) {
fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
step, miter->Valid(), dbiter->Valid());
ok = false;
}
}
delete miter;
delete dbiter;
return ok;
}
TEST(DBTest, Randomized) {
Random rnd(test::RandomSeed());
do {
ModelDB model(CurrentOptions());
const int N = 10000;
const Snapshot* model_snap = nullptr;
const Snapshot* db_snap = nullptr;
std::string k, v;
for (int step = 0; step < N; step++) {
// TODO(sanjay): Test Get() works
int p = rnd.Uniform(100);
int minimum = 0;
if (option_config_ == kPrefixHashRep) {
minimum = 1;
}
if (p < 45) { // Put
k = RandomKey(&rnd, minimum);
v = RandomString(&rnd,
rnd.OneIn(20)
? 100 + rnd.Uniform(100)
: rnd.Uniform(8));
ASSERT_OK(model.Put(WriteOptions(), k, v));
ASSERT_OK(db_->Put(WriteOptions(), k, v));
} else if (p < 90) { // Delete
k = RandomKey(&rnd, minimum);
ASSERT_OK(model.Delete(WriteOptions(), k));
ASSERT_OK(db_->Delete(WriteOptions(), k));
} else { // Multi-element batch
WriteBatch b;
const int num = rnd.Uniform(8);
for (int i = 0; i < num; i++) {
if (i == 0 || !rnd.OneIn(10)) {
k = RandomKey(&rnd, minimum);
} else {
// Periodically re-use the same key from the previous iter, so
// we have multiple entries in the write batch for the same key
}
if (rnd.OneIn(2)) {
v = RandomString(&rnd, rnd.Uniform(10));
b.Put(k, v);
} else {
b.Delete(k);
}
}
ASSERT_OK(model.Write(WriteOptions(), &b));
ASSERT_OK(db_->Write(WriteOptions(), &b));
}
if ((step % 100) == 0) {
ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
// Save a snapshot from each DB this time that we'll use next
// time we compare things, to make sure the current state is
// preserved with the snapshot
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
Reopen();
ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
model_snap = model.GetSnapshot();
db_snap = db_->GetSnapshot();
}
}
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
} while (ChangeOptions(kSkipDeletesFilterFirst));
}
TEST(DBTest, MultiGetSimple) {
do {
ASSERT_OK(db_->Put(WriteOptions(),"k1","v1"));
ASSERT_OK(db_->Put(WriteOptions(),"k2","v2"));
ASSERT_OK(db_->Put(WriteOptions(),"k3","v3"));
ASSERT_OK(db_->Put(WriteOptions(),"k4","v4"));
ASSERT_OK(db_->Delete(WriteOptions(),"k4"));
ASSERT_OK(db_->Put(WriteOptions(),"k5","v5"));
ASSERT_OK(db_->Delete(WriteOptions(),"no_key"));
std::vector<Slice> keys(6);
keys[0] = "k1";
keys[1] = "k2";
keys[2] = "k3";
keys[3] = "k4";
keys[4] = "k5";
keys[5] = "no_key";
std::vector<std::string> values(20,"Temporary data to be overwritten");
std::vector<Status> s = db_->MultiGet(ReadOptions(),keys,&values);
ASSERT_EQ(values.size(),keys.size());
ASSERT_EQ(values[0], "v1");
ASSERT_EQ(values[1], "v2");
ASSERT_EQ(values[2], "v3");
ASSERT_EQ(values[4], "v5");
ASSERT_OK(s[0]);
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_TRUE(s[3].IsNotFound());
ASSERT_OK(s[4]);
ASSERT_TRUE(s[5].IsNotFound());
} while (ChangeCompactOptions());
}
TEST(DBTest, MultiGetEmpty) {
do {
// Empty Key Set
std::vector<Slice> keys;
std::vector<std::string> values;
std::vector<Status> s = db_->MultiGet(ReadOptions(),keys,&values);
ASSERT_EQ((int)s.size(),0);
// Empty Database, Empty Key Set
DestroyAndReopen();
s = db_->MultiGet(ReadOptions(), keys, &values);
ASSERT_EQ((int)s.size(),0);
// Empty Database, Search for Keys
keys.resize(2);
keys[0] = "a";
keys[1] = "b";
s = db_->MultiGet(ReadOptions(),keys,&values);
ASSERT_EQ((int)s.size(), 2);
ASSERT_TRUE(s[0].IsNotFound() && s[1].IsNotFound());
} while (ChangeCompactOptions());
}
void PrefixScanInit(DBTest *dbtest) {
char buf[100];
std::string keystr;
const int small_range_sstfiles = 5;
const int big_range_sstfiles = 5;
// Generate 11 sst files with the following prefix ranges.
// GROUP 0: [0,10] (level 1)
// GROUP 1: [1,2], [2,3], [3,4], [4,5], [5, 6] (level 0)
// GROUP 2: [0,6], [0,7], [0,8], [0,9], [0,10] (level 0)
//
// A seek with the previous API would do 11 random I/Os (to all the
// files). With the new API and a prefix filter enabled, we should
// only do 2 random I/O, to the 2 files containing the key.
// GROUP 0
snprintf(buf, sizeof(buf), "%02d______:start", 0);
keystr = std::string(buf);
ASSERT_OK(dbtest->Put(keystr, keystr));
snprintf(buf, sizeof(buf), "%02d______:end", 10);
keystr = std::string(buf);
ASSERT_OK(dbtest->Put(keystr, keystr));
dbtest->dbfull()->TEST_FlushMemTable();
dbtest->dbfull()->CompactRange(nullptr, nullptr); // move to level 1
// GROUP 1
for (int i = 1; i <= small_range_sstfiles; i++) {
snprintf(buf, sizeof(buf), "%02d______:start", i);
keystr = std::string(buf);
ASSERT_OK(dbtest->Put(keystr, keystr));
snprintf(buf, sizeof(buf), "%02d______:end", i+1);
keystr = std::string(buf);
ASSERT_OK(dbtest->Put(keystr, keystr));
dbtest->dbfull()->TEST_FlushMemTable();
}
// GROUP 2
for (int i = 1; i <= big_range_sstfiles; i++) {
std::string keystr;
snprintf(buf, sizeof(buf), "%02d______:start", 0);
keystr = std::string(buf);
ASSERT_OK(dbtest->Put(keystr, keystr));
snprintf(buf, sizeof(buf), "%02d______:end",
small_range_sstfiles+i+1);
keystr = std::string(buf);
ASSERT_OK(dbtest->Put(keystr, keystr));
dbtest->dbfull()->TEST_FlushMemTable();
}
}
TEST(DBTest, PrefixScan) {
ReadOptions ro = ReadOptions();
int count;
Slice prefix;
Slice key;
char buf[100];
Iterator* iter;
snprintf(buf, sizeof(buf), "03______:");
prefix = Slice(buf, 8);
key = Slice(buf, 9);
auto prefix_extractor = NewFixedPrefixTransform(8);
auto memtable_factory =
std::make_shared<PrefixHashRepFactory>(prefix_extractor);
// db configs
env_->count_random_reads_ = true;
Options options = CurrentOptions();
options.env = env_;
options.block_cache = NewLRUCache(0); // Prevent cache hits
options.filter_policy = NewBloomFilterPolicy(10);
options.prefix_extractor = prefix_extractor;
options.whole_key_filtering = false;
options.disable_auto_compactions = true;
options.max_background_compactions = 2;
options.create_if_missing = true;
options.disable_seek_compaction = true;
options.memtable_factory = memtable_factory;
// prefix specified, with blooms: 2 RAND I/Os
// SeekToFirst
DestroyAndReopen(&options);
PrefixScanInit(this);
count = 0;
env_->random_read_counter_.Reset();
ro.prefix = &prefix;
iter = db_->NewIterator(ro);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
assert(iter->key().starts_with(prefix));
count++;
}
ASSERT_OK(iter->status());
delete iter;
ASSERT_EQ(count, 2);
ASSERT_EQ(env_->random_read_counter_.Read(), 2);
// prefix specified, with blooms: 2 RAND I/Os
// Seek
DestroyAndReopen(&options);
PrefixScanInit(this);
count = 0;
env_->random_read_counter_.Reset();
ro.prefix = &prefix;
iter = db_->NewIterator(ro);
for (iter->Seek(key); iter->Valid(); iter->Next()) {
assert(iter->key().starts_with(prefix));
count++;
}
ASSERT_OK(iter->status());
delete iter;
ASSERT_EQ(count, 2);
ASSERT_EQ(env_->random_read_counter_.Read(), 2);
// no prefix specified: 11 RAND I/Os
DestroyAndReopen(&options);
PrefixScanInit(this);
count = 0;
env_->random_read_counter_.Reset();
iter = db_->NewIterator(ReadOptions());
for (iter->Seek(prefix); iter->Valid(); iter->Next()) {
if (! iter->key().starts_with(prefix)) {
break;
}
count++;
}
ASSERT_OK(iter->status());
delete iter;
ASSERT_EQ(count, 2);
ASSERT_EQ(env_->random_read_counter_.Read(), 11);
Close();
delete options.filter_policy;
}
std::string MakeKey(unsigned int num) {
char buf[30];
snprintf(buf, sizeof(buf), "%016u", num);
return std::string(buf);
}
void BM_LogAndApply(int iters, int num_base_files) {
std::string dbname = test::TmpDir() + "/rocksdb_test_benchmark";
ASSERT_OK(DestroyDB(dbname, Options()));
DB* db = nullptr;
Options opts;
opts.create_if_missing = true;
Status s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
Env* env = Env::Default();
port::Mutex mu;
MutexLock l(&mu);
InternalKeyComparator cmp(BytewiseComparator());
Options options;
EnvOptions sopt;
VersionSet vset(dbname, &options, sopt, nullptr, &cmp);
ASSERT_OK(vset.Recover());
VersionEdit vbase(vset.NumberLevels());
uint64_t fnum = 1;
for (int i = 0; i < num_base_files; i++) {
InternalKey start(MakeKey(2*fnum), 1, kTypeValue);
InternalKey limit(MakeKey(2*fnum+1), 1, kTypeDeletion);
vbase.AddFile(2, fnum++, 1 /* file size */, start, limit, 1, 1);
}
ASSERT_OK(vset.LogAndApply(&vbase, &mu));
uint64_t start_micros = env->NowMicros();
for (int i = 0; i < iters; i++) {
VersionEdit vedit(vset.NumberLevels());
vedit.DeleteFile(2, fnum);
InternalKey start(MakeKey(2*fnum), 1, kTypeValue);
InternalKey limit(MakeKey(2*fnum+1), 1, kTypeDeletion);
vedit.AddFile(2, fnum++, 1 /* file size */, start, limit, 1, 1);
vset.LogAndApply(&vedit, &mu);
}
uint64_t stop_micros = env->NowMicros();
unsigned int us = stop_micros - start_micros;
char buf[16];
snprintf(buf, sizeof(buf), "%d", num_base_files);
fprintf(stderr,
"BM_LogAndApply/%-6s %8d iters : %9u us (%7.0f us / iter)\n",
buf, iters, us, ((float)us) / iters);
}
} // namespace rocksdb
int main(int argc, char** argv) {
if (argc > 1 && std::string(argv[1]) == "--benchmark") {
rocksdb::BM_LogAndApply(1000, 1);
rocksdb::BM_LogAndApply(1000, 100);
rocksdb::BM_LogAndApply(1000, 10000);
rocksdb::BM_LogAndApply(100, 100000);
return 0;
}
return rocksdb::test::RunAllTests();
}