rocksdb/db/log_writer.h

114 lines
3.8 KiB
C
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <stdint.h>
#include <memory>
#include "db/log_format.h"
#include "rocksdb/slice.h"
#include "rocksdb/status.h"
namespace rocksdb {
class WritableFileWriter;
using std::unique_ptr;
namespace log {
/**
* Writer is a general purpose log stream writer. It provides an append-only
* abstraction for writing data. The details of the how the data is written is
* handled by the WriteableFile sub-class implementation.
*
* File format:
*
* File is broken down into variable sized records. The format of each record
* is described below.
* +-----+-------------+--+----+----------+------+-- ... ----+
* File | r0 | r1 |P | r2 | r3 | r4 | |
* +-----+-------------+--+----+----------+------+-- ... ----+
* <--- kBlockSize ------>|<-- kBlockSize ------>|
* rn = variable size records
* P = Padding
*
* Data is written out in kBlockSize chunks. If next record does not fit
* into the space left, the leftover space will be padded with \0.
*
* Legacy record format:
*
* +---------+-----------+-----------+--- ... ---+
* |CRC (4B) | Size (2B) | Type (1B) | Payload |
* +---------+-----------+-----------+--- ... ---+
*
* CRC = 32bit hash computed over the record type and payload using CRC
* Size = Length of the payload data
* Type = Type of record
* (kZeroType, kFullType, kFirstType, kLastType, kMiddleType )
* The type is used to group a bunch of records together to represent
* blocks that are larger than kBlockSize
* Payload = Byte stream as long as specified by the payload size
*
* Recyclable record format:
*
* +---------+-----------+-----------+----------------+--- ... ---+
* |CRC (4B) | Size (2B) | Type (1B) | Log number (4B)| Payload |
* +---------+-----------+-----------+----------------+--- ... ---+
*
* Same as above, with the addition of
* Log number = 32bit log file number, so that we can distinguish between
* records written by the most recent log writer vs a previous one.
*/
class Writer {
public:
// Create a writer that will append data to "*dest".
// "*dest" must be initially empty.
// "*dest" must remain live while this Writer is in use.
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
explicit Writer(unique_ptr<WritableFileWriter>&& dest, uint64_t log_number,
bool recycle_log_files, bool manual_flush = false);
~Writer();
Status AddRecord(const Slice& slice);
WritableFileWriter* file() { return dest_.get(); }
const WritableFileWriter* file() const { return dest_.get(); }
uint64_t get_log_number() const { return log_number_; }
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
Status WriteBuffer();
bool TEST_BufferIsEmpty();
private:
unique_ptr<WritableFileWriter> dest_;
size_t block_offset_; // Current offset in block
uint64_t log_number_;
bool recycle_log_files_;
// crc32c values for all supported record types. These are
// pre-computed to reduce the overhead of computing the crc of the
// record type stored in the header.
uint32_t type_crc_[kMaxRecordType + 1];
Status EmitPhysicalRecord(RecordType type, const char* ptr, size_t length);
Optimize for serial commits in 2PC Summary: Throughput: 46k tps in our sysbench settings (filling the details later) The idea is to have the simplest change that gives us a reasonable boost in 2PC throughput. Major design changes: 1. The WAL file internal buffer is not flushed after each write. Instead it is flushed before critical operations (WAL copy via fs) or when FlushWAL is called by MySQL. Flushing the WAL buffer is also protected via mutex_. 2. Use two sequence numbers: last seq, and last seq for write. Last seq is the last visible sequence number for reads. Last seq for write is the next sequence number that should be used to write to WAL/memtable. This allows to have a memtable write be in parallel to WAL writes. 3. BatchGroup is not used for writes. This means that we can have parallel writers which changes a major assumption in the code base. To accommodate for that i) allow only 1 WriteImpl that intends to write to memtable via mem_mutex_--which is fine since in 2PC almost all of the memtable writes come via group commit phase which is serial anyway, ii) make all the parts in the code base that assumed to be the only writer (via EnterUnbatched) to also acquire mem_mutex_, iii) stat updates are protected via a stat_mutex_. Note: the first commit has the approach figured out but is not clean. Submitting the PR anyway to get the early feedback on the approach. If we are ok with the approach I will go ahead with this updates: 0) Rebase with Yi's pipelining changes 1) Currently batching is disabled by default to make sure that it will be consistent with all unit tests. Will make this optional via a config. 2) A couple of unit tests are disabled. They need to be updated with the serial commit of 2PC taken into account. 3) Replacing BatchGroup with mem_mutex_ got a bit ugly as it requires releasing mutex_ beforehand (the same way EnterUnbatched does). This needs to be cleaned up. Closes https://github.com/facebook/rocksdb/pull/2345 Differential Revision: D5210732 Pulled By: maysamyabandeh fbshipit-source-id: 78653bd95a35cd1e831e555e0e57bdfd695355a4
2017-06-24 23:06:43 +02:00
// If true, it does not flush after each write. Instead it relies on the upper
// layer to manually does the flush by calling ::WriteBuffer()
bool manual_flush_;
// No copying allowed
Writer(const Writer&);
void operator=(const Writer&);
};
} // namespace log
} // namespace rocksdb