2019-06-11 21:18:37 +02:00
|
|
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
#ifdef GFLAGS
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
2019-07-26 23:36:16 +02:00
|
|
|
#include "tools/block_cache_analyzer/block_cache_trace_analyzer.h"
|
2019-06-11 21:18:37 +02:00
|
|
|
|
2019-07-23 02:47:54 +02:00
|
|
|
#include <algorithm>
|
2019-06-11 21:18:37 +02:00
|
|
|
#include <cinttypes>
|
2019-07-23 02:47:54 +02:00
|
|
|
#include <cstdio>
|
|
|
|
#include <cstdlib>
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
#include <fstream>
|
|
|
|
#include <iomanip>
|
|
|
|
#include <iostream>
|
2019-11-27 01:55:46 +01:00
|
|
|
#include <memory>
|
2019-07-23 02:47:54 +02:00
|
|
|
#include <random>
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
#include <sstream>
|
2019-07-23 02:47:54 +02:00
|
|
|
|
2019-06-11 21:18:37 +02:00
|
|
|
#include "monitoring/histogram.h"
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
#include "util/gflags_compat.h"
|
|
|
|
#include "util/string_util.h"
|
|
|
|
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
|
|
|
|
DEFINE_string(block_cache_trace_path, "", "The trace file path.");
|
2019-08-09 22:09:04 +02:00
|
|
|
DEFINE_bool(is_block_cache_human_readable_trace, false,
|
|
|
|
"Is the trace file provided for analysis generated by running "
|
|
|
|
"block_cache_trace_analyzer with "
|
|
|
|
"FLAGS_human_readable_trace_file_path is specified.");
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
DEFINE_string(
|
|
|
|
block_cache_sim_config_path, "",
|
|
|
|
"The config file path. One cache configuration per line. The format of a "
|
|
|
|
"cache configuration is "
|
2019-07-11 21:40:08 +02:00
|
|
|
"cache_name,num_shard_bits,ghost_capacity,cache_capacity_1,...,cache_"
|
|
|
|
"capacity_N. Supported cache names are lru, lru_priority, lru_hybrid, and "
|
|
|
|
"lru_hybrid_no_insert_on_row_miss. User may also add a prefix 'ghost_' to "
|
|
|
|
"a cache_name to add a ghost cache in front of the real cache. "
|
|
|
|
"ghost_capacity and cache_capacity can be xK, xM or xG where x is a "
|
|
|
|
"positive number.");
|
2019-06-19 03:34:39 +02:00
|
|
|
DEFINE_int32(block_cache_trace_downsample_ratio, 1,
|
|
|
|
"The trace collected accesses on one in every "
|
|
|
|
"block_cache_trace_downsample_ratio blocks. We scale "
|
|
|
|
"down the simulated cache size by this ratio.");
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
DEFINE_bool(print_block_size_stats, false,
|
|
|
|
"Print block size distribution and the distribution break down by "
|
|
|
|
"block type and column family.");
|
|
|
|
DEFINE_bool(print_access_count_stats, false,
|
|
|
|
"Print access count distribution and the distribution break down "
|
|
|
|
"by block type and column family.");
|
|
|
|
DEFINE_bool(print_data_block_access_count_stats, false,
|
|
|
|
"Print data block accesses by user Get and Multi-Get.");
|
|
|
|
DEFINE_int32(cache_sim_warmup_seconds, 0,
|
|
|
|
"The number of seconds to warmup simulated caches. The hit/miss "
|
|
|
|
"counters are reset after the warmup completes.");
|
2019-07-13 01:52:15 +02:00
|
|
|
DEFINE_int32(analyze_bottom_k_access_count_blocks, 0,
|
|
|
|
"Print out detailed access information for blocks with their "
|
|
|
|
"number of accesses are the bottom k among all blocks.");
|
|
|
|
DEFINE_int32(analyze_top_k_access_count_blocks, 0,
|
|
|
|
"Print out detailed access information for blocks with their "
|
|
|
|
"number of accesses are the top k among all blocks.");
|
|
|
|
DEFINE_string(block_cache_analysis_result_dir, "",
|
|
|
|
"The directory that saves block cache analysis results.");
|
2019-06-25 05:38:20 +02:00
|
|
|
DEFINE_string(
|
|
|
|
timeline_labels, "",
|
|
|
|
"Group the number of accesses per block per second using these labels. "
|
|
|
|
"Possible labels are a combination of the following: cf (column family), "
|
|
|
|
"sst, level, bt (block type), caller, block. For example, label \"cf_bt\" "
|
|
|
|
"means the number of acccess per second is grouped by unique pairs of "
|
|
|
|
"\"cf_bt\". A label \"all\" contains the aggregated number of accesses per "
|
|
|
|
"second across all possible labels.");
|
|
|
|
DEFINE_string(reuse_distance_labels, "",
|
|
|
|
"Group the reuse distance of a block using these labels. Reuse "
|
|
|
|
"distance is defined as the cumulated size of unique blocks read "
|
|
|
|
"between two consecutive accesses on the same block.");
|
|
|
|
DEFINE_string(
|
|
|
|
reuse_distance_buckets, "",
|
|
|
|
"Group blocks by their reuse distances given these buckets. For "
|
|
|
|
"example, if 'reuse_distance_buckets' is '1K,1M,1G', we will "
|
|
|
|
"create four buckets. The first three buckets contain the number of "
|
|
|
|
"blocks with reuse distance less than 1KB, between 1K and 1M, between 1M "
|
|
|
|
"and 1G, respectively. The last bucket contains the number of blocks with "
|
|
|
|
"reuse distance larger than 1G. ");
|
|
|
|
DEFINE_string(
|
|
|
|
reuse_interval_labels, "",
|
|
|
|
"Group the reuse interval of a block using these labels. Reuse "
|
|
|
|
"interval is defined as the time between two consecutive accesses "
|
|
|
|
"on the same block.");
|
|
|
|
DEFINE_string(
|
|
|
|
reuse_interval_buckets, "",
|
|
|
|
"Group blocks by their reuse interval given these buckets. For "
|
|
|
|
"example, if 'reuse_distance_buckets' is '1,10,100', we will "
|
|
|
|
"create four buckets. The first three buckets contain the number of "
|
|
|
|
"blocks with reuse interval less than 1 second, between 1 second and 10 "
|
|
|
|
"seconds, between 10 seconds and 100 seconds, respectively. The last "
|
|
|
|
"bucket contains the number of blocks with reuse interval longer than 100 "
|
|
|
|
"seconds.");
|
2019-07-13 01:52:15 +02:00
|
|
|
DEFINE_string(
|
|
|
|
reuse_lifetime_labels, "",
|
|
|
|
"Group the reuse lifetime of a block using these labels. Reuse "
|
|
|
|
"lifetime is defined as the time interval between the first access on a "
|
|
|
|
"block and the last access on the same block. For blocks that are only "
|
|
|
|
"accessed once, its lifetime is set to kMaxUint64.");
|
|
|
|
DEFINE_string(
|
|
|
|
reuse_lifetime_buckets, "",
|
|
|
|
"Group blocks by their reuse lifetime given these buckets. For "
|
|
|
|
"example, if 'reuse_lifetime_buckets' is '1,10,100', we will "
|
|
|
|
"create four buckets. The first three buckets contain the number of "
|
|
|
|
"blocks with reuse lifetime less than 1 second, between 1 second and 10 "
|
|
|
|
"seconds, between 10 seconds and 100 seconds, respectively. The last "
|
|
|
|
"bucket contains the number of blocks with reuse lifetime longer than 100 "
|
|
|
|
"seconds.");
|
|
|
|
DEFINE_string(
|
|
|
|
analyze_callers, "",
|
|
|
|
"The list of callers to perform a detailed analysis on. If speicfied, the "
|
|
|
|
"analyzer will output a detailed percentage of accesses for each caller "
|
|
|
|
"break down by column family, level, and block type. A list of available "
|
|
|
|
"callers are: Get, MultiGet, Iterator, ApproximateSize, VerifyChecksum, "
|
|
|
|
"SSTDumpTool, ExternalSSTIngestion, Repair, Prefetch, Compaction, "
|
|
|
|
"CompactionRefill, Flush, SSTFileReader, Uncategorized.");
|
|
|
|
DEFINE_string(access_count_buckets, "",
|
|
|
|
"Group number of blocks by their access count given these "
|
|
|
|
"buckets. If specified, the analyzer will output a detailed "
|
|
|
|
"analysis on the number of blocks grouped by their access count "
|
|
|
|
"break down by block type and column family.");
|
|
|
|
DEFINE_int32(analyze_blocks_reuse_k_reuse_window, 0,
|
|
|
|
"Analyze the percentage of blocks that are accessed in the "
|
|
|
|
"[k, 2*k] seconds are accessed again in the next [2*k, 3*k], "
|
|
|
|
"[3*k, 4*k],...,[k*(n-1), k*n] seconds. ");
|
|
|
|
DEFINE_string(analyze_get_spatial_locality_labels, "",
|
|
|
|
"Group data blocks using these labels.");
|
|
|
|
DEFINE_string(analyze_get_spatial_locality_buckets, "",
|
|
|
|
"Group data blocks by their statistics using these buckets.");
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
DEFINE_string(skew_labels, "",
|
|
|
|
"Group the access count of a block using these labels.");
|
|
|
|
DEFINE_string(skew_buckets, "", "Group the skew labels using these buckets.");
|
2019-07-23 02:47:54 +02:00
|
|
|
DEFINE_bool(mrc_only, false,
|
|
|
|
"Evaluate alternative cache policies only. When this flag is true, "
|
|
|
|
"the analyzer does NOT maintain states of each block in memory for "
|
|
|
|
"analysis. It only feeds the accesses into the cache simulators.");
|
|
|
|
DEFINE_string(
|
|
|
|
analyze_correlation_coefficients_labels, "",
|
|
|
|
"Analyze the correlation coefficients of features such as number of past "
|
|
|
|
"accesses with regard to the number of accesses till the next access.");
|
|
|
|
DEFINE_int32(analyze_correlation_coefficients_max_number_of_values, 1000000,
|
|
|
|
"The maximum number of values for a feature. If the number of "
|
|
|
|
"values for a feature is larger than this max, it randomly "
|
|
|
|
"selects 'max' number of values.");
|
|
|
|
DEFINE_string(human_readable_trace_file_path, "",
|
|
|
|
"The filt path that saves human readable access records.");
|
2019-06-11 21:18:37 +02:00
|
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
namespace {
|
2019-06-25 05:38:20 +02:00
|
|
|
|
|
|
|
const std::string kMissRatioCurveFileName = "mrc";
|
|
|
|
const std::string kGroupbyBlock = "block";
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string kGroupbyTable = "table";
|
2019-06-25 05:38:20 +02:00
|
|
|
const std::string kGroupbyColumnFamily = "cf";
|
|
|
|
const std::string kGroupbySSTFile = "sst";
|
|
|
|
const std::string kGroupbyBlockType = "bt";
|
|
|
|
const std::string kGroupbyCaller = "caller";
|
|
|
|
const std::string kGroupbyLevel = "level";
|
|
|
|
const std::string kGroupbyAll = "all";
|
|
|
|
const std::set<std::string> kGroupbyLabels{
|
|
|
|
kGroupbyBlock, kGroupbyColumnFamily, kGroupbySSTFile, kGroupbyLevel,
|
|
|
|
kGroupbyBlockType, kGroupbyCaller, kGroupbyAll};
|
2019-07-11 21:40:08 +02:00
|
|
|
const std::string kSupportedCacheNames =
|
|
|
|
" lru ghost_lru lru_priority ghost_lru_priority lru_hybrid "
|
|
|
|
"ghost_lru_hybrid lru_hybrid_no_insert_on_row_miss "
|
|
|
|
"ghost_lru_hybrid_no_insert_on_row_miss ";
|
2019-06-25 05:38:20 +02:00
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
// The suffix for the generated csv files.
|
2019-07-23 02:47:54 +02:00
|
|
|
const std::string kFileNameSuffixMissRatioTimeline = "miss_ratio_timeline";
|
|
|
|
const std::string kFileNameSuffixMissTimeline = "miss_timeline";
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string kFileNameSuffixSkew = "skewness";
|
2019-07-13 01:52:15 +02:00
|
|
|
const std::string kFileNameSuffixAccessTimeline = "access_timeline";
|
2019-07-23 02:47:54 +02:00
|
|
|
const std::string kFileNameSuffixCorrelation = "correlation_input";
|
2019-07-13 01:52:15 +02:00
|
|
|
const std::string kFileNameSuffixAvgReuseIntervalNaccesses =
|
|
|
|
"avg_reuse_interval_naccesses";
|
|
|
|
const std::string kFileNameSuffixAvgReuseInterval = "avg_reuse_interval";
|
|
|
|
const std::string kFileNameSuffixReuseInterval = "access_reuse_interval";
|
|
|
|
const std::string kFileNameSuffixReuseLifetime = "reuse_lifetime";
|
|
|
|
const std::string kFileNameSuffixAccessReuseBlocksTimeline =
|
|
|
|
"reuse_blocks_timeline";
|
|
|
|
const std::string kFileNameSuffixPercentOfAccessSummary =
|
|
|
|
"percentage_of_accesses_summary";
|
|
|
|
const std::string kFileNameSuffixPercentRefKeys = "percent_ref_keys";
|
|
|
|
const std::string kFileNameSuffixPercentDataSizeOnRefKeys =
|
|
|
|
"percent_data_size_on_ref_keys";
|
|
|
|
const std::string kFileNameSuffixPercentAccessesOnRefKeys =
|
|
|
|
"percent_accesses_on_ref_keys";
|
|
|
|
const std::string kFileNameSuffixAccessCountSummary = "access_count_summary";
|
|
|
|
|
2019-06-11 21:18:37 +02:00
|
|
|
std::string block_type_to_string(TraceType type) {
|
|
|
|
switch (type) {
|
|
|
|
case kBlockTraceFilterBlock:
|
|
|
|
return "Filter";
|
|
|
|
case kBlockTraceDataBlock:
|
|
|
|
return "Data";
|
|
|
|
case kBlockTraceIndexBlock:
|
|
|
|
return "Index";
|
|
|
|
case kBlockTraceRangeDeletionBlock:
|
|
|
|
return "RangeDeletion";
|
|
|
|
case kBlockTraceUncompressionDictBlock:
|
|
|
|
return "UncompressionDict";
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// This cannot happen.
|
|
|
|
return "InvalidType";
|
|
|
|
}
|
|
|
|
|
2019-06-20 23:28:22 +02:00
|
|
|
std::string caller_to_string(TableReaderCaller caller) {
|
2019-06-11 21:18:37 +02:00
|
|
|
switch (caller) {
|
|
|
|
case kUserGet:
|
|
|
|
return "Get";
|
2019-06-20 23:28:22 +02:00
|
|
|
case kUserMultiGet:
|
2019-06-11 21:18:37 +02:00
|
|
|
return "MultiGet";
|
|
|
|
case kUserIterator:
|
|
|
|
return "Iterator";
|
2019-06-20 23:28:22 +02:00
|
|
|
case kUserApproximateSize:
|
|
|
|
return "ApproximateSize";
|
|
|
|
case kUserVerifyChecksum:
|
|
|
|
return "VerifyChecksum";
|
|
|
|
case kSSTDumpTool:
|
|
|
|
return "SSTDumpTool";
|
|
|
|
case kExternalSSTIngestion:
|
|
|
|
return "ExternalSSTIngestion";
|
|
|
|
case kRepair:
|
|
|
|
return "Repair";
|
2019-06-11 21:18:37 +02:00
|
|
|
case kPrefetch:
|
|
|
|
return "Prefetch";
|
|
|
|
case kCompaction:
|
|
|
|
return "Compaction";
|
2019-06-20 23:28:22 +02:00
|
|
|
case kCompactionRefill:
|
|
|
|
return "CompactionRefill";
|
|
|
|
case kFlush:
|
|
|
|
return "Flush";
|
|
|
|
case kSSTFileReader:
|
|
|
|
return "SSTFileReader";
|
|
|
|
case kUncategorized:
|
|
|
|
return "Uncategorized";
|
2019-06-11 21:18:37 +02:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// This cannot happen.
|
|
|
|
return "InvalidCaller";
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
TableReaderCaller string_to_caller(std::string caller_str) {
|
|
|
|
if (caller_str == "Get") {
|
|
|
|
return kUserGet;
|
|
|
|
} else if (caller_str == "MultiGet") {
|
|
|
|
return kUserMultiGet;
|
|
|
|
} else if (caller_str == "Iterator") {
|
|
|
|
return kUserIterator;
|
|
|
|
} else if (caller_str == "ApproximateSize") {
|
|
|
|
return kUserApproximateSize;
|
|
|
|
} else if (caller_str == "VerifyChecksum") {
|
|
|
|
return kUserVerifyChecksum;
|
|
|
|
} else if (caller_str == "SSTDumpTool") {
|
|
|
|
return kSSTDumpTool;
|
|
|
|
} else if (caller_str == "ExternalSSTIngestion") {
|
|
|
|
return kExternalSSTIngestion;
|
|
|
|
} else if (caller_str == "Repair") {
|
|
|
|
return kRepair;
|
|
|
|
} else if (caller_str == "Prefetch") {
|
|
|
|
return kPrefetch;
|
|
|
|
} else if (caller_str == "Compaction") {
|
|
|
|
return kCompaction;
|
|
|
|
} else if (caller_str == "CompactionRefill") {
|
|
|
|
return kCompactionRefill;
|
|
|
|
} else if (caller_str == "Flush") {
|
|
|
|
return kFlush;
|
|
|
|
} else if (caller_str == "SSTFileReader") {
|
|
|
|
return kSSTFileReader;
|
|
|
|
} else if (caller_str == "Uncategorized") {
|
|
|
|
return kUncategorized;
|
|
|
|
}
|
|
|
|
return TableReaderCaller::kMaxBlockCacheLookupCaller;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_user_access(TableReaderCaller caller) {
|
|
|
|
switch (caller) {
|
|
|
|
case kUserGet:
|
|
|
|
case kUserMultiGet:
|
|
|
|
case kUserIterator:
|
|
|
|
case kUserApproximateSize:
|
|
|
|
case kUserVerifyChecksum:
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
const char kBreakLine[] =
|
|
|
|
"***************************************************************\n";
|
|
|
|
|
|
|
|
void print_break_lines(uint32_t num_break_lines) {
|
|
|
|
for (uint32_t i = 0; i < num_break_lines; i++) {
|
|
|
|
fprintf(stdout, kBreakLine);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-19 03:34:39 +02:00
|
|
|
double percent(uint64_t numerator, uint64_t denomenator) {
|
|
|
|
if (denomenator == 0) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return static_cast<double>(numerator * 100.0 / denomenator);
|
|
|
|
}
|
|
|
|
|
2019-07-23 02:47:54 +02:00
|
|
|
std::map<uint64_t, uint64_t> adjust_time_unit(
|
|
|
|
const std::map<uint64_t, uint64_t>& time_stats, uint64_t time_unit) {
|
|
|
|
if (time_unit == 1) {
|
|
|
|
return time_stats;
|
|
|
|
}
|
|
|
|
std::map<uint64_t, uint64_t> adjusted_time_stats;
|
|
|
|
for (auto const& time : time_stats) {
|
|
|
|
adjusted_time_stats[static_cast<uint64_t>(time.first / time_unit)] +=
|
|
|
|
time.second;
|
|
|
|
}
|
|
|
|
return adjusted_time_stats;
|
|
|
|
}
|
2019-06-11 21:18:37 +02:00
|
|
|
} // namespace
|
|
|
|
|
2019-06-25 05:38:20 +02:00
|
|
|
void BlockCacheTraceAnalyzer::WriteMissRatioCurves() const {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
if (!cache_simulator_) {
|
|
|
|
return;
|
|
|
|
}
|
2019-06-25 05:38:20 +02:00
|
|
|
if (output_dir_.empty()) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
return;
|
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
uint64_t trace_duration =
|
|
|
|
trace_end_timestamp_in_seconds_ - trace_start_timestamp_in_seconds_;
|
|
|
|
uint64_t total_accesses = access_sequence_number_;
|
2019-06-25 05:38:20 +02:00
|
|
|
const std::string output_miss_ratio_curve_path =
|
2019-07-23 02:47:54 +02:00
|
|
|
output_dir_ + "/" + std::to_string(trace_duration) + "_" +
|
|
|
|
std::to_string(total_accesses) + "_" + kMissRatioCurveFileName;
|
2019-06-25 05:38:20 +02:00
|
|
|
std::ofstream out(output_miss_ratio_curve_path);
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Write header.
|
|
|
|
const std::string header =
|
2019-07-11 21:40:08 +02:00
|
|
|
"cache_name,num_shard_bits,ghost_capacity,capacity,miss_ratio,total_"
|
|
|
|
"accesses";
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
out << header << std::endl;
|
2019-07-01 21:43:14 +02:00
|
|
|
for (auto const& config_caches : cache_simulator_->sim_caches()) {
|
|
|
|
const CacheConfiguration& config = config_caches.first;
|
|
|
|
for (uint32_t i = 0; i < config.cache_capacities.size(); i++) {
|
2019-07-23 02:47:54 +02:00
|
|
|
double miss_ratio =
|
|
|
|
config_caches.second[i]->miss_ratio_stats().miss_ratio();
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
// Write the body.
|
|
|
|
out << config.cache_name;
|
|
|
|
out << ",";
|
|
|
|
out << config.num_shard_bits;
|
|
|
|
out << ",";
|
2019-07-11 21:40:08 +02:00
|
|
|
out << config.ghost_cache_capacity;
|
|
|
|
out << ",";
|
2019-07-01 21:43:14 +02:00
|
|
|
out << config.cache_capacities[i];
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
out << ",";
|
|
|
|
out << std::fixed << std::setprecision(4) << miss_ratio;
|
|
|
|
out << ",";
|
2019-07-23 02:47:54 +02:00
|
|
|
out << config_caches.second[i]->miss_ratio_stats().total_accesses();
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
out << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
|
2019-07-23 02:47:54 +02:00
|
|
|
void BlockCacheTraceAnalyzer::UpdateFeatureVectors(
|
|
|
|
const std::vector<uint64_t>& access_sequence_number_timeline,
|
|
|
|
const std::vector<uint64_t>& access_timeline, const std::string& label,
|
|
|
|
std::map<std::string, Features>* label_features,
|
|
|
|
std::map<std::string, Predictions>* label_predictions) const {
|
|
|
|
if (access_sequence_number_timeline.empty() || access_timeline.empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
assert(access_timeline.size() == access_sequence_number_timeline.size());
|
|
|
|
uint64_t prev_access_sequence_number = access_sequence_number_timeline[0];
|
|
|
|
uint64_t prev_access_timestamp = access_timeline[0];
|
|
|
|
for (uint32_t i = 0; i < access_sequence_number_timeline.size(); i++) {
|
|
|
|
uint64_t num_accesses_since_last_access =
|
|
|
|
access_sequence_number_timeline[i] - prev_access_sequence_number;
|
|
|
|
uint64_t elapsed_time_since_last_access =
|
|
|
|
access_timeline[i] - prev_access_timestamp;
|
|
|
|
prev_access_sequence_number = access_sequence_number_timeline[i];
|
|
|
|
prev_access_timestamp = access_timeline[i];
|
|
|
|
if (i < access_sequence_number_timeline.size() - 1) {
|
|
|
|
(*label_features)[label].num_accesses_since_last_access.push_back(
|
|
|
|
num_accesses_since_last_access);
|
|
|
|
(*label_features)[label].num_past_accesses.push_back(i);
|
|
|
|
(*label_features)[label].elapsed_time_since_last_access.push_back(
|
|
|
|
elapsed_time_since_last_access);
|
|
|
|
}
|
|
|
|
if (i >= 1) {
|
|
|
|
(*label_predictions)[label].num_accesses_till_next_access.push_back(
|
|
|
|
num_accesses_since_last_access);
|
|
|
|
(*label_predictions)[label].elapsed_time_till_next_access.push_back(
|
|
|
|
elapsed_time_since_last_access);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteMissRatioTimeline(uint64_t time_unit) const {
|
|
|
|
if (!cache_simulator_ || output_dir_.empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::map<uint64_t, std::map<std::string, std::map<uint64_t, double>>>
|
|
|
|
cs_name_timeline;
|
|
|
|
uint64_t start_time = port::kMaxUint64;
|
|
|
|
uint64_t end_time = 0;
|
|
|
|
const std::map<uint64_t, uint64_t>& trace_num_misses =
|
|
|
|
adjust_time_unit(miss_ratio_stats_.num_misses_timeline(), time_unit);
|
|
|
|
const std::map<uint64_t, uint64_t>& trace_num_accesses =
|
|
|
|
adjust_time_unit(miss_ratio_stats_.num_accesses_timeline(), time_unit);
|
|
|
|
assert(trace_num_misses.size() == trace_num_accesses.size());
|
|
|
|
for (auto const& num_miss : trace_num_misses) {
|
|
|
|
uint64_t time = num_miss.first;
|
|
|
|
start_time = std::min(start_time, time);
|
|
|
|
end_time = std::max(end_time, time);
|
|
|
|
uint64_t miss = num_miss.second;
|
|
|
|
auto it = trace_num_accesses.find(time);
|
|
|
|
assert(it != trace_num_accesses.end());
|
|
|
|
uint64_t access = it->second;
|
|
|
|
cs_name_timeline[port::kMaxUint64]["trace"][time] = percent(miss, access);
|
|
|
|
}
|
|
|
|
for (auto const& config_caches : cache_simulator_->sim_caches()) {
|
|
|
|
const CacheConfiguration& config = config_caches.first;
|
|
|
|
std::string cache_label = config.cache_name + "-" +
|
|
|
|
std::to_string(config.num_shard_bits) + "-" +
|
|
|
|
std::to_string(config.ghost_cache_capacity);
|
|
|
|
for (uint32_t i = 0; i < config.cache_capacities.size(); i++) {
|
|
|
|
const std::map<uint64_t, uint64_t>& num_misses = adjust_time_unit(
|
|
|
|
config_caches.second[i]->miss_ratio_stats().num_misses_timeline(),
|
|
|
|
time_unit);
|
|
|
|
const std::map<uint64_t, uint64_t>& num_accesses = adjust_time_unit(
|
|
|
|
config_caches.second[i]->miss_ratio_stats().num_accesses_timeline(),
|
|
|
|
time_unit);
|
|
|
|
assert(num_misses.size() == num_accesses.size());
|
|
|
|
for (auto const& num_miss : num_misses) {
|
|
|
|
uint64_t time = num_miss.first;
|
|
|
|
start_time = std::min(start_time, time);
|
|
|
|
end_time = std::max(end_time, time);
|
|
|
|
uint64_t miss = num_miss.second;
|
|
|
|
auto it = num_accesses.find(time);
|
|
|
|
assert(it != num_accesses.end());
|
|
|
|
uint64_t access = it->second;
|
|
|
|
cs_name_timeline[config.cache_capacities[i]][cache_label][time] =
|
|
|
|
percent(miss, access);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto const& it : cs_name_timeline) {
|
|
|
|
const std::string output_miss_ratio_timeline_path =
|
|
|
|
output_dir_ + "/" + std::to_string(it.first) + "_" +
|
|
|
|
std::to_string(time_unit) + "_" + kFileNameSuffixMissRatioTimeline;
|
|
|
|
std::ofstream out(output_miss_ratio_timeline_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("time");
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
|
|
|
header += ",";
|
|
|
|
header += std::to_string(now);
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& label : it.second) {
|
|
|
|
std::string row(label.first);
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
|
|
|
auto misses = label.second.find(now);
|
|
|
|
row += ",";
|
|
|
|
if (misses != label.second.end()) {
|
|
|
|
row += std::to_string(misses->second);
|
|
|
|
} else {
|
|
|
|
row += "0";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteMissTimeline(uint64_t time_unit) const {
|
|
|
|
if (!cache_simulator_ || output_dir_.empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::map<uint64_t, std::map<std::string, std::map<uint64_t, uint64_t>>>
|
|
|
|
cs_name_timeline;
|
|
|
|
uint64_t start_time = port::kMaxUint64;
|
|
|
|
uint64_t end_time = 0;
|
|
|
|
const std::map<uint64_t, uint64_t>& trace_num_misses =
|
|
|
|
adjust_time_unit(miss_ratio_stats_.num_misses_timeline(), time_unit);
|
|
|
|
for (auto const& num_miss : trace_num_misses) {
|
|
|
|
uint64_t time = num_miss.first;
|
|
|
|
start_time = std::min(start_time, time);
|
|
|
|
end_time = std::max(end_time, time);
|
|
|
|
uint64_t miss = num_miss.second;
|
|
|
|
cs_name_timeline[port::kMaxUint64]["trace"][time] = miss;
|
|
|
|
}
|
|
|
|
for (auto const& config_caches : cache_simulator_->sim_caches()) {
|
|
|
|
const CacheConfiguration& config = config_caches.first;
|
|
|
|
std::string cache_label = config.cache_name + "-" +
|
|
|
|
std::to_string(config.num_shard_bits) + "-" +
|
|
|
|
std::to_string(config.ghost_cache_capacity);
|
|
|
|
for (uint32_t i = 0; i < config.cache_capacities.size(); i++) {
|
|
|
|
const std::map<uint64_t, uint64_t>& num_misses = adjust_time_unit(
|
|
|
|
config_caches.second[i]->miss_ratio_stats().num_misses_timeline(),
|
|
|
|
time_unit);
|
|
|
|
for (auto const& num_miss : num_misses) {
|
|
|
|
uint64_t time = num_miss.first;
|
|
|
|
start_time = std::min(start_time, time);
|
|
|
|
end_time = std::max(end_time, time);
|
|
|
|
uint64_t miss = num_miss.second;
|
|
|
|
cs_name_timeline[config.cache_capacities[i]][cache_label][time] = miss;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto const& it : cs_name_timeline) {
|
|
|
|
const std::string output_miss_ratio_timeline_path =
|
|
|
|
output_dir_ + "/" + std::to_string(it.first) + "_" +
|
|
|
|
std::to_string(time_unit) + "_" + kFileNameSuffixMissTimeline;
|
|
|
|
std::ofstream out(output_miss_ratio_timeline_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("time");
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
|
|
|
header += ",";
|
|
|
|
header += std::to_string(now);
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& label : it.second) {
|
|
|
|
std::string row(label.first);
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
|
|
|
auto misses = label.second.find(now);
|
|
|
|
row += ",";
|
|
|
|
if (misses != label.second.end()) {
|
|
|
|
row += std::to_string(misses->second);
|
|
|
|
} else {
|
|
|
|
row += "0";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
void BlockCacheTraceAnalyzer::WriteSkewness(
|
|
|
|
const std::string& label_str, const std::vector<uint64_t>& percent_buckets,
|
|
|
|
TraceType target_block_type) const {
|
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
std::map<std::string, uint64_t> label_naccesses;
|
|
|
|
uint64_t total_naccesses = 0;
|
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t fd,
|
|
|
|
uint32_t level, TraceType type,
|
|
|
|
const std::string& /*block_key*/, uint64_t block_id,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
if (target_block_type != TraceType::kTraceMax &&
|
|
|
|
target_block_type != type) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
const std::string label = BuildLabel(
|
|
|
|
labels, cf_name, fd, level, type,
|
|
|
|
TableReaderCaller::kMaxBlockCacheLookupCaller, block_id, block);
|
|
|
|
label_naccesses[label] += block.num_accesses;
|
|
|
|
total_naccesses += block.num_accesses;
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback, &labels);
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_bucket_naccesses;
|
|
|
|
std::vector<std::pair<std::string, uint64_t>> pairs;
|
|
|
|
for (auto const& itr : label_naccesses) {
|
|
|
|
pairs.push_back(itr);
|
|
|
|
}
|
|
|
|
// Sort in descending order.
|
Fix compliation error on GCC4.8.2 (#6106)
Summary:
```
In file included from /usr/include/c++/4.8.2/algorithm:62:0,
from ./db/merge_context.h:7,
from ./db/dbformat.h:16,
from ./tools/block_cache_analyzer/block_cache_trace_analyzer.h:12,
from tools/block_cache_analyzer/block_cache_trace_analyzer.cc:8:
/usr/include/c++/4.8.2/bits/stl_algo.h: In instantiation of ‘_RandomAccessIterator std::__unguarded_partition(_RandomAccessIterator, _RandomAccessIterator, const _Tp&, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<std::pair<std::basic_string<char>, long unsigned int>*, std::vector<std::pair<std::basic_string<char>, long unsigned int> > >; _Tp = std::pair<std::basic_string<char>, long unsigned int>; _Compare = rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1]’:
/usr/include/c++/4.8.2/bits/stl_algo.h:2296:78: required from ‘_RandomAccessIterator std::__unguarded_partition_pivot(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<std::pair<std::basic_string<char>, long unsigned int>*, std::vector<std::pair<std::basic_string<char>, long unsigned int> > >; _Compare = rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1]’
/usr/include/c++/4.8.2/bits/stl_algo.h:2337:62: required from ‘void std::__introsort_loop(_RandomAccessIterator, _RandomAccessIterator, _Size, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<std::pair<std::basic_string<char>, long unsigned int>*, std::vector<std::pair<std::basic_string<char>, long unsigned int> > >; _Size = long int; _Compare = rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1]’
/usr/include/c++/4.8.2/bits/stl_algo.h:5499:44: required from ‘void std::sort(_RAIter, _RAIter, _Compare) [with _RAIter = __gnu_cxx::__normal_iterator<std::pair<std::basic_string<char>, long unsigned int>*, std::vector<std::pair<std::basic_string<char>, long unsigned int> > >; _Compare = rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1’
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:583:79: required from here
/usr/include/c++/4.8.2/bits/stl_algo.h:2263:35: error: no match for call to ‘(rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1) (std::pair<std::basic_string<char>, long unsigned int>&, const std::pair<std::basic_string<char>, long unsigned int>&)’
while (__comp(*__first, __pivot))
^
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:582:9: note: candidates are:
[=](std::pair<std::string, uint64_t>& a,
^
In file included from /usr/include/c++/4.8.2/algorithm:62:0,
from ./db/merge_context.h:7,
from ./db/dbformat.h:16,
from ./tools/block_cache_analyzer/block_cache_trace_analyzer.h:12,
from tools/block_cache_analyzer/block_cache_trace_analyzer.cc:8:
/usr/include/c++/4.8.2/bits/stl_algo.h:2263:35: note: bool (*)(std::pair<std::basic_string<char>, long unsigned int>&, std::pair<std::basic_string<char>, long unsigned int>&) <conversion>
while (__comp(*__first, __pivot))
^
/usr/include/c++/4.8.2/bits/stl_algo.h:2263:35: note: candidate expects 3 arguments, 3 provided
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:583:46: note: rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1
std::pair<std::string, uint64_t>& b) { return b.second < a.second; });
^
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:583:46: note: no known conversion for argument 2 from ‘const std::pair<std::basic_string<char>, long unsigned int>’ to ‘std::pair<std::basic_string<char>, long unsigned int>&’
In file included from /usr/include/c++/4.8.2/algorithm:62:0,
from ./db/merge_context.h:7,
from ./db/dbformat.h:16,
from ./tools/block_cache_analyzer/block_cache_trace_analyzer.h:12,
from tools/block_cache_analyzer/block_cache_trace_analyzer.cc:8:
/usr/include/c++/4.8.2/bits/stl_algo.h:2266:34: error: no match for call to ‘(rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1) (const std::pair<std::basic_string<char>, long unsigned int>&, std::pair<std::basic_string<char>, long unsigned int>&)’
while (__comp(__pivot, *__last))
^
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:582:9: note: candidates are:
[=](std::pair<std::string, uint64_t>& a,
^
In file included from /usr/include/c++/4.8.2/algorithm:62:0,
from ./db/merge_context.h:7,
from ./db/dbformat.h:16,
from ./tools/block_cache_analyzer/block_cache_trace_analyzer.h:12,
from tools/block_cache_analyzer/block_cache_trace_analyzer.cc:8:
/usr/include/c++/4.8.2/bits/stl_algo.h:2266:34: note: bool (*)(std::pair<std::basic_string<char>, long unsigned int>&, std::pair<std::basic_string<char>, long unsigned int>&) <conversion>
while (__comp(__pivot, *__last))
^
/usr/include/c++/4.8.2/bits/stl_algo.h:2266:34: note: candidate expects 3 arguments, 3 provided
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:583:46: note: rocksdb::BlockCacheTraceAnalyzer::WriteSkewness(const string&, const std::vector<long unsigned int>&, rocksdb::TraceType) const::__lambda1
std::pair<std::string, uint64_t>& b) { return b.second < a.second; });
^
tools/block_cache_analyzer/block_cache_trace_analyzer.cc:583:46: note: no known conversion for argument 1 from ‘const std::pair<std::basic_string<char>, long unsigned int>’ to ‘std::pair<std::basic_string<char>, long unsigned int>&’
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6106
Differential Revision: D18783943
Pulled By: riversand963
fbshipit-source-id: cc7fc10565f0210b9eebf46b95cb4950ec0b15fa
2019-12-03 20:55:18 +01:00
|
|
|
sort(pairs.begin(), pairs.end(),
|
|
|
|
[=](const std::pair<std::string, uint64_t>& a,
|
|
|
|
const std::pair<std::string, uint64_t>& b) {
|
|
|
|
return b.second < a.second;
|
|
|
|
});
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
|
|
|
|
size_t prev_start_index = 0;
|
|
|
|
for (auto const& percent : percent_buckets) {
|
|
|
|
label_bucket_naccesses[label_str][percent] = 0;
|
|
|
|
size_t end_index = 0;
|
|
|
|
if (percent == port::kMaxUint64) {
|
|
|
|
end_index = label_naccesses.size();
|
|
|
|
} else {
|
|
|
|
end_index = percent * label_naccesses.size() / 100;
|
|
|
|
}
|
|
|
|
for (size_t i = prev_start_index; i < end_index; i++) {
|
|
|
|
label_bucket_naccesses[label_str][percent] += pairs[i].second;
|
|
|
|
}
|
|
|
|
prev_start_index = end_index;
|
|
|
|
}
|
|
|
|
std::string filename_suffix;
|
|
|
|
if (target_block_type != TraceType::kTraceMax) {
|
|
|
|
filename_suffix = block_type_to_string(target_block_type);
|
|
|
|
filename_suffix += "_";
|
|
|
|
}
|
|
|
|
filename_suffix += kFileNameSuffixSkew;
|
|
|
|
WriteStatsToFile(label_str, percent_buckets, filename_suffix,
|
|
|
|
label_bucket_naccesses, total_naccesses);
|
|
|
|
}
|
|
|
|
|
2019-07-23 02:47:54 +02:00
|
|
|
void BlockCacheTraceAnalyzer::WriteCorrelationFeatures(
|
|
|
|
const std::string& label_str, uint32_t max_number_of_values) const {
|
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
std::map<std::string, Features> label_features;
|
|
|
|
std::map<std::string, Predictions> label_predictions;
|
|
|
|
auto block_callback =
|
|
|
|
[&](const std::string& cf_name, uint64_t fd, uint32_t level,
|
|
|
|
TraceType block_type, const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_key_id*/, const BlockAccessInfo& block) {
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
if (block.table_id == 0 && labels.find(kGroupbyTable) != labels.end()) {
|
|
|
|
// We only know table id information for get requests.
|
|
|
|
return;
|
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
if (labels.find(kGroupbyCaller) != labels.end()) {
|
|
|
|
// Group by caller.
|
|
|
|
for (auto const& caller_map : block.caller_access_timeline) {
|
|
|
|
const std::string label =
|
|
|
|
BuildLabel(labels, cf_name, fd, level, block_type,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
caller_map.first, /*block_id=*/0, block);
|
2019-07-23 02:47:54 +02:00
|
|
|
auto it = block.caller_access_sequence__number_timeline.find(
|
|
|
|
caller_map.first);
|
|
|
|
assert(it != block.caller_access_sequence__number_timeline.end());
|
|
|
|
UpdateFeatureVectors(it->second, caller_map.second, label,
|
|
|
|
&label_features, &label_predictions);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string label =
|
|
|
|
BuildLabel(labels, cf_name, fd, level, block_type,
|
|
|
|
TableReaderCaller::kMaxBlockCacheLookupCaller,
|
|
|
|
/*block_id=*/0, block);
|
2019-07-23 02:47:54 +02:00
|
|
|
UpdateFeatureVectors(block.access_sequence_number_timeline,
|
|
|
|
block.access_timeline, label, &label_features,
|
|
|
|
&label_predictions);
|
|
|
|
};
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TraverseBlocks(block_callback, &labels);
|
2019-07-23 02:47:54 +02:00
|
|
|
WriteCorrelationFeaturesToFile(label_str, label_features, label_predictions,
|
|
|
|
max_number_of_values);
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteCorrelationFeaturesToFile(
|
|
|
|
const std::string& label,
|
|
|
|
const std::map<std::string, Features>& label_features,
|
|
|
|
const std::map<std::string, Predictions>& label_predictions,
|
|
|
|
uint32_t max_number_of_values) const {
|
2019-11-27 01:55:46 +01:00
|
|
|
std::default_random_engine rand_engine(static_cast<std::default_random_engine::result_type>(env_->NowMicros()));
|
2019-07-23 02:47:54 +02:00
|
|
|
for (auto const& label_feature_vectors : label_features) {
|
|
|
|
const Features& past = label_feature_vectors.second;
|
|
|
|
auto it = label_predictions.find(label_feature_vectors.first);
|
|
|
|
assert(it != label_predictions.end());
|
|
|
|
const Predictions& future = it->second;
|
|
|
|
const std::string output_path = output_dir_ + "/" + label + "_" +
|
|
|
|
label_feature_vectors.first + "_" +
|
|
|
|
kFileNameSuffixCorrelation;
|
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header(
|
|
|
|
"num_accesses_since_last_access,elapsed_time_since_last_access,num_"
|
|
|
|
"past_accesses,num_accesses_till_next_access,elapsed_time_till_next_"
|
|
|
|
"access");
|
|
|
|
out << header << std::endl;
|
|
|
|
std::vector<uint32_t> indexes;
|
|
|
|
for (uint32_t i = 0; i < past.num_accesses_since_last_access.size(); i++) {
|
|
|
|
indexes.push_back(i);
|
|
|
|
}
|
|
|
|
std::shuffle(indexes.begin(), indexes.end(), rand_engine);
|
|
|
|
for (uint32_t i = 0; i < max_number_of_values && i < indexes.size(); i++) {
|
|
|
|
uint32_t rand_index = indexes[i];
|
|
|
|
out << std::to_string(past.num_accesses_since_last_access[rand_index])
|
|
|
|
<< ",";
|
|
|
|
out << std::to_string(past.elapsed_time_since_last_access[rand_index])
|
|
|
|
<< ",";
|
|
|
|
out << std::to_string(past.num_past_accesses[rand_index]) << ",";
|
|
|
|
out << std::to_string(future.num_accesses_till_next_access[rand_index])
|
|
|
|
<< ",";
|
|
|
|
out << std::to_string(future.elapsed_time_till_next_access[rand_index])
|
|
|
|
<< std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteCorrelationFeaturesForGet(
|
|
|
|
uint32_t max_number_of_values) const {
|
|
|
|
std::string label = "GetKeyInfo";
|
|
|
|
std::map<std::string, Features> label_features;
|
|
|
|
std::map<std::string, Predictions> label_predictions;
|
|
|
|
for (auto const& get_info : get_key_info_map_) {
|
|
|
|
const GetKeyInfo& info = get_info.second;
|
|
|
|
UpdateFeatureVectors(info.access_sequence_number_timeline,
|
|
|
|
info.access_timeline, label, &label_features,
|
|
|
|
&label_predictions);
|
|
|
|
}
|
|
|
|
WriteCorrelationFeaturesToFile(label, label_features, label_predictions,
|
|
|
|
max_number_of_values);
|
|
|
|
}
|
|
|
|
|
2019-06-25 05:38:20 +02:00
|
|
|
std::set<std::string> BlockCacheTraceAnalyzer::ParseLabelStr(
|
|
|
|
const std::string& label_str) const {
|
|
|
|
std::stringstream ss(label_str);
|
|
|
|
std::set<std::string> labels;
|
|
|
|
// label_str is in the form of "label1_label2_label3", e.g., cf_bt.
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label_name;
|
|
|
|
getline(ss, label_name, '_');
|
|
|
|
if (kGroupbyLabels.find(label_name) == kGroupbyLabels.end()) {
|
|
|
|
// Unknown label name.
|
|
|
|
fprintf(stderr, "Unknown label name %s, label string %s\n",
|
|
|
|
label_name.c_str(), label_str.c_str());
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
labels.insert(label_name);
|
|
|
|
}
|
|
|
|
return labels;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string BlockCacheTraceAnalyzer::BuildLabel(
|
|
|
|
const std::set<std::string>& labels, const std::string& cf_name,
|
|
|
|
uint64_t fd, uint32_t level, TraceType type, TableReaderCaller caller,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
uint64_t block_key, const BlockAccessInfo& block) const {
|
2019-06-25 05:38:20 +02:00
|
|
|
std::map<std::string, std::string> label_value_map;
|
|
|
|
label_value_map[kGroupbyAll] = kGroupbyAll;
|
|
|
|
label_value_map[kGroupbyLevel] = std::to_string(level);
|
|
|
|
label_value_map[kGroupbyCaller] = caller_to_string(caller);
|
|
|
|
label_value_map[kGroupbySSTFile] = std::to_string(fd);
|
|
|
|
label_value_map[kGroupbyBlockType] = block_type_to_string(type);
|
|
|
|
label_value_map[kGroupbyColumnFamily] = cf_name;
|
2019-07-13 01:52:15 +02:00
|
|
|
label_value_map[kGroupbyBlock] = std::to_string(block_key);
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
label_value_map[kGroupbyTable] = std::to_string(block.table_id);
|
2019-06-25 05:38:20 +02:00
|
|
|
// Concatenate the label values.
|
|
|
|
std::string label;
|
|
|
|
for (auto const& l : labels) {
|
|
|
|
label += label_value_map[l];
|
|
|
|
label += "-";
|
|
|
|
}
|
|
|
|
if (!label.empty()) {
|
|
|
|
label.pop_back();
|
|
|
|
}
|
|
|
|
return label;
|
|
|
|
}
|
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
void BlockCacheTraceAnalyzer::TraverseBlocks(
|
|
|
|
std::function<void(const std::string& /*cf_name*/, uint64_t /*fd*/,
|
|
|
|
uint32_t /*level*/, TraceType /*block_type*/,
|
|
|
|
const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_key_id*/,
|
|
|
|
const BlockAccessInfo& /*block_access_info*/)>
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
block_callback,
|
|
|
|
std::set<std::string>* labels) const {
|
2019-06-25 05:38:20 +02:00
|
|
|
for (auto const& cf_aggregates : cf_aggregates_map_) {
|
|
|
|
// Stats per column family.
|
|
|
|
const std::string& cf_name = cf_aggregates.first;
|
|
|
|
for (auto const& file_aggregates : cf_aggregates.second.fd_aggregates_map) {
|
|
|
|
// Stats per SST file.
|
|
|
|
const uint64_t fd = file_aggregates.first;
|
|
|
|
const uint32_t level = file_aggregates.second.level;
|
|
|
|
for (auto const& block_type_aggregates :
|
|
|
|
file_aggregates.second.block_type_aggregates_map) {
|
|
|
|
// Stats per block type.
|
|
|
|
const TraceType type = block_type_aggregates.first;
|
|
|
|
for (auto const& block_access_info :
|
|
|
|
block_type_aggregates.second.block_access_info_map) {
|
|
|
|
// Stats per block.
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
if (labels && block_access_info.second.table_id == 0 &&
|
|
|
|
labels->find(kGroupbyTable) != labels->end()) {
|
|
|
|
// We only know table id information for get requests.
|
|
|
|
return;
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
block_callback(cf_name, fd, level, type, block_access_info.first,
|
2019-07-23 02:47:54 +02:00
|
|
|
block_access_info.second.block_id,
|
|
|
|
block_access_info.second);
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteGetSpatialLocality(
|
|
|
|
const std::string& label_str,
|
|
|
|
const std::vector<uint64_t>& percent_buckets) const {
|
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_pnrefkeys_nblocks;
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_pnrefs_nblocks;
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_pndatasize_nblocks;
|
|
|
|
uint64_t nblocks = 0;
|
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t fd,
|
|
|
|
uint32_t level, TraceType /*block_type*/,
|
|
|
|
const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_key_id*/,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
if (block.num_keys == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint64_t naccesses = 0;
|
|
|
|
for (auto const& key_access : block.key_num_access_map) {
|
|
|
|
for (auto const& caller_access : key_access.second) {
|
|
|
|
if (caller_access.first == TableReaderCaller::kUserGet) {
|
|
|
|
naccesses += caller_access.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const std::string label =
|
|
|
|
BuildLabel(labels, cf_name, fd, level, TraceType::kBlockTraceDataBlock,
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TableReaderCaller::kUserGet, /*block_id=*/0, block);
|
2019-07-13 01:52:15 +02:00
|
|
|
|
|
|
|
const uint64_t percent_referenced_for_existing_keys =
|
|
|
|
static_cast<uint64_t>(std::max(
|
|
|
|
percent(block.key_num_access_map.size(), block.num_keys), 0.0));
|
|
|
|
const uint64_t percent_accesses_for_existing_keys =
|
|
|
|
static_cast<uint64_t>(std::max(
|
|
|
|
percent(block.num_referenced_key_exist_in_block, naccesses), 0.0));
|
|
|
|
const uint64_t percent_referenced_data_size = static_cast<uint64_t>(
|
|
|
|
std::max(percent(block.referenced_data_size, block.block_size), 0.0));
|
|
|
|
if (label_pnrefkeys_nblocks.find(label) == label_pnrefkeys_nblocks.end()) {
|
|
|
|
for (auto const& percent_bucket : percent_buckets) {
|
|
|
|
label_pnrefkeys_nblocks[label][percent_bucket] = 0;
|
|
|
|
label_pnrefs_nblocks[label][percent_bucket] = 0;
|
|
|
|
label_pndatasize_nblocks[label][percent_bucket] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
label_pnrefkeys_nblocks[label]
|
|
|
|
.upper_bound(percent_referenced_for_existing_keys)
|
|
|
|
->second += 1;
|
|
|
|
label_pnrefs_nblocks[label]
|
|
|
|
.upper_bound(percent_accesses_for_existing_keys)
|
|
|
|
->second += 1;
|
|
|
|
label_pndatasize_nblocks[label]
|
|
|
|
.upper_bound(percent_referenced_data_size)
|
|
|
|
->second += 1;
|
|
|
|
nblocks += 1;
|
|
|
|
};
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TraverseBlocks(block_callback, &labels);
|
2019-07-13 01:52:15 +02:00
|
|
|
WriteStatsToFile(label_str, percent_buckets, kFileNameSuffixPercentRefKeys,
|
|
|
|
label_pnrefkeys_nblocks, nblocks);
|
|
|
|
WriteStatsToFile(label_str, percent_buckets,
|
|
|
|
kFileNameSuffixPercentAccessesOnRefKeys,
|
|
|
|
label_pnrefs_nblocks, nblocks);
|
|
|
|
WriteStatsToFile(label_str, percent_buckets,
|
|
|
|
kFileNameSuffixPercentDataSizeOnRefKeys,
|
|
|
|
label_pndatasize_nblocks, nblocks);
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteAccessTimeline(const std::string& label_str,
|
|
|
|
uint64_t time_unit,
|
|
|
|
bool user_access_only) const {
|
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
uint64_t start_time = port::kMaxUint64;
|
|
|
|
uint64_t end_time = 0;
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_access_timeline;
|
|
|
|
std::map<uint64_t, std::vector<std::string>> access_count_block_id_map;
|
|
|
|
|
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t fd,
|
|
|
|
uint32_t level, TraceType type,
|
|
|
|
const std::string& /*block_key*/, uint64_t block_id,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
uint64_t naccesses = 0;
|
|
|
|
for (auto const& timeline : block.caller_num_accesses_timeline) {
|
|
|
|
const TableReaderCaller caller = timeline.first;
|
|
|
|
if (user_access_only && !is_user_access(caller)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
const std::string label =
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
BuildLabel(labels, cf_name, fd, level, type, caller, block_id, block);
|
2019-07-13 01:52:15 +02:00
|
|
|
for (auto const& naccess : timeline.second) {
|
|
|
|
const uint64_t timestamp = naccess.first / time_unit;
|
|
|
|
const uint64_t num = naccess.second;
|
|
|
|
label_access_timeline[label][timestamp] += num;
|
|
|
|
start_time = std::min(start_time, timestamp);
|
|
|
|
end_time = std::max(end_time, timestamp);
|
|
|
|
naccesses += num;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (naccesses > 0) {
|
|
|
|
access_count_block_id_map[naccesses].push_back(std::to_string(block_id));
|
|
|
|
}
|
|
|
|
};
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TraverseBlocks(block_callback, &labels);
|
2019-06-25 05:38:20 +02:00
|
|
|
|
|
|
|
// We have label_access_timeline now. Write them into a file.
|
2019-07-13 01:52:15 +02:00
|
|
|
const std::string user_access_prefix =
|
|
|
|
user_access_only ? "user_access_only_" : "all_access_";
|
|
|
|
const std::string output_path = output_dir_ + "/" + user_access_prefix +
|
|
|
|
label_str + "_" + std::to_string(time_unit) +
|
|
|
|
"_" + kFileNameSuffixAccessTimeline;
|
2019-06-25 05:38:20 +02:00
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("time");
|
2019-07-13 01:52:15 +02:00
|
|
|
if (labels.find("block") != labels.end()) {
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
|
|
|
header += ",";
|
|
|
|
header += std::to_string(now);
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
// Write the most frequently accessed blocks first.
|
|
|
|
for (auto naccess_it = access_count_block_id_map.rbegin();
|
|
|
|
naccess_it != access_count_block_id_map.rend(); naccess_it++) {
|
|
|
|
for (auto& block_id_it : naccess_it->second) {
|
|
|
|
std::string row(block_id_it);
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
|
|
|
auto it = label_access_timeline[block_id_it].find(now);
|
|
|
|
row += ",";
|
|
|
|
if (it != label_access_timeline[block_id_it].end()) {
|
|
|
|
row += std::to_string(it->second);
|
|
|
|
} else {
|
|
|
|
row += "0";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
2019-06-25 05:38:20 +02:00
|
|
|
header += ",";
|
2019-07-13 01:52:15 +02:00
|
|
|
header += std::to_string(now);
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
out << header << std::endl;
|
2019-07-13 01:52:15 +02:00
|
|
|
for (auto const& label : label_access_timeline) {
|
|
|
|
std::string row(label.first);
|
|
|
|
for (uint64_t now = start_time; now <= end_time; now++) {
|
2019-06-25 05:38:20 +02:00
|
|
|
auto it = label.second.find(now);
|
|
|
|
row += ",";
|
|
|
|
if (it != label.second.end()) {
|
|
|
|
row += std::to_string(it->second);
|
|
|
|
} else {
|
|
|
|
row += "0";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
|
2019-06-25 05:38:20 +02:00
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteReuseDistance(
|
|
|
|
const std::string& label_str,
|
2019-07-13 01:52:15 +02:00
|
|
|
const std::vector<uint64_t>& distance_buckets) const {
|
2019-06-25 05:38:20 +02:00
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_distance_num_reuses;
|
|
|
|
uint64_t total_num_reuses = 0;
|
2019-07-13 01:52:15 +02:00
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t fd,
|
|
|
|
uint32_t level, TraceType type,
|
|
|
|
const std::string& /*block_key*/, uint64_t block_id,
|
|
|
|
const BlockAccessInfo& block) {
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string label = BuildLabel(
|
|
|
|
labels, cf_name, fd, level, type,
|
|
|
|
TableReaderCaller::kMaxBlockCacheLookupCaller, block_id, block);
|
2019-07-13 01:52:15 +02:00
|
|
|
if (label_distance_num_reuses.find(label) ==
|
|
|
|
label_distance_num_reuses.end()) {
|
|
|
|
// The first time we encounter this label.
|
|
|
|
for (auto const& distance_bucket : distance_buckets) {
|
|
|
|
label_distance_num_reuses[label][distance_bucket] = 0;
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
for (auto const& reuse_distance : block.reuse_distance_count) {
|
|
|
|
label_distance_num_reuses[label]
|
|
|
|
.upper_bound(reuse_distance.first)
|
|
|
|
->second += reuse_distance.second;
|
|
|
|
total_num_reuses += reuse_distance.second;
|
|
|
|
}
|
|
|
|
};
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TraverseBlocks(block_callback, &labels);
|
2019-06-25 05:38:20 +02:00
|
|
|
// We have label_naccesses and label_distance_num_reuses now. Write them into
|
|
|
|
// a file.
|
|
|
|
const std::string output_path =
|
|
|
|
output_dir_ + "/" + label_str + "_reuse_distance";
|
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("bucket");
|
|
|
|
for (auto const& label_it : label_distance_num_reuses) {
|
|
|
|
header += ",";
|
|
|
|
header += label_it.first;
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& bucket : distance_buckets) {
|
|
|
|
std::string row(std::to_string(bucket));
|
|
|
|
for (auto const& label_it : label_distance_num_reuses) {
|
|
|
|
auto const& it = label_it.second.find(bucket);
|
|
|
|
assert(it != label_it.second.end());
|
|
|
|
row += ",";
|
|
|
|
row += std::to_string(percent(it->second, total_num_reuses));
|
|
|
|
}
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::UpdateReuseIntervalStats(
|
2019-07-13 01:52:15 +02:00
|
|
|
const std::string& label, const std::vector<uint64_t>& time_buckets,
|
2019-06-25 05:38:20 +02:00
|
|
|
const std::map<uint64_t, uint64_t> timeline,
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>>* label_time_num_reuses,
|
|
|
|
uint64_t* total_num_reuses) const {
|
|
|
|
assert(label_time_num_reuses);
|
|
|
|
assert(total_num_reuses);
|
|
|
|
if (label_time_num_reuses->find(label) == label_time_num_reuses->end()) {
|
|
|
|
// The first time we encounter this label.
|
|
|
|
for (auto const& time_bucket : time_buckets) {
|
|
|
|
(*label_time_num_reuses)[label][time_bucket] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
auto it = timeline.begin();
|
2019-07-13 01:52:15 +02:00
|
|
|
uint64_t prev_timestamp = it->first;
|
2019-06-25 05:38:20 +02:00
|
|
|
const uint64_t prev_num = it->second;
|
|
|
|
it++;
|
|
|
|
// Reused within one second.
|
|
|
|
if (prev_num > 1) {
|
2019-07-13 01:52:15 +02:00
|
|
|
(*label_time_num_reuses)[label].upper_bound(0)->second += prev_num - 1;
|
2019-06-25 05:38:20 +02:00
|
|
|
*total_num_reuses += prev_num - 1;
|
|
|
|
}
|
|
|
|
while (it != timeline.end()) {
|
|
|
|
const uint64_t timestamp = it->first;
|
|
|
|
const uint64_t num = it->second;
|
|
|
|
const uint64_t reuse_interval = timestamp - prev_timestamp;
|
2019-07-13 01:52:15 +02:00
|
|
|
(*label_time_num_reuses)[label].upper_bound(reuse_interval)->second += 1;
|
|
|
|
if (num > 1) {
|
|
|
|
(*label_time_num_reuses)[label].upper_bound(0)->second += num - 1;
|
|
|
|
}
|
|
|
|
prev_timestamp = timestamp;
|
2019-06-25 05:38:20 +02:00
|
|
|
*total_num_reuses += num;
|
2019-07-13 01:52:15 +02:00
|
|
|
it++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteStatsToFile(
|
|
|
|
const std::string& label_str, const std::vector<uint64_t>& time_buckets,
|
|
|
|
const std::string& filename_suffix,
|
|
|
|
const std::map<std::string, std::map<uint64_t, uint64_t>>& label_data,
|
|
|
|
uint64_t ntotal) const {
|
|
|
|
const std::string output_path =
|
|
|
|
output_dir_ + "/" + label_str + "_" + filename_suffix;
|
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("bucket");
|
|
|
|
for (auto const& label_it : label_data) {
|
|
|
|
header += ",";
|
|
|
|
header += label_it.first;
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& bucket : time_buckets) {
|
|
|
|
std::string row(std::to_string(bucket));
|
|
|
|
for (auto const& label_it : label_data) {
|
|
|
|
auto const& it = label_it.second.find(bucket);
|
|
|
|
assert(it != label_it.second.end());
|
|
|
|
row += ",";
|
|
|
|
row += std::to_string(percent(it->second, ntotal));
|
|
|
|
}
|
|
|
|
out << row << std::endl;
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
out.close();
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteReuseInterval(
|
|
|
|
const std::string& label_str,
|
2019-07-13 01:52:15 +02:00
|
|
|
const std::vector<uint64_t>& time_buckets) const {
|
2019-06-25 05:38:20 +02:00
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_time_num_reuses;
|
2019-07-13 01:52:15 +02:00
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_avg_reuse_nblocks;
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_avg_reuse_naccesses;
|
|
|
|
|
2019-06-25 05:38:20 +02:00
|
|
|
uint64_t total_num_reuses = 0;
|
2019-07-13 01:52:15 +02:00
|
|
|
uint64_t total_nblocks = 0;
|
|
|
|
uint64_t total_accesses = 0;
|
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t fd,
|
|
|
|
uint32_t level, TraceType type,
|
|
|
|
const std::string& /*block_key*/, uint64_t block_id,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
total_nblocks++;
|
|
|
|
total_accesses += block.num_accesses;
|
|
|
|
uint64_t avg_reuse_interval = 0;
|
|
|
|
if (block.num_accesses > 1) {
|
|
|
|
avg_reuse_interval = ((block.last_access_time - block.first_access_time) /
|
|
|
|
kMicrosInSecond) /
|
|
|
|
block.num_accesses;
|
|
|
|
} else {
|
|
|
|
avg_reuse_interval = port::kMaxUint64 - 1;
|
|
|
|
}
|
|
|
|
if (labels.find(kGroupbyCaller) != labels.end()) {
|
|
|
|
for (auto const& timeline : block.caller_num_accesses_timeline) {
|
|
|
|
const TableReaderCaller caller = timeline.first;
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string label = BuildLabel(labels, cf_name, fd, level, type,
|
|
|
|
caller, block_id, block);
|
2019-07-13 01:52:15 +02:00
|
|
|
UpdateReuseIntervalStats(label, time_buckets, timeline.second,
|
|
|
|
&label_time_num_reuses, &total_num_reuses);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Does not group by caller so we need to flatten the access timeline.
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string label = BuildLabel(
|
|
|
|
labels, cf_name, fd, level, type,
|
|
|
|
TableReaderCaller::kMaxBlockCacheLookupCaller, block_id, block);
|
2019-07-13 01:52:15 +02:00
|
|
|
std::map<uint64_t, uint64_t> timeline;
|
|
|
|
for (auto const& caller_timeline : block.caller_num_accesses_timeline) {
|
|
|
|
for (auto const& time_naccess : caller_timeline.second) {
|
|
|
|
timeline[time_naccess.first] += time_naccess.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
UpdateReuseIntervalStats(label, time_buckets, timeline,
|
|
|
|
&label_time_num_reuses, &total_num_reuses);
|
|
|
|
if (label_avg_reuse_nblocks.find(label) == label_avg_reuse_nblocks.end()) {
|
|
|
|
for (auto const& time_bucket : time_buckets) {
|
|
|
|
label_avg_reuse_nblocks[label][time_bucket] = 0;
|
|
|
|
label_avg_reuse_naccesses[label][time_bucket] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
label_avg_reuse_nblocks[label].upper_bound(avg_reuse_interval)->second += 1;
|
|
|
|
label_avg_reuse_naccesses[label].upper_bound(avg_reuse_interval)->second +=
|
|
|
|
block.num_accesses;
|
|
|
|
};
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TraverseBlocks(block_callback, &labels);
|
2019-07-13 01:52:15 +02:00
|
|
|
|
|
|
|
// Write the stats into files.
|
|
|
|
WriteStatsToFile(label_str, time_buckets, kFileNameSuffixReuseInterval,
|
|
|
|
label_time_num_reuses, total_num_reuses);
|
|
|
|
WriteStatsToFile(label_str, time_buckets, kFileNameSuffixAvgReuseInterval,
|
|
|
|
label_avg_reuse_nblocks, total_nblocks);
|
|
|
|
WriteStatsToFile(label_str, time_buckets,
|
|
|
|
kFileNameSuffixAvgReuseIntervalNaccesses,
|
|
|
|
label_avg_reuse_naccesses, total_accesses);
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteReuseLifetime(
|
|
|
|
const std::string& label_str,
|
|
|
|
const std::vector<uint64_t>& time_buckets) const {
|
|
|
|
std::set<std::string> labels = ParseLabelStr(label_str);
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> label_lifetime_nblocks;
|
|
|
|
uint64_t total_nblocks = 0;
|
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t fd,
|
|
|
|
uint32_t level, TraceType type,
|
|
|
|
const std::string& /*block_key*/, uint64_t block_id,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
uint64_t lifetime = 0;
|
|
|
|
if (block.num_accesses > 1) {
|
|
|
|
lifetime =
|
|
|
|
(block.last_access_time - block.first_access_time) / kMicrosInSecond;
|
|
|
|
} else {
|
|
|
|
lifetime = port::kMaxUint64 - 1;
|
|
|
|
}
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
const std::string label = BuildLabel(
|
|
|
|
labels, cf_name, fd, level, type,
|
|
|
|
TableReaderCaller::kMaxBlockCacheLookupCaller, block_id, block);
|
2019-07-13 01:52:15 +02:00
|
|
|
|
|
|
|
if (label_lifetime_nblocks.find(label) == label_lifetime_nblocks.end()) {
|
|
|
|
// The first time we encounter this label.
|
|
|
|
for (auto const& time_bucket : time_buckets) {
|
|
|
|
label_lifetime_nblocks[label][time_bucket] = 0;
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
label_lifetime_nblocks[label].upper_bound(lifetime)->second += 1;
|
|
|
|
total_nblocks += 1;
|
|
|
|
};
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
TraverseBlocks(block_callback, &labels);
|
2019-07-13 01:52:15 +02:00
|
|
|
WriteStatsToFile(label_str, time_buckets, kFileNameSuffixReuseLifetime,
|
|
|
|
label_lifetime_nblocks, total_nblocks);
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteBlockReuseTimeline(
|
2019-11-27 01:55:46 +01:00
|
|
|
const uint64_t reuse_window, bool user_access_only, TraceType block_type) const {
|
2019-07-13 01:52:15 +02:00
|
|
|
// A map from block key to an array of bools that states whether a block is
|
|
|
|
// accessed in a time window.
|
|
|
|
std::map<uint64_t, std::vector<bool>> block_accessed;
|
|
|
|
const uint64_t trace_duration =
|
|
|
|
trace_end_timestamp_in_seconds_ - trace_start_timestamp_in_seconds_;
|
|
|
|
const uint64_t reuse_vector_size = (trace_duration / reuse_window);
|
|
|
|
if (reuse_vector_size < 2) {
|
|
|
|
// The reuse window is less than 2. We cannot calculate the reused
|
|
|
|
// percentage of blocks.
|
|
|
|
return;
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
auto block_callback = [&](const std::string& /*cf_name*/, uint64_t /*fd*/,
|
|
|
|
uint32_t /*level*/, TraceType /*type*/,
|
|
|
|
const std::string& /*block_key*/, uint64_t block_id,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
if (block_accessed.find(block_id) == block_accessed.end()) {
|
|
|
|
block_accessed[block_id].resize(reuse_vector_size);
|
|
|
|
for (uint64_t i = 0; i < reuse_vector_size; i++) {
|
|
|
|
block_accessed[block_id][i] = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto const& caller_num : block.caller_num_accesses_timeline) {
|
|
|
|
const TableReaderCaller caller = caller_num.first;
|
|
|
|
for (auto const& timeline : caller_num.second) {
|
|
|
|
const uint64_t timestamp = timeline.first;
|
|
|
|
const uint64_t elapsed_time =
|
|
|
|
timestamp - trace_start_timestamp_in_seconds_;
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
uint64_t index =
|
|
|
|
std::min(elapsed_time / reuse_window, reuse_vector_size - 1);
|
|
|
|
block_accessed[block_id][index] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
2019-06-25 05:38:20 +02:00
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
// A cell is the number of blocks accessed in a reuse window.
|
2019-11-27 01:55:46 +01:00
|
|
|
std::unique_ptr<uint64_t[]> reuse_table(new uint64_t[reuse_vector_size * reuse_vector_size]);
|
2019-07-13 01:52:15 +02:00
|
|
|
for (uint64_t start_time = 0; start_time < reuse_vector_size; start_time++) {
|
|
|
|
// Initialize the reuse_table.
|
|
|
|
for (uint64_t i = 0; i < reuse_vector_size; i++) {
|
2019-11-27 01:55:46 +01:00
|
|
|
reuse_table[start_time * reuse_vector_size + i] = 0;
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
|
|
|
// Examine all blocks.
|
|
|
|
for (auto const& block : block_accessed) {
|
|
|
|
for (uint64_t i = start_time; i < reuse_vector_size; i++) {
|
|
|
|
if (block.second[start_time] && block.second[i]) {
|
|
|
|
// This block is accessed at start time and at the current time. We
|
|
|
|
// increment reuse_table[start_time][i] since it is reused at the ith
|
|
|
|
// window.
|
2019-11-27 01:55:46 +01:00
|
|
|
reuse_table[start_time * reuse_vector_size + i]++;
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const std::string user_access_prefix =
|
|
|
|
user_access_only ? "_user_access_only_" : "_all_access_";
|
2019-06-25 05:38:20 +02:00
|
|
|
const std::string output_path =
|
2019-07-13 01:52:15 +02:00
|
|
|
output_dir_ + "/" + block_type_to_string(block_type) +
|
|
|
|
user_access_prefix + std::to_string(reuse_window) + "_" +
|
|
|
|
kFileNameSuffixAccessReuseBlocksTimeline;
|
2019-06-25 05:38:20 +02:00
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
std::string header("start_time");
|
|
|
|
for (uint64_t start_time = 0; start_time < reuse_vector_size; start_time++) {
|
2019-06-25 05:38:20 +02:00
|
|
|
header += ",";
|
2019-07-13 01:52:15 +02:00
|
|
|
header += std::to_string(start_time);
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
out << header << std::endl;
|
2019-07-13 01:52:15 +02:00
|
|
|
for (uint64_t start_time = 0; start_time < reuse_vector_size; start_time++) {
|
|
|
|
std::string row(std::to_string(start_time * reuse_window));
|
|
|
|
for (uint64_t j = 0; j < reuse_vector_size; j++) {
|
2019-06-25 05:38:20 +02:00
|
|
|
row += ",";
|
2019-07-13 01:52:15 +02:00
|
|
|
if (j < start_time) {
|
|
|
|
row += "100.0";
|
|
|
|
} else {
|
2019-11-27 01:55:46 +01:00
|
|
|
row += std::to_string(percent(reuse_table[start_time * reuse_vector_size + j],
|
|
|
|
reuse_table[start_time * reuse_vector_size + start_time]));
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string BlockCacheTraceAnalyzer::OutputPercentAccessStats(
|
|
|
|
uint64_t total_accesses,
|
|
|
|
const std::map<std::string, uint64_t>& cf_access_count) const {
|
|
|
|
std::string row;
|
|
|
|
for (auto const& cf_aggregates : cf_aggregates_map_) {
|
|
|
|
const std::string& cf_name = cf_aggregates.first;
|
|
|
|
const auto& naccess = cf_access_count.find(cf_name);
|
|
|
|
row += ",";
|
|
|
|
if (naccess != cf_access_count.end()) {
|
|
|
|
row += std::to_string(percent(naccess->second, total_accesses));
|
|
|
|
} else {
|
|
|
|
row += "0";
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
|
|
|
return row;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WritePercentAccessSummaryStats() const {
|
|
|
|
std::map<TableReaderCaller, std::map<std::string, uint64_t>>
|
|
|
|
caller_cf_accesses;
|
|
|
|
uint64_t total_accesses = 0;
|
|
|
|
auto block_callback =
|
|
|
|
[&](const std::string& cf_name, uint64_t /*fd*/, uint32_t /*level*/,
|
|
|
|
TraceType /*type*/, const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_id*/, const BlockAccessInfo& block) {
|
|
|
|
for (auto const& caller_num : block.caller_num_access_map) {
|
|
|
|
const TableReaderCaller caller = caller_num.first;
|
|
|
|
const uint64_t naccess = caller_num.second;
|
|
|
|
caller_cf_accesses[caller][cf_name] += naccess;
|
|
|
|
total_accesses += naccess;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
|
|
|
|
|
|
|
const std::string output_path =
|
|
|
|
output_dir_ + "/" + kFileNameSuffixPercentOfAccessSummary;
|
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("caller");
|
|
|
|
for (auto const& cf_name : cf_aggregates_map_) {
|
|
|
|
header += ",";
|
|
|
|
header += cf_name.first;
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& cf_naccess_it : caller_cf_accesses) {
|
|
|
|
const TableReaderCaller caller = cf_naccess_it.first;
|
|
|
|
std::string row;
|
|
|
|
row += caller_to_string(caller);
|
|
|
|
row += OutputPercentAccessStats(total_accesses, cf_naccess_it.second);
|
2019-06-25 05:38:20 +02:00
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
void BlockCacheTraceAnalyzer::WriteDetailedPercentAccessSummaryStats(
|
|
|
|
TableReaderCaller analyzing_caller) const {
|
|
|
|
std::map<uint32_t, std::map<std::string, uint64_t>> level_cf_accesses;
|
|
|
|
std::map<TraceType, std::map<std::string, uint64_t>> bt_cf_accesses;
|
|
|
|
uint64_t total_accesses = 0;
|
|
|
|
auto block_callback =
|
|
|
|
[&](const std::string& cf_name, uint64_t /*fd*/, uint32_t level,
|
|
|
|
TraceType type, const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_id*/, const BlockAccessInfo& block) {
|
|
|
|
for (auto const& caller_num : block.caller_num_access_map) {
|
|
|
|
const TableReaderCaller caller = caller_num.first;
|
|
|
|
if (caller == analyzing_caller) {
|
|
|
|
const uint64_t naccess = caller_num.second;
|
|
|
|
level_cf_accesses[level][cf_name] += naccess;
|
|
|
|
bt_cf_accesses[type][cf_name] += naccess;
|
|
|
|
total_accesses += naccess;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
|
|
|
{
|
|
|
|
const std::string output_path =
|
|
|
|
output_dir_ + "/" + caller_to_string(analyzing_caller) + "_level_" +
|
|
|
|
kFileNameSuffixPercentOfAccessSummary;
|
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("level");
|
|
|
|
for (auto const& cf_name : cf_aggregates_map_) {
|
|
|
|
header += ",";
|
|
|
|
header += cf_name.first;
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& level_naccess_it : level_cf_accesses) {
|
|
|
|
const uint32_t level = level_naccess_it.first;
|
|
|
|
std::string row;
|
|
|
|
row += std::to_string(level);
|
|
|
|
row += OutputPercentAccessStats(total_accesses, level_naccess_it.second);
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
{
|
|
|
|
const std::string output_path =
|
|
|
|
output_dir_ + "/" + caller_to_string(analyzing_caller) + "_bt_" +
|
|
|
|
kFileNameSuffixPercentOfAccessSummary;
|
|
|
|
std::ofstream out(output_path);
|
|
|
|
if (!out.is_open()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::string header("bt");
|
|
|
|
for (auto const& cf_name : cf_aggregates_map_) {
|
|
|
|
header += ",";
|
|
|
|
header += cf_name.first;
|
|
|
|
}
|
|
|
|
out << header << std::endl;
|
|
|
|
for (auto const& bt_naccess_it : bt_cf_accesses) {
|
|
|
|
const TraceType bt = bt_naccess_it.first;
|
|
|
|
std::string row;
|
|
|
|
row += block_type_to_string(bt);
|
|
|
|
row += OutputPercentAccessStats(total_accesses, bt_naccess_it.second);
|
|
|
|
out << row << std::endl;
|
|
|
|
}
|
|
|
|
out.close();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::WriteAccessCountSummaryStats(
|
|
|
|
const std::vector<uint64_t>& access_count_buckets,
|
|
|
|
bool user_access_only) const {
|
|
|
|
// x: buckets.
|
|
|
|
// y: # of accesses.
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> bt_access_nblocks;
|
|
|
|
std::map<std::string, std::map<uint64_t, uint64_t>> cf_access_nblocks;
|
|
|
|
uint64_t total_nblocks = 0;
|
|
|
|
auto block_callback =
|
|
|
|
[&](const std::string& cf_name, uint64_t /*fd*/, uint32_t /*level*/,
|
|
|
|
TraceType type, const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_id*/, const BlockAccessInfo& block) {
|
|
|
|
const std::string type_str = block_type_to_string(type);
|
|
|
|
if (cf_access_nblocks.find(cf_name) == cf_access_nblocks.end()) {
|
|
|
|
// initialize.
|
|
|
|
for (auto& access : access_count_buckets) {
|
|
|
|
cf_access_nblocks[cf_name][access] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (bt_access_nblocks.find(type_str) == bt_access_nblocks.end()) {
|
|
|
|
// initialize.
|
|
|
|
for (auto& access : access_count_buckets) {
|
|
|
|
bt_access_nblocks[type_str][access] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uint64_t naccesses = 0;
|
|
|
|
for (auto const& caller_access : block.caller_num_access_map) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
naccesses += caller_access.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (naccesses == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
total_nblocks += 1;
|
|
|
|
bt_access_nblocks[type_str].upper_bound(naccesses)->second += 1;
|
|
|
|
cf_access_nblocks[cf_name].upper_bound(naccesses)->second += 1;
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
|
|
|
const std::string user_access_prefix =
|
|
|
|
user_access_only ? "user_access_only_" : "all_access_";
|
|
|
|
WriteStatsToFile("cf", access_count_buckets,
|
|
|
|
user_access_prefix + kFileNameSuffixAccessCountSummary,
|
|
|
|
cf_access_nblocks, total_nblocks);
|
|
|
|
WriteStatsToFile("bt", access_count_buckets,
|
|
|
|
user_access_prefix + kFileNameSuffixAccessCountSummary,
|
|
|
|
bt_access_nblocks, total_nblocks);
|
|
|
|
}
|
|
|
|
|
2019-06-11 21:18:37 +02:00
|
|
|
BlockCacheTraceAnalyzer::BlockCacheTraceAnalyzer(
|
2019-06-25 05:38:20 +02:00
|
|
|
const std::string& trace_file_path, const std::string& output_dir,
|
2019-07-23 02:47:54 +02:00
|
|
|
const std::string& human_readable_trace_file_path,
|
|
|
|
bool compute_reuse_distance, bool mrc_only,
|
2019-08-09 22:09:04 +02:00
|
|
|
bool is_human_readable_trace_file,
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
std::unique_ptr<BlockCacheTraceSimulator>&& cache_simulator)
|
2019-06-25 05:38:20 +02:00
|
|
|
: env_(rocksdb::Env::Default()),
|
|
|
|
trace_file_path_(trace_file_path),
|
|
|
|
output_dir_(output_dir),
|
2019-07-23 02:47:54 +02:00
|
|
|
human_readable_trace_file_path_(human_readable_trace_file_path),
|
2019-07-13 01:52:15 +02:00
|
|
|
compute_reuse_distance_(compute_reuse_distance),
|
2019-07-23 02:47:54 +02:00
|
|
|
mrc_only_(mrc_only),
|
2019-08-09 22:09:04 +02:00
|
|
|
is_human_readable_trace_file_(is_human_readable_trace_file),
|
2019-06-25 05:38:20 +02:00
|
|
|
cache_simulator_(std::move(cache_simulator)) {}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::ComputeReuseDistance(
|
|
|
|
BlockAccessInfo* info) const {
|
|
|
|
assert(info);
|
|
|
|
if (info->num_accesses == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint64_t reuse_distance = 0;
|
|
|
|
for (auto const& block_key : info->unique_blocks_since_last_access) {
|
|
|
|
auto const& it = block_info_map_.find(block_key);
|
|
|
|
// This block must exist.
|
|
|
|
assert(it != block_info_map_.end());
|
|
|
|
reuse_distance += it->second->block_size;
|
|
|
|
}
|
|
|
|
info->reuse_distance_count[reuse_distance] += 1;
|
|
|
|
// We clear this hash set since this is the second access on this block.
|
|
|
|
info->unique_blocks_since_last_access.clear();
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
|
2019-07-23 02:47:54 +02:00
|
|
|
Status BlockCacheTraceAnalyzer::RecordAccess(
|
2019-06-11 21:18:37 +02:00
|
|
|
const BlockCacheTraceRecord& access) {
|
|
|
|
ColumnFamilyAccessInfoAggregate& cf_aggr = cf_aggregates_map_[access.cf_name];
|
|
|
|
SSTFileAccessInfoAggregate& file_aggr =
|
|
|
|
cf_aggr.fd_aggregates_map[access.sst_fd_number];
|
|
|
|
file_aggr.level = access.level;
|
|
|
|
BlockTypeAccessInfoAggregate& block_type_aggr =
|
|
|
|
file_aggr.block_type_aggregates_map[access.block_type];
|
2019-07-23 02:47:54 +02:00
|
|
|
if (block_type_aggr.block_access_info_map.find(access.block_key) ==
|
|
|
|
block_type_aggr.block_access_info_map.end()) {
|
|
|
|
block_type_aggr.block_access_info_map[access.block_key].block_id =
|
|
|
|
unique_block_id_;
|
|
|
|
unique_block_id_++;
|
|
|
|
}
|
2019-06-11 21:18:37 +02:00
|
|
|
BlockAccessInfo& block_access_info =
|
|
|
|
block_type_aggr.block_access_info_map[access.block_key];
|
2019-07-13 01:52:15 +02:00
|
|
|
if (compute_reuse_distance_) {
|
|
|
|
ComputeReuseDistance(&block_access_info);
|
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
block_access_info.AddAccess(access, access_sequence_number_);
|
2019-06-25 05:38:20 +02:00
|
|
|
block_info_map_[access.block_key] = &block_access_info;
|
2019-07-23 02:47:54 +02:00
|
|
|
uint64_t get_key_id = 0;
|
|
|
|
if (access.caller == TableReaderCaller::kUserGet &&
|
|
|
|
access.get_id != BlockCacheTraceHelper::kReservedGetId) {
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
std::string user_key = ExtractUserKey(access.referenced_key).ToString();
|
|
|
|
if (get_key_info_map_.find(user_key) == get_key_info_map_.end()) {
|
|
|
|
get_key_info_map_[user_key].key_id = unique_get_key_id_;
|
2019-07-23 02:47:54 +02:00
|
|
|
unique_get_key_id_++;
|
|
|
|
}
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
get_key_id = get_key_info_map_[user_key].key_id;
|
|
|
|
get_key_info_map_[user_key].AddAccess(access, access_sequence_number_);
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
2019-06-25 05:38:20 +02:00
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
if (compute_reuse_distance_) {
|
|
|
|
// Add this block to all existing blocks.
|
|
|
|
for (auto& cf_aggregates : cf_aggregates_map_) {
|
|
|
|
for (auto& file_aggregates : cf_aggregates.second.fd_aggregates_map) {
|
|
|
|
for (auto& block_type_aggregates :
|
|
|
|
file_aggregates.second.block_type_aggregates_map) {
|
|
|
|
for (auto& existing_block :
|
|
|
|
block_type_aggregates.second.block_access_info_map) {
|
|
|
|
existing_block.second.unique_blocks_since_last_access.insert(
|
|
|
|
access.block_key);
|
|
|
|
}
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-08-09 22:09:04 +02:00
|
|
|
return human_readable_trace_writer_.WriteHumanReadableTraceRecord(
|
|
|
|
access, block_access_info.block_id, get_key_id);
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
Status BlockCacheTraceAnalyzer::Analyze() {
|
2019-08-09 22:09:04 +02:00
|
|
|
std::unique_ptr<BlockCacheTraceReader> reader;
|
|
|
|
Status s = Status::OK();
|
|
|
|
if (is_human_readable_trace_file_) {
|
|
|
|
reader.reset(new BlockCacheHumanReadableTraceReader(trace_file_path_));
|
|
|
|
} else {
|
|
|
|
std::unique_ptr<TraceReader> trace_reader;
|
|
|
|
s = NewFileTraceReader(env_, EnvOptions(), trace_file_path_, &trace_reader);
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
reader.reset(new BlockCacheTraceReader(std::move(trace_reader)));
|
|
|
|
s = reader->ReadHeader(&header_);
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
if (!human_readable_trace_file_path_.empty()) {
|
2019-08-09 22:09:04 +02:00
|
|
|
s = human_readable_trace_writer_.NewWritableFile(
|
|
|
|
human_readable_trace_file_path_, env_);
|
2019-07-23 02:47:54 +02:00
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
uint64_t start = env_->NowMicros();
|
|
|
|
uint64_t time_interval = 0;
|
2019-06-11 21:18:37 +02:00
|
|
|
while (s.ok()) {
|
|
|
|
BlockCacheTraceRecord access;
|
2019-08-09 22:09:04 +02:00
|
|
|
s = reader->ReadAccess(&access);
|
2019-06-11 21:18:37 +02:00
|
|
|
if (!s.ok()) {
|
2019-07-23 02:47:54 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (!mrc_only_) {
|
|
|
|
s = RecordAccess(access);
|
|
|
|
if (!s.ok()) {
|
|
|
|
break;
|
|
|
|
}
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
if (trace_start_timestamp_in_seconds_ == 0) {
|
|
|
|
trace_start_timestamp_in_seconds_ =
|
|
|
|
access.access_timestamp / kMicrosInSecond;
|
|
|
|
}
|
|
|
|
trace_end_timestamp_in_seconds_ = access.access_timestamp / kMicrosInSecond;
|
|
|
|
miss_ratio_stats_.UpdateMetrics(access.access_timestamp,
|
|
|
|
is_user_access(access.caller),
|
|
|
|
access.is_cache_hit == Boolean::kFalse);
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
if (cache_simulator_) {
|
|
|
|
cache_simulator_->Access(access);
|
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
access_sequence_number_++;
|
2019-07-13 01:52:15 +02:00
|
|
|
uint64_t now = env_->NowMicros();
|
|
|
|
uint64_t duration = (now - start) / kMicrosInSecond;
|
|
|
|
if (duration > 10 * time_interval) {
|
2019-07-23 02:47:54 +02:00
|
|
|
uint64_t trace_duration =
|
|
|
|
trace_end_timestamp_in_seconds_ - trace_start_timestamp_in_seconds_;
|
2019-07-13 01:52:15 +02:00
|
|
|
fprintf(stdout,
|
|
|
|
"Running for %" PRIu64 " seconds: Processed %" PRIu64
|
2019-07-23 02:47:54 +02:00
|
|
|
" records/second. Trace duration %" PRIu64
|
|
|
|
" seconds. Observed miss ratio %.2f\n",
|
|
|
|
duration, duration > 0 ? access_sequence_number_ / duration : 0,
|
|
|
|
trace_duration, miss_ratio_stats_.miss_ratio());
|
2019-07-13 01:52:15 +02:00
|
|
|
time_interval++;
|
|
|
|
}
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
uint64_t now = env_->NowMicros();
|
|
|
|
uint64_t duration = (now - start) / kMicrosInSecond;
|
|
|
|
uint64_t trace_duration =
|
|
|
|
trace_end_timestamp_in_seconds_ - trace_start_timestamp_in_seconds_;
|
|
|
|
fprintf(stdout,
|
|
|
|
"Running for %" PRIu64 " seconds: Processed %" PRIu64
|
|
|
|
" records/second. Trace duration %" PRIu64
|
|
|
|
" seconds. Observed miss ratio %.2f\n",
|
|
|
|
duration, duration > 0 ? access_sequence_number_ / duration : 0,
|
|
|
|
trace_duration, miss_ratio_stats_.miss_ratio());
|
|
|
|
return s;
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::PrintBlockSizeStats() const {
|
|
|
|
HistogramStat bs_stats;
|
|
|
|
std::map<TraceType, HistogramStat> bt_stats_map;
|
|
|
|
std::map<std::string, std::map<TraceType, HistogramStat>> cf_bt_stats_map;
|
2019-07-13 01:52:15 +02:00
|
|
|
auto block_callback =
|
|
|
|
[&](const std::string& cf_name, uint64_t /*fd*/, uint32_t /*level*/,
|
|
|
|
TraceType type, const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_id*/, const BlockAccessInfo& block) {
|
|
|
|
if (block.block_size == 0) {
|
|
|
|
// Block size may be 0 when 1) compaction observes a cache miss and
|
|
|
|
// does not insert the missing block into the cache again. 2)
|
|
|
|
// fetching filter blocks in SST files at the last level.
|
|
|
|
return;
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
bs_stats.Add(block.block_size);
|
|
|
|
bt_stats_map[type].Add(block.block_size);
|
|
|
|
cf_bt_stats_map[cf_name][type].Add(block.block_size);
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Block size stats: \n%s", bs_stats.ToString().c_str());
|
|
|
|
for (auto const& bt_stats : bt_stats_map) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Block size stats for block type %s: \n%s",
|
|
|
|
block_type_to_string(bt_stats.first).c_str(),
|
|
|
|
bt_stats.second.ToString().c_str());
|
|
|
|
}
|
|
|
|
for (auto const& cf_bt_stats : cf_bt_stats_map) {
|
|
|
|
const std::string& cf_name = cf_bt_stats.first;
|
|
|
|
for (auto const& bt_stats : cf_bt_stats.second) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout,
|
|
|
|
"Block size stats for column family %s and block type %s: \n%s",
|
|
|
|
cf_name.c_str(), block_type_to_string(bt_stats.first).c_str(),
|
|
|
|
bt_stats.second.ToString().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
void BlockCacheTraceAnalyzer::PrintAccessCountStats(bool user_access_only,
|
|
|
|
uint32_t bottom_k,
|
|
|
|
uint32_t top_k) const {
|
2019-06-11 21:18:37 +02:00
|
|
|
HistogramStat access_stats;
|
|
|
|
std::map<TraceType, HistogramStat> bt_stats_map;
|
|
|
|
std::map<std::string, std::map<TraceType, HistogramStat>> cf_bt_stats_map;
|
2019-07-13 01:52:15 +02:00
|
|
|
std::map<uint64_t, std::vector<std::string>> access_count_blocks;
|
|
|
|
auto block_callback = [&](const std::string& cf_name, uint64_t /*fd*/,
|
|
|
|
uint32_t /*level*/, TraceType type,
|
|
|
|
const std::string& block_key, uint64_t /*block_id*/,
|
|
|
|
const BlockAccessInfo& block) {
|
|
|
|
uint64_t naccesses = 0;
|
|
|
|
for (auto const& caller_access : block.caller_num_access_map) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
naccesses += caller_access.second;
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
if (naccesses == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (type == TraceType::kBlockTraceDataBlock) {
|
|
|
|
access_count_blocks[naccesses].push_back(block_key);
|
|
|
|
}
|
|
|
|
access_stats.Add(naccesses);
|
|
|
|
bt_stats_map[type].Add(naccesses);
|
|
|
|
cf_bt_stats_map[cf_name][type].Add(naccesses);
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout,
|
2019-07-13 01:52:15 +02:00
|
|
|
"Block access count stats: The number of accesses per block. %s\n%s",
|
|
|
|
user_access_only ? "User accesses only" : "All accesses",
|
2019-06-11 21:18:37 +02:00
|
|
|
access_stats.ToString().c_str());
|
2019-07-13 01:52:15 +02:00
|
|
|
uint32_t bottom_k_index = 0;
|
|
|
|
for (auto naccess_it = access_count_blocks.begin();
|
|
|
|
naccess_it != access_count_blocks.end(); naccess_it++) {
|
|
|
|
bottom_k_index++;
|
|
|
|
if (bottom_k_index >= bottom_k) {
|
|
|
|
break;
|
|
|
|
}
|
2019-11-27 01:55:46 +01:00
|
|
|
std::map<TableReaderCaller, uint64_t> caller_naccesses;
|
2019-07-13 01:52:15 +02:00
|
|
|
uint64_t naccesses = 0;
|
|
|
|
for (auto const& block_id : naccess_it->second) {
|
|
|
|
BlockAccessInfo* block = block_info_map_.find(block_id)->second;
|
|
|
|
for (auto const& caller_access : block->caller_num_access_map) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
caller_naccesses[caller_access.first] += caller_access.second;
|
|
|
|
naccesses += caller_access.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::string statistics("Caller:");
|
|
|
|
for (auto const& caller_naccessess_it : caller_naccesses) {
|
|
|
|
statistics += caller_to_string(caller_naccessess_it.first);
|
|
|
|
statistics += ":";
|
|
|
|
statistics +=
|
|
|
|
std::to_string(percent(caller_naccessess_it.second, naccesses));
|
|
|
|
statistics += ",";
|
|
|
|
}
|
|
|
|
fprintf(stdout,
|
|
|
|
"Bottom %" PRIu32 " access count. Access count=%" PRIu64
|
2019-07-24 02:08:26 +02:00
|
|
|
" nblocks=%" ROCKSDB_PRIszt " %s\n",
|
2019-07-13 01:52:15 +02:00
|
|
|
bottom_k, naccess_it->first, naccess_it->second.size(),
|
|
|
|
statistics.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t top_k_index = 0;
|
|
|
|
for (auto naccess_it = access_count_blocks.rbegin();
|
|
|
|
naccess_it != access_count_blocks.rend(); naccess_it++) {
|
|
|
|
top_k_index++;
|
|
|
|
if (top_k_index >= top_k) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (auto const& block_id : naccess_it->second) {
|
|
|
|
BlockAccessInfo* block = block_info_map_.find(block_id)->second;
|
|
|
|
std::string statistics("Caller:");
|
|
|
|
uint64_t naccesses = 0;
|
|
|
|
for (auto const& caller_access : block->caller_num_access_map) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
naccesses += caller_access.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(naccesses > 0);
|
|
|
|
for (auto const& caller_access : block->caller_num_access_map) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
statistics += ",";
|
|
|
|
statistics += caller_to_string(caller_access.first);
|
|
|
|
statistics += ":";
|
|
|
|
statistics +=
|
|
|
|
std::to_string(percent(caller_access.second, naccesses));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uint64_t ref_keys_accesses = 0;
|
|
|
|
uint64_t ref_keys_does_not_exist_accesses = 0;
|
|
|
|
for (auto const& ref_key_caller_access : block->key_num_access_map) {
|
|
|
|
for (auto const& caller_access : ref_key_caller_access.second) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
ref_keys_accesses += caller_access.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto const& ref_key_caller_access :
|
|
|
|
block->non_exist_key_num_access_map) {
|
|
|
|
for (auto const& caller_access : ref_key_caller_access.second) {
|
2020-02-20 19:25:14 +01:00
|
|
|
if (!user_access_only || is_user_access(caller_access.first)) {
|
2019-07-13 01:52:15 +02:00
|
|
|
ref_keys_does_not_exist_accesses += caller_access.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
statistics += ",nkeys=";
|
|
|
|
statistics += std::to_string(block->num_keys);
|
|
|
|
statistics += ",block_size=";
|
|
|
|
statistics += std::to_string(block->block_size);
|
|
|
|
statistics += ",num_ref_keys=";
|
|
|
|
statistics += std::to_string(block->key_num_access_map.size());
|
|
|
|
statistics += ",percent_access_ref_keys=";
|
|
|
|
statistics += std::to_string(percent(ref_keys_accesses, naccesses));
|
|
|
|
statistics += ",num_ref_keys_does_not_exist=";
|
|
|
|
statistics += std::to_string(block->non_exist_key_num_access_map.size());
|
|
|
|
statistics += ",percent_access_ref_keys_does_not_exist=";
|
|
|
|
statistics +=
|
|
|
|
std::to_string(percent(ref_keys_does_not_exist_accesses, naccesses));
|
|
|
|
statistics += ",ref_data_size=";
|
|
|
|
statistics += std::to_string(block->referenced_data_size);
|
|
|
|
fprintf(stdout,
|
|
|
|
"Top %" PRIu32 " access count blocks access_count=%" PRIu64
|
|
|
|
" %s\n",
|
|
|
|
top_k, naccess_it->first, statistics.c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-11 21:18:37 +02:00
|
|
|
for (auto const& bt_stats : bt_stats_map) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout, "Break down by block type %s: \n%s",
|
2019-06-11 21:18:37 +02:00
|
|
|
block_type_to_string(bt_stats.first).c_str(),
|
|
|
|
bt_stats.second.ToString().c_str());
|
|
|
|
}
|
|
|
|
for (auto const& cf_bt_stats : cf_bt_stats_map) {
|
|
|
|
const std::string& cf_name = cf_bt_stats.first;
|
|
|
|
for (auto const& bt_stats : cf_bt_stats.second) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
"Break down by column family %s and block type "
|
2019-06-11 21:18:37 +02:00
|
|
|
"%s: \n%s",
|
|
|
|
cf_name.c_str(), block_type_to_string(bt_stats.first).c_str(),
|
|
|
|
bt_stats.second.ToString().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::PrintDataBlockAccessStats() const {
|
|
|
|
HistogramStat existing_keys_stats;
|
|
|
|
std::map<std::string, HistogramStat> cf_existing_keys_stats_map;
|
|
|
|
HistogramStat non_existing_keys_stats;
|
|
|
|
std::map<std::string, HistogramStat> cf_non_existing_keys_stats_map;
|
|
|
|
HistogramStat block_access_stats;
|
|
|
|
std::map<std::string, HistogramStat> cf_block_access_info;
|
2019-06-19 03:34:39 +02:00
|
|
|
HistogramStat percent_referenced_bytes;
|
|
|
|
std::map<std::string, HistogramStat> cf_percent_referenced_bytes;
|
|
|
|
// Total number of accesses in a data block / number of keys in a data block.
|
|
|
|
HistogramStat avg_naccesses_per_key_in_a_data_block;
|
|
|
|
std::map<std::string, HistogramStat> cf_avg_naccesses_per_key_in_a_data_block;
|
|
|
|
// The standard deviation on the number of accesses of a key in a data block.
|
|
|
|
HistogramStat stdev_naccesses_per_key_in_a_data_block;
|
|
|
|
std::map<std::string, HistogramStat>
|
|
|
|
cf_stdev_naccesses_per_key_in_a_data_block;
|
2019-07-13 01:52:15 +02:00
|
|
|
auto block_callback =
|
|
|
|
[&](const std::string& cf_name, uint64_t /*fd*/, uint32_t /*level*/,
|
|
|
|
TraceType /*type*/, const std::string& /*block_key*/,
|
|
|
|
uint64_t /*block_id*/, const BlockAccessInfo& block) {
|
|
|
|
if (block.num_keys == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Use four decimal points.
|
|
|
|
uint64_t percent_referenced_for_existing_keys = (uint64_t)(
|
|
|
|
((double)block.key_num_access_map.size() / (double)block.num_keys) *
|
|
|
|
10000.0);
|
|
|
|
uint64_t percent_referenced_for_non_existing_keys =
|
|
|
|
(uint64_t)(((double)block.non_exist_key_num_access_map.size() /
|
|
|
|
(double)block.num_keys) *
|
|
|
|
10000.0);
|
|
|
|
uint64_t percent_accesses_for_existing_keys =
|
|
|
|
(uint64_t)(((double)block.num_referenced_key_exist_in_block /
|
|
|
|
(double)block.num_accesses) *
|
|
|
|
10000.0);
|
2019-06-11 21:18:37 +02:00
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
HistogramStat hist_naccess_per_key;
|
|
|
|
for (auto const& key_access : block.key_num_access_map) {
|
|
|
|
for (auto const& caller_access : key_access.second) {
|
|
|
|
hist_naccess_per_key.Add(caller_access.second);
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
}
|
2019-09-19 21:32:33 +02:00
|
|
|
uint64_t avg_accesses =
|
|
|
|
static_cast<uint64_t>(hist_naccess_per_key.Average());
|
|
|
|
uint64_t stdev_accesses =
|
|
|
|
static_cast<uint64_t>(hist_naccess_per_key.StandardDeviation());
|
2019-07-13 01:52:15 +02:00
|
|
|
avg_naccesses_per_key_in_a_data_block.Add(avg_accesses);
|
|
|
|
cf_avg_naccesses_per_key_in_a_data_block[cf_name].Add(avg_accesses);
|
|
|
|
stdev_naccesses_per_key_in_a_data_block.Add(stdev_accesses);
|
|
|
|
cf_stdev_naccesses_per_key_in_a_data_block[cf_name].Add(stdev_accesses);
|
|
|
|
|
|
|
|
existing_keys_stats.Add(percent_referenced_for_existing_keys);
|
|
|
|
cf_existing_keys_stats_map[cf_name].Add(
|
|
|
|
percent_referenced_for_existing_keys);
|
|
|
|
non_existing_keys_stats.Add(percent_referenced_for_non_existing_keys);
|
|
|
|
cf_non_existing_keys_stats_map[cf_name].Add(
|
|
|
|
percent_referenced_for_non_existing_keys);
|
|
|
|
block_access_stats.Add(percent_accesses_for_existing_keys);
|
|
|
|
cf_block_access_info[cf_name].Add(percent_accesses_for_existing_keys);
|
|
|
|
};
|
|
|
|
TraverseBlocks(block_callback);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
"Histogram on the number of referenced keys existing in a block over "
|
2019-06-11 21:18:37 +02:00
|
|
|
"the total number of keys in a block: \n%s",
|
|
|
|
existing_keys_stats.ToString().c_str());
|
|
|
|
for (auto const& cf_stats : cf_existing_keys_stats_map) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Break down by column family %s: \n%s",
|
|
|
|
cf_stats.first.c_str(), cf_stats.second.ToString().c_str());
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(
|
|
|
|
stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
"Histogram on the number of referenced keys DO NOT exist in a block over "
|
2019-06-11 21:18:37 +02:00
|
|
|
"the total number of keys in a block: \n%s",
|
|
|
|
non_existing_keys_stats.ToString().c_str());
|
|
|
|
for (auto const& cf_stats : cf_non_existing_keys_stats_map) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Break down by column family %s: \n%s",
|
|
|
|
cf_stats.first.c_str(), cf_stats.second.ToString().c_str());
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
"Histogram on the number of accesses on keys exist in a block over "
|
2019-06-11 21:18:37 +02:00
|
|
|
"the total number of accesses in a block: \n%s",
|
|
|
|
block_access_stats.ToString().c_str());
|
|
|
|
for (auto const& cf_stats : cf_block_access_info) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Break down by column family %s: \n%s",
|
|
|
|
cf_stats.first.c_str(), cf_stats.second.ToString().c_str());
|
|
|
|
}
|
2019-06-19 03:34:39 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
|
|
|
fprintf(
|
|
|
|
stdout,
|
|
|
|
"Histogram on the average number of accesses per key in a block: \n%s",
|
|
|
|
avg_naccesses_per_key_in_a_data_block.ToString().c_str());
|
|
|
|
for (auto const& cf_stats : cf_avg_naccesses_per_key_in_a_data_block) {
|
|
|
|
fprintf(stdout, "Break down by column family %s: \n%s",
|
|
|
|
cf_stats.first.c_str(), cf_stats.second.ToString().c_str());
|
|
|
|
}
|
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
|
|
|
fprintf(stdout,
|
|
|
|
"Histogram on the standard deviation of the number of accesses per "
|
|
|
|
"key in a block: \n%s",
|
|
|
|
stdev_naccesses_per_key_in_a_data_block.ToString().c_str());
|
|
|
|
for (auto const& cf_stats : cf_stdev_naccesses_per_key_in_a_data_block) {
|
|
|
|
fprintf(stdout, "Break down by column family %s: \n%s",
|
|
|
|
cf_stats.first.c_str(), cf_stats.second.ToString().c_str());
|
|
|
|
}
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void BlockCacheTraceAnalyzer::PrintStatsSummary() const {
|
|
|
|
uint64_t total_num_files = 0;
|
|
|
|
uint64_t total_num_blocks = 0;
|
|
|
|
uint64_t total_num_accesses = 0;
|
|
|
|
std::map<TraceType, uint64_t> bt_num_blocks_map;
|
2019-06-20 23:28:22 +02:00
|
|
|
std::map<TableReaderCaller, uint64_t> caller_num_access_map;
|
|
|
|
std::map<TableReaderCaller, std::map<TraceType, uint64_t>>
|
2019-06-11 21:18:37 +02:00
|
|
|
caller_bt_num_access_map;
|
2019-06-20 23:28:22 +02:00
|
|
|
std::map<TableReaderCaller, std::map<uint32_t, uint64_t>>
|
2019-06-11 21:18:37 +02:00
|
|
|
caller_level_num_access_map;
|
|
|
|
for (auto const& cf_aggregates : cf_aggregates_map_) {
|
|
|
|
// Stats per column family.
|
|
|
|
const std::string& cf_name = cf_aggregates.first;
|
|
|
|
uint64_t cf_num_files = 0;
|
|
|
|
uint64_t cf_num_blocks = 0;
|
|
|
|
std::map<TraceType, uint64_t> cf_bt_blocks;
|
|
|
|
uint64_t cf_num_accesses = 0;
|
2019-06-20 23:28:22 +02:00
|
|
|
std::map<TableReaderCaller, uint64_t> cf_caller_num_accesses_map;
|
|
|
|
std::map<TableReaderCaller, std::map<uint64_t, uint64_t>>
|
2019-06-11 21:18:37 +02:00
|
|
|
cf_caller_level_num_accesses_map;
|
2019-06-20 23:28:22 +02:00
|
|
|
std::map<TableReaderCaller, std::map<uint64_t, uint64_t>>
|
2019-06-11 21:18:37 +02:00
|
|
|
cf_caller_file_num_accesses_map;
|
2019-06-20 23:28:22 +02:00
|
|
|
std::map<TableReaderCaller, std::map<TraceType, uint64_t>>
|
2019-06-11 21:18:37 +02:00
|
|
|
cf_caller_bt_num_accesses_map;
|
|
|
|
total_num_files += cf_aggregates.second.fd_aggregates_map.size();
|
|
|
|
for (auto const& file_aggregates : cf_aggregates.second.fd_aggregates_map) {
|
|
|
|
// Stats per SST file.
|
|
|
|
const uint64_t fd = file_aggregates.first;
|
|
|
|
const uint32_t level = file_aggregates.second.level;
|
|
|
|
cf_num_files++;
|
|
|
|
for (auto const& block_type_aggregates :
|
|
|
|
file_aggregates.second.block_type_aggregates_map) {
|
|
|
|
// Stats per block type.
|
|
|
|
const TraceType type = block_type_aggregates.first;
|
|
|
|
cf_bt_blocks[type] +=
|
|
|
|
block_type_aggregates.second.block_access_info_map.size();
|
|
|
|
total_num_blocks +=
|
|
|
|
block_type_aggregates.second.block_access_info_map.size();
|
|
|
|
bt_num_blocks_map[type] +=
|
|
|
|
block_type_aggregates.second.block_access_info_map.size();
|
|
|
|
for (auto const& block_access_info :
|
|
|
|
block_type_aggregates.second.block_access_info_map) {
|
|
|
|
// Stats per block.
|
|
|
|
cf_num_blocks++;
|
|
|
|
for (auto const& stats :
|
|
|
|
block_access_info.second.caller_num_access_map) {
|
|
|
|
// Stats per caller.
|
2019-06-20 23:28:22 +02:00
|
|
|
const TableReaderCaller caller = stats.first;
|
2019-06-11 21:18:37 +02:00
|
|
|
const uint64_t num_accesses = stats.second;
|
|
|
|
// Overall stats.
|
|
|
|
total_num_accesses += num_accesses;
|
|
|
|
caller_num_access_map[caller] += num_accesses;
|
|
|
|
caller_bt_num_access_map[caller][type] += num_accesses;
|
|
|
|
caller_level_num_access_map[caller][level] += num_accesses;
|
|
|
|
// Column Family stats.
|
Block cache tracing: Fix minor bugs with downsampling and some benchmark results. (#5473)
Summary:
As the code changes for block cache tracing are almost complete, I did a benchmark to compare the performance when block cache tracing is enabled/disabled.
With 1% downsampling ratio, the performance overhead of block cache tracing is negligible. When we trace all block accesses, the throughput drops by 6 folds with 16 threads issuing random reads and all reads are served in block cache.
Setup:
RocksDB: version 6.2
Date: Mon Jun 17 17:11:13 2019
CPU: 24 * Intel Core Processor (Skylake)
CPUCache: 16384 KB
Keys: 20 bytes each
Values: 100 bytes each (100 bytes after compression)
Entries: 10000000
Prefix: 20 bytes
Keys per prefix: 0
RawSize: 1144.4 MB (estimated)
FileSize: 1144.4 MB (estimated)
Write rate: 0 bytes/second
Read rate: 0 ops/second
Compression: NoCompression
Compression sampling rate: 0
Memtablerep: skip_list
Perf Level: 1
I ran the readrandom workload for 1 minute. Detailed throughput results: (ops/second)
Sample rate 0: no block cache tracing.
Sample rate 1: trace all block accesses.
Sample rate 100: trace accesses 1% blocks.
1 thread | Â | Â | Â -- | -- | -- | --
Sample rate | 0 | 1 | 100
1 MB block cache size | 13,094 | 13,166 | 13,341
10 GB block cache size | 202,243 | 188,677 | 229,182
16 threads | Â | Â | -- | -- | -- | --
Sample rate | 0 | 1 | 100
1 MB block cache size | 208,761 | 178,700 | 201,872
10 GB block cache size | 2,645,996 | 426,295 | 2,587,605
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5473
Differential Revision: D15869479
Pulled By: HaoyuHuang
fbshipit-source-id: 7ae802abe84811281a6af8649f489887cd7c4618
2019-06-18 02:56:09 +02:00
|
|
|
cf_num_accesses += num_accesses;
|
2019-06-11 21:18:37 +02:00
|
|
|
cf_caller_num_accesses_map[caller] += num_accesses;
|
|
|
|
cf_caller_level_num_accesses_map[caller][level] += num_accesses;
|
|
|
|
cf_caller_file_num_accesses_map[caller][fd] += num_accesses;
|
|
|
|
cf_caller_bt_num_accesses_map[caller][type] += num_accesses;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Print stats.
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Statistics for column family %s:\n", cf_name.c_str());
|
|
|
|
fprintf(stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
" Number of files:%" PRIu64 " Number of blocks: %" PRIu64
|
|
|
|
" Number of accesses: %" PRIu64 "\n",
|
2019-06-11 21:18:37 +02:00
|
|
|
cf_num_files, cf_num_blocks, cf_num_accesses);
|
|
|
|
for (auto block_type : cf_bt_blocks) {
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout, "Number of %s blocks: %" PRIu64 " Percent: %.2f\n",
|
|
|
|
block_type_to_string(block_type.first).c_str(), block_type.second,
|
|
|
|
percent(block_type.second, cf_num_blocks));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
for (auto caller : cf_caller_num_accesses_map) {
|
2019-06-19 03:34:39 +02:00
|
|
|
const uint64_t naccesses = caller.second;
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout,
|
|
|
|
"Caller %s: Number of accesses %" PRIu64 " Percent: %.2f\n",
|
|
|
|
caller_to_string(caller.first).c_str(), naccesses,
|
|
|
|
percent(naccesses, cf_num_accesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Caller %s: Number of accesses per level break down\n",
|
|
|
|
caller_to_string(caller.first).c_str());
|
|
|
|
for (auto naccess_level :
|
|
|
|
cf_caller_level_num_accesses_map[caller.first]) {
|
|
|
|
fprintf(stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
"\t Level %" PRIu64 ": Number of accesses: %" PRIu64
|
|
|
|
" Percent: %.2f\n",
|
|
|
|
naccess_level.first, naccess_level.second,
|
|
|
|
percent(naccess_level.second, naccesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
fprintf(stdout, "Caller %s: Number of accesses per file break down\n",
|
|
|
|
caller_to_string(caller.first).c_str());
|
|
|
|
for (auto naccess_file : cf_caller_file_num_accesses_map[caller.first]) {
|
|
|
|
fprintf(stdout,
|
2019-06-19 03:34:39 +02:00
|
|
|
"\t File %" PRIu64 ": Number of accesses: %" PRIu64
|
|
|
|
" Percent: %.2f\n",
|
|
|
|
naccess_file.first, naccess_file.second,
|
|
|
|
percent(naccess_file.second, naccesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
fprintf(stdout,
|
|
|
|
"Caller %s: Number of accesses per block type break down\n",
|
|
|
|
caller_to_string(caller.first).c_str());
|
|
|
|
for (auto naccess_type : cf_caller_bt_num_accesses_map[caller.first]) {
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout,
|
|
|
|
"\t Block Type %s: Number of accesses: %" PRIu64
|
|
|
|
" Percent: %.2f\n",
|
2019-06-11 21:18:37 +02:00
|
|
|
block_type_to_string(naccess_type.first).c_str(),
|
2019-06-19 03:34:39 +02:00
|
|
|
naccess_type.second, percent(naccess_type.second, naccesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Overall statistics:\n");
|
|
|
|
fprintf(stdout,
|
|
|
|
"Number of files: %" PRIu64 " Number of blocks: %" PRIu64
|
|
|
|
" Number of accesses: %" PRIu64 "\n",
|
|
|
|
total_num_files, total_num_blocks, total_num_accesses);
|
|
|
|
for (auto block_type : bt_num_blocks_map) {
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout, "Number of %s blocks: %" PRIu64 " Percent: %.2f\n",
|
|
|
|
block_type_to_string(block_type.first).c_str(), block_type.second,
|
|
|
|
percent(block_type.second, total_num_blocks));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
for (auto caller : caller_num_access_map) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
print_break_lines(/*num_break_lines=*/1);
|
2019-06-19 03:34:39 +02:00
|
|
|
uint64_t naccesses = caller.second;
|
|
|
|
fprintf(stdout, "Caller %s: Number of accesses %" PRIu64 " Percent: %.2f\n",
|
|
|
|
caller_to_string(caller.first).c_str(), naccesses,
|
|
|
|
percent(naccesses, total_num_accesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
fprintf(stdout, "Caller %s: Number of accesses per level break down\n",
|
|
|
|
caller_to_string(caller.first).c_str());
|
|
|
|
for (auto naccess_level : caller_level_num_access_map[caller.first]) {
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout,
|
|
|
|
"\t Level %d: Number of accesses: %" PRIu64 " Percent: %.2f\n",
|
|
|
|
naccess_level.first, naccess_level.second,
|
|
|
|
percent(naccess_level.second, naccesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
fprintf(stdout, "Caller %s: Number of accesses per block type break down\n",
|
|
|
|
caller_to_string(caller.first).c_str());
|
|
|
|
for (auto naccess_type : caller_bt_num_access_map[caller.first]) {
|
2019-06-19 03:34:39 +02:00
|
|
|
fprintf(stdout,
|
|
|
|
"\t Block Type %s: Number of accesses: %" PRIu64
|
|
|
|
" Percent: %.2f\n",
|
2019-06-11 21:18:37 +02:00
|
|
|
block_type_to_string(naccess_type.first).c_str(),
|
2019-06-19 03:34:39 +02:00
|
|
|
naccess_type.second, percent(naccess_type.second, naccesses));
|
2019-06-11 21:18:37 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
std::vector<CacheConfiguration> parse_cache_config_file(
|
|
|
|
const std::string& config_path) {
|
|
|
|
std::ifstream file(config_path);
|
|
|
|
if (!file.is_open()) {
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
std::vector<CacheConfiguration> configs;
|
|
|
|
std::string line;
|
|
|
|
while (getline(file, line)) {
|
|
|
|
CacheConfiguration cache_config;
|
|
|
|
std::stringstream ss(line);
|
|
|
|
std::vector<std::string> config_strs;
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string substr;
|
|
|
|
getline(ss, substr, ',');
|
|
|
|
config_strs.push_back(substr);
|
|
|
|
}
|
|
|
|
// Sanity checks.
|
2019-07-11 21:40:08 +02:00
|
|
|
if (config_strs.size() < 4) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
fprintf(stderr, "Invalid cache simulator configuration %s\n",
|
|
|
|
line.c_str());
|
|
|
|
exit(1);
|
|
|
|
}
|
2019-07-11 21:40:08 +02:00
|
|
|
if (kSupportedCacheNames.find(" " + config_strs[0] + " ") ==
|
|
|
|
std::string::npos) {
|
|
|
|
fprintf(stderr, "Invalid cache name %s. Supported cache names are %s\n",
|
|
|
|
line.c_str(), kSupportedCacheNames.c_str());
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
cache_config.cache_name = config_strs[0];
|
|
|
|
cache_config.num_shard_bits = ParseUint32(config_strs[1]);
|
2019-07-11 21:40:08 +02:00
|
|
|
cache_config.ghost_cache_capacity = ParseUint64(config_strs[2]);
|
|
|
|
for (uint32_t i = 3; i < config_strs.size(); i++) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
uint64_t capacity = ParseUint64(config_strs[i]);
|
|
|
|
if (capacity == 0) {
|
|
|
|
fprintf(stderr, "Invalid cache capacity %s, %s\n",
|
|
|
|
config_strs[i].c_str(), line.c_str());
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
cache_config.cache_capacities.push_back(capacity);
|
|
|
|
}
|
|
|
|
configs.push_back(cache_config);
|
|
|
|
}
|
|
|
|
file.close();
|
|
|
|
return configs;
|
|
|
|
}
|
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
std::vector<uint64_t> parse_buckets(const std::string& bucket_str) {
|
|
|
|
std::vector<uint64_t> buckets;
|
2019-06-25 05:38:20 +02:00
|
|
|
std::stringstream ss(bucket_str);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string bucket;
|
|
|
|
getline(ss, bucket, ',');
|
2019-07-13 01:52:15 +02:00
|
|
|
buckets.push_back(ParseUint64(bucket));
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
buckets.push_back(port::kMaxUint64);
|
2019-06-25 05:38:20 +02:00
|
|
|
return buckets;
|
|
|
|
}
|
|
|
|
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
int block_cache_trace_analyzer_tool(int argc, char** argv) {
|
|
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
if (FLAGS_block_cache_trace_path.empty()) {
|
|
|
|
fprintf(stderr, "block cache trace path is empty\n");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
uint64_t warmup_seconds =
|
|
|
|
FLAGS_cache_sim_warmup_seconds > 0 ? FLAGS_cache_sim_warmup_seconds : 0;
|
2019-06-19 03:34:39 +02:00
|
|
|
uint32_t downsample_ratio = FLAGS_block_cache_trace_downsample_ratio > 0
|
|
|
|
? FLAGS_block_cache_trace_downsample_ratio
|
|
|
|
: 0;
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
std::vector<CacheConfiguration> cache_configs =
|
|
|
|
parse_cache_config_file(FLAGS_block_cache_sim_config_path);
|
|
|
|
std::unique_ptr<BlockCacheTraceSimulator> cache_simulator;
|
|
|
|
if (!cache_configs.empty()) {
|
2019-06-19 03:34:39 +02:00
|
|
|
cache_simulator.reset(new BlockCacheTraceSimulator(
|
|
|
|
warmup_seconds, downsample_ratio, cache_configs));
|
2019-07-01 21:43:14 +02:00
|
|
|
Status s = cache_simulator->InitializeCaches();
|
|
|
|
if (!s.ok()) {
|
|
|
|
fprintf(stderr, "Cannot initialize cache simulators %s\n",
|
|
|
|
s.ToString().c_str());
|
|
|
|
exit(1);
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
}
|
2019-08-09 22:09:04 +02:00
|
|
|
BlockCacheTraceAnalyzer analyzer(
|
|
|
|
FLAGS_block_cache_trace_path, FLAGS_block_cache_analysis_result_dir,
|
|
|
|
FLAGS_human_readable_trace_file_path,
|
|
|
|
!FLAGS_reuse_distance_labels.empty(), FLAGS_mrc_only,
|
|
|
|
FLAGS_is_block_cache_human_readable_trace, std::move(cache_simulator));
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
Status s = analyzer.Analyze();
|
2019-07-23 02:47:54 +02:00
|
|
|
if (!s.IsIncomplete() && !s.ok()) {
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
// Read all traces.
|
|
|
|
fprintf(stderr, "Cannot process the trace %s\n", s.ToString().c_str());
|
|
|
|
exit(1);
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
fprintf(stdout, "Status: %s\n", s.ToString().c_str());
|
2019-07-23 02:47:54 +02:00
|
|
|
analyzer.WriteMissRatioCurves();
|
|
|
|
analyzer.WriteMissRatioTimeline(1);
|
|
|
|
analyzer.WriteMissRatioTimeline(kSecondInMinute);
|
|
|
|
analyzer.WriteMissRatioTimeline(kSecondInHour);
|
|
|
|
analyzer.WriteMissTimeline(1);
|
|
|
|
analyzer.WriteMissTimeline(kSecondInMinute);
|
|
|
|
analyzer.WriteMissTimeline(kSecondInHour);
|
|
|
|
|
|
|
|
if (FLAGS_mrc_only) {
|
|
|
|
fprintf(stdout,
|
|
|
|
"Skipping the analysis statistics since the user wants to compute "
|
|
|
|
"MRC only");
|
|
|
|
return 0;
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
|
|
|
|
analyzer.PrintStatsSummary();
|
|
|
|
if (FLAGS_print_access_count_stats) {
|
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
2019-07-13 01:52:15 +02:00
|
|
|
analyzer.PrintAccessCountStats(
|
|
|
|
/*user_access_only=*/false, FLAGS_analyze_bottom_k_access_count_blocks,
|
|
|
|
FLAGS_analyze_top_k_access_count_blocks);
|
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
|
|
|
analyzer.PrintAccessCountStats(
|
|
|
|
/*user_access_only=*/true, FLAGS_analyze_bottom_k_access_count_blocks,
|
|
|
|
FLAGS_analyze_top_k_access_count_blocks);
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
}
|
|
|
|
if (FLAGS_print_block_size_stats) {
|
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
|
|
|
analyzer.PrintBlockSizeStats();
|
|
|
|
}
|
|
|
|
if (FLAGS_print_data_block_access_count_stats) {
|
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
|
|
|
analyzer.PrintDataBlockAccessStats();
|
|
|
|
}
|
|
|
|
print_break_lines(/*num_break_lines=*/3);
|
2019-06-25 05:38:20 +02:00
|
|
|
|
|
|
|
if (!FLAGS_timeline_labels.empty()) {
|
|
|
|
std::stringstream ss(FLAGS_timeline_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
2019-07-13 01:52:15 +02:00
|
|
|
if (label.find("block") != std::string::npos) {
|
|
|
|
analyzer.WriteAccessTimeline(label, kSecondInMinute, true);
|
|
|
|
analyzer.WriteAccessTimeline(label, kSecondInMinute, false);
|
|
|
|
analyzer.WriteAccessTimeline(label, kSecondInHour, true);
|
|
|
|
analyzer.WriteAccessTimeline(label, kSecondInHour, false);
|
|
|
|
} else {
|
|
|
|
analyzer.WriteAccessTimeline(label, kSecondInMinute, false);
|
Block cache simulator: Add pysim to simulate caches using reinforcement learning. (#5610)
Summary:
This PR implements cache eviction using reinforcement learning. It includes two implementations:
1. An implementation of Thompson Sampling for the Bernoulli Bandit [1].
2. An implementation of LinUCB with disjoint linear models [2].
The idea is that a cache uses multiple eviction policies, e.g., MRU, LRU, and LFU. The cache learns which eviction policy is the best and uses it upon a cache miss.
Thompson Sampling is contextless and does not include any features.
LinUCB includes features such as level, block type, caller, column family id to decide which eviction policy to use.
[1] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found. Trends Mach. Learn. 11, 1 (July 2018), 1-96. DOI: https://doi.org/10.1561/2200000070
[2] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670. DOI=http://dx.doi.org/10.1145/1772690.1772758
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5610
Differential Revision: D16435067
Pulled By: HaoyuHuang
fbshipit-source-id: 6549239ae14115c01cb1e70548af9e46d8dc21bb
2019-07-26 23:36:16 +02:00
|
|
|
analyzer.WriteAccessTimeline(label, kSecondInHour, false);
|
2019-07-13 01:52:15 +02:00
|
|
|
}
|
2019-06-25 05:38:20 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-07-13 01:52:15 +02:00
|
|
|
if (!FLAGS_analyze_callers.empty()) {
|
|
|
|
analyzer.WritePercentAccessSummaryStats();
|
|
|
|
std::stringstream ss(FLAGS_analyze_callers);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string caller;
|
|
|
|
getline(ss, caller, ',');
|
|
|
|
analyzer.WriteDetailedPercentAccessSummaryStats(string_to_caller(caller));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!FLAGS_access_count_buckets.empty()) {
|
|
|
|
std::vector<uint64_t> buckets = parse_buckets(FLAGS_access_count_buckets);
|
|
|
|
analyzer.WriteAccessCountSummaryStats(buckets, /*user_access_only=*/true);
|
|
|
|
analyzer.WriteAccessCountSummaryStats(buckets, /*user_access_only=*/false);
|
|
|
|
}
|
|
|
|
|
2019-06-25 05:38:20 +02:00
|
|
|
if (!FLAGS_reuse_distance_labels.empty() &&
|
|
|
|
!FLAGS_reuse_distance_buckets.empty()) {
|
2019-07-13 01:52:15 +02:00
|
|
|
std::vector<uint64_t> buckets = parse_buckets(FLAGS_reuse_distance_buckets);
|
2019-06-25 05:38:20 +02:00
|
|
|
std::stringstream ss(FLAGS_reuse_distance_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
|
|
|
analyzer.WriteReuseDistance(label, buckets);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!FLAGS_reuse_interval_labels.empty() &&
|
|
|
|
!FLAGS_reuse_interval_buckets.empty()) {
|
2019-07-13 01:52:15 +02:00
|
|
|
std::vector<uint64_t> buckets = parse_buckets(FLAGS_reuse_interval_buckets);
|
2019-06-25 05:38:20 +02:00
|
|
|
std::stringstream ss(FLAGS_reuse_interval_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
|
|
|
analyzer.WriteReuseInterval(label, buckets);
|
|
|
|
}
|
|
|
|
}
|
2019-07-13 01:52:15 +02:00
|
|
|
|
|
|
|
if (!FLAGS_reuse_lifetime_labels.empty() &&
|
|
|
|
!FLAGS_reuse_lifetime_buckets.empty()) {
|
|
|
|
std::vector<uint64_t> buckets = parse_buckets(FLAGS_reuse_lifetime_buckets);
|
|
|
|
std::stringstream ss(FLAGS_reuse_lifetime_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
|
|
|
analyzer.WriteReuseLifetime(label, buckets);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FLAGS_analyze_blocks_reuse_k_reuse_window != 0) {
|
|
|
|
std::vector<TraceType> block_types{TraceType::kBlockTraceIndexBlock,
|
|
|
|
TraceType::kBlockTraceDataBlock,
|
|
|
|
TraceType::kBlockTraceFilterBlock};
|
|
|
|
for (auto block_type : block_types) {
|
|
|
|
analyzer.WriteBlockReuseTimeline(
|
|
|
|
FLAGS_analyze_blocks_reuse_k_reuse_window,
|
|
|
|
/*user_access_only=*/true, block_type);
|
|
|
|
analyzer.WriteBlockReuseTimeline(
|
|
|
|
FLAGS_analyze_blocks_reuse_k_reuse_window,
|
|
|
|
/*user_access_only=*/false, block_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!FLAGS_analyze_get_spatial_locality_labels.empty() &&
|
|
|
|
!FLAGS_analyze_get_spatial_locality_buckets.empty()) {
|
|
|
|
std::vector<uint64_t> buckets =
|
|
|
|
parse_buckets(FLAGS_analyze_get_spatial_locality_buckets);
|
|
|
|
std::stringstream ss(FLAGS_analyze_get_spatial_locality_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
|
|
|
analyzer.WriteGetSpatialLocality(label, buckets);
|
|
|
|
}
|
|
|
|
}
|
2019-07-23 02:47:54 +02:00
|
|
|
|
|
|
|
if (!FLAGS_analyze_correlation_coefficients_labels.empty()) {
|
|
|
|
std::stringstream ss(FLAGS_analyze_correlation_coefficients_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
|
|
|
analyzer.WriteCorrelationFeatures(
|
|
|
|
label, FLAGS_analyze_correlation_coefficients_max_number_of_values);
|
|
|
|
}
|
|
|
|
analyzer.WriteCorrelationFeaturesForGet(
|
|
|
|
FLAGS_analyze_correlation_coefficients_max_number_of_values);
|
|
|
|
}
|
Pysim more algorithms (#5644)
Summary:
This PR adds four more eviction policies.
- OPT [1]
- Hyperbolic caching [2]
- ARC [3]
- GreedyDualSize [4]
[1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078
[2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
[3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130.
[4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644
Differential Revision: D16548817
Pulled By: HaoyuHuang
fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2019-08-07 03:47:39 +02:00
|
|
|
|
|
|
|
if (!FLAGS_skew_labels.empty() && !FLAGS_skew_buckets.empty()) {
|
|
|
|
std::vector<uint64_t> buckets = parse_buckets(FLAGS_skew_buckets);
|
|
|
|
std::stringstream ss(FLAGS_skew_labels);
|
|
|
|
while (ss.good()) {
|
|
|
|
std::string label;
|
|
|
|
getline(ss, label, ',');
|
|
|
|
if (label.find("block") != std::string::npos) {
|
|
|
|
analyzer.WriteSkewness(label, buckets,
|
|
|
|
TraceType::kBlockTraceIndexBlock);
|
|
|
|
analyzer.WriteSkewness(label, buckets,
|
|
|
|
TraceType::kBlockTraceFilterBlock);
|
|
|
|
analyzer.WriteSkewness(label, buckets, TraceType::kBlockTraceDataBlock);
|
|
|
|
analyzer.WriteSkewness(label, buckets, TraceType::kTraceMax);
|
|
|
|
} else {
|
|
|
|
analyzer.WriteSkewness(label, buckets, TraceType::kTraceMax);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-06-11 21:18:37 +02:00
|
|
|
} // namespace rocksdb
|
Support computing miss ratio curves using sim_cache. (#5449)
Summary:
This PR adds a BlockCacheTraceSimulator that reports the miss ratios given different cache configurations. A cache configuration contains "cache_name,num_shard_bits,cache_capacities". For example, "lru, 1, 1K, 2K, 4M, 4G".
When we replay the trace, we also perform lookups and inserts on the simulated caches.
In the end, it reports the miss ratio for each tuple <cache_name, num_shard_bits, cache_capacity> in a output file.
This PR also adds a main source block_cache_trace_analyzer so that we can run the analyzer in command line.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5449
Test Plan:
Added tests for block_cache_trace_analyzer.
COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15797073
Pulled By: HaoyuHuang
fbshipit-source-id: aef0c5c2e7938f3e8b6a10d4a6a50e6928ecf408
2019-06-18 01:33:40 +02:00
|
|
|
|
|
|
|
#endif // GFLAGS
|
|
|
|
#endif // ROCKSDB_LITE
|