rocksdb/db/builder.cc

253 lines
10 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/builder.h"
#include <algorithm>
#include <deque>
#include <vector>
#include "db/compaction/compaction_iterator.h"
#include "db/dbformat.h"
#include "db/event_helpers.h"
#include "db/internal_stats.h"
#include "db/merge_helper.h"
#include "db/range_del_aggregator.h"
#include "db/table_cache.h"
#include "db/version_edit.h"
#include "file/filename.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/thread_status_util.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "rocksdb/table.h"
#include "table/block_based/block_based_table_builder.h"
#include "table/format.h"
#include "table/internal_iterator.h"
#include "test_util/sync_point.h"
#include "util/file_reader_writer.h"
#include "util/stop_watch.h"
namespace rocksdb {
class TableFactory;
TableBuilder* NewTableBuilder(
const ImmutableCFOptions& ioptions, const MutableCFOptions& moptions,
const InternalKeyComparator& internal_comparator,
const std::vector<std::unique_ptr<IntTblPropCollectorFactory>>*
int_tbl_prop_collector_factories,
uint32_t column_family_id, const std::string& column_family_name,
WritableFileWriter* file, const CompressionType compression_type,
uint64_t sample_for_compression, const CompressionOptions& compression_opts,
int level, const bool skip_filters, const uint64_t creation_time,
Periodic Compactions (#5166) Summary: Introducing Periodic Compactions. This feature allows all the files in a CF to be periodically compacted. It could help in catching any corruptions that could creep into the DB proactively as every file is constantly getting re-compacted. And also, of course, it helps to cleanup data older than certain threshold. - Introduced a new option `periodic_compaction_time` to control how long a file can live without being compacted in a CF. - This works across all levels. - The files are put in the same level after going through the compaction. (Related files in the same level are picked up as `ExpandInputstoCleanCut` is used). - Compaction filters, if any, are invoked as usual. - A new table property, `file_creation_time`, is introduced to implement this feature. This property is set to the time at which the SST file was created (and that time is given by the underlying Env/OS). This feature can be enabled on its own, or in conjunction with `ttl`. It is possible to set a different time threshold for the bottom level when used in conjunction with ttl. Since `ttl` works only on 0 to last but one levels, you could set `ttl` to, say, 1 day, and `periodic_compaction_time` to, say, 7 days. Since `ttl < periodic_compaction_time` all files in last but one levels keep getting picked up based on ttl, and almost never based on periodic_compaction_time. The files in the bottom level get picked up for compaction based on `periodic_compaction_time`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5166 Differential Revision: D14884441 Pulled By: sagar0 fbshipit-source-id: 408426cbacb409c06386a98632dcf90bfa1bda47
2019-04-10 19:24:25 -07:00
const uint64_t oldest_key_time, const uint64_t target_file_size,
const uint64_t file_creation_time) {
assert((column_family_id ==
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily) ==
column_family_name.empty());
return ioptions.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, internal_comparator,
int_tbl_prop_collector_factories, compression_type,
sample_for_compression, compression_opts,
skip_filters, column_family_name, level,
Periodic Compactions (#5166) Summary: Introducing Periodic Compactions. This feature allows all the files in a CF to be periodically compacted. It could help in catching any corruptions that could creep into the DB proactively as every file is constantly getting re-compacted. And also, of course, it helps to cleanup data older than certain threshold. - Introduced a new option `periodic_compaction_time` to control how long a file can live without being compacted in a CF. - This works across all levels. - The files are put in the same level after going through the compaction. (Related files in the same level are picked up as `ExpandInputstoCleanCut` is used). - Compaction filters, if any, are invoked as usual. - A new table property, `file_creation_time`, is introduced to implement this feature. This property is set to the time at which the SST file was created (and that time is given by the underlying Env/OS). This feature can be enabled on its own, or in conjunction with `ttl`. It is possible to set a different time threshold for the bottom level when used in conjunction with ttl. Since `ttl` works only on 0 to last but one levels, you could set `ttl` to, say, 1 day, and `periodic_compaction_time` to, say, 7 days. Since `ttl < periodic_compaction_time` all files in last but one levels keep getting picked up based on ttl, and almost never based on periodic_compaction_time. The files in the bottom level get picked up for compaction based on `periodic_compaction_time`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5166 Differential Revision: D14884441 Pulled By: sagar0 fbshipit-source-id: 408426cbacb409c06386a98632dcf90bfa1bda47
2019-04-10 19:24:25 -07:00
creation_time, oldest_key_time, target_file_size,
file_creation_time),
column_family_id, file);
}
Status BuildTable(
const std::string& dbname, Env* env, const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options, const EnvOptions& env_options,
TableCache* table_cache, InternalIterator* iter,
std::vector<std::unique_ptr<FragmentedRangeTombstoneIterator>>
range_del_iters,
FileMetaData* meta, const InternalKeyComparator& internal_comparator,
const std::vector<std::unique_ptr<IntTblPropCollectorFactory>>*
int_tbl_prop_collector_factories,
uint32_t column_family_id, const std::string& column_family_name,
std::vector<SequenceNumber> snapshots,
SequenceNumber earliest_write_conflict_snapshot,
SnapshotChecker* snapshot_checker, const CompressionType compression,
uint64_t sample_for_compression, const CompressionOptions& compression_opts,
bool paranoid_file_checks, InternalStats* internal_stats,
TableFileCreationReason reason, EventLogger* event_logger, int job_id,
const Env::IOPriority io_priority, TableProperties* table_properties,
int level, const uint64_t creation_time, const uint64_t oldest_key_time,
Periodic Compactions (#5166) Summary: Introducing Periodic Compactions. This feature allows all the files in a CF to be periodically compacted. It could help in catching any corruptions that could creep into the DB proactively as every file is constantly getting re-compacted. And also, of course, it helps to cleanup data older than certain threshold. - Introduced a new option `periodic_compaction_time` to control how long a file can live without being compacted in a CF. - This works across all levels. - The files are put in the same level after going through the compaction. (Related files in the same level are picked up as `ExpandInputstoCleanCut` is used). - Compaction filters, if any, are invoked as usual. - A new table property, `file_creation_time`, is introduced to implement this feature. This property is set to the time at which the SST file was created (and that time is given by the underlying Env/OS). This feature can be enabled on its own, or in conjunction with `ttl`. It is possible to set a different time threshold for the bottom level when used in conjunction with ttl. Since `ttl` works only on 0 to last but one levels, you could set `ttl` to, say, 1 day, and `periodic_compaction_time` to, say, 7 days. Since `ttl < periodic_compaction_time` all files in last but one levels keep getting picked up based on ttl, and almost never based on periodic_compaction_time. The files in the bottom level get picked up for compaction based on `periodic_compaction_time`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5166 Differential Revision: D14884441 Pulled By: sagar0 fbshipit-source-id: 408426cbacb409c06386a98632dcf90bfa1bda47
2019-04-10 19:24:25 -07:00
Env::WriteLifeTimeHint write_hint, const uint64_t file_creation_time) {
assert((column_family_id ==
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily) ==
column_family_name.empty());
// Reports the IOStats for flush for every following bytes.
const size_t kReportFlushIOStatsEvery = 1048576;
Status s;
meta->fd.file_size = 0;
iter->SeekToFirst();
std::unique_ptr<CompactionRangeDelAggregator> range_del_agg(
new CompactionRangeDelAggregator(&internal_comparator, snapshots));
for (auto& range_del_iter : range_del_iters) {
range_del_agg->AddTombstones(std::move(range_del_iter));
}
std::string fname = TableFileName(ioptions.cf_paths, meta->fd.GetNumber(),
meta->fd.GetPathId());
#ifndef ROCKSDB_LITE
EventHelpers::NotifyTableFileCreationStarted(
ioptions.listeners, dbname, column_family_name, fname, job_id, reason);
#endif // !ROCKSDB_LITE
TableProperties tp;
if (iter->Valid() || !range_del_agg->IsEmpty()) {
TableBuilder* builder;
std::unique_ptr<WritableFileWriter> file_writer;
// Currently we only enable dictionary compression during compaction to the
// bottommost level.
CompressionOptions compression_opts_for_flush(compression_opts);
compression_opts_for_flush.max_dict_bytes = 0;
compression_opts_for_flush.zstd_max_train_bytes = 0;
{
std::unique_ptr<WritableFile> file;
#ifndef NDEBUG
bool use_direct_writes = env_options.use_direct_writes;
TEST_SYNC_POINT_CALLBACK("BuildTable:create_file", &use_direct_writes);
#endif // !NDEBUG
s = NewWritableFile(env, fname, &file, env_options);
if (!s.ok()) {
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger, ioptions.listeners, dbname, column_family_name, fname,
job_id, meta->fd, tp, reason, s);
return s;
}
file->SetIOPriority(io_priority);
file->SetWriteLifeTimeHint(write_hint);
file_writer.reset(
new WritableFileWriter(std::move(file), fname, env_options, env,
ioptions.statistics, ioptions.listeners));
builder = NewTableBuilder(
ioptions, mutable_cf_options, internal_comparator,
int_tbl_prop_collector_factories, column_family_id,
column_family_name, file_writer.get(), compression,
sample_for_compression, compression_opts_for_flush, level,
Periodic Compactions (#5166) Summary: Introducing Periodic Compactions. This feature allows all the files in a CF to be periodically compacted. It could help in catching any corruptions that could creep into the DB proactively as every file is constantly getting re-compacted. And also, of course, it helps to cleanup data older than certain threshold. - Introduced a new option `periodic_compaction_time` to control how long a file can live without being compacted in a CF. - This works across all levels. - The files are put in the same level after going through the compaction. (Related files in the same level are picked up as `ExpandInputstoCleanCut` is used). - Compaction filters, if any, are invoked as usual. - A new table property, `file_creation_time`, is introduced to implement this feature. This property is set to the time at which the SST file was created (and that time is given by the underlying Env/OS). This feature can be enabled on its own, or in conjunction with `ttl`. It is possible to set a different time threshold for the bottom level when used in conjunction with ttl. Since `ttl` works only on 0 to last but one levels, you could set `ttl` to, say, 1 day, and `periodic_compaction_time` to, say, 7 days. Since `ttl < periodic_compaction_time` all files in last but one levels keep getting picked up based on ttl, and almost never based on periodic_compaction_time. The files in the bottom level get picked up for compaction based on `periodic_compaction_time`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5166 Differential Revision: D14884441 Pulled By: sagar0 fbshipit-source-id: 408426cbacb409c06386a98632dcf90bfa1bda47
2019-04-10 19:24:25 -07:00
false /* skip_filters */, creation_time, oldest_key_time,
0 /*target_file_size*/, file_creation_time);
}
MergeHelper merge(env, internal_comparator.user_comparator(),
ioptions.merge_operator, nullptr, ioptions.info_log,
true /* internal key corruption is not ok */,
snapshots.empty() ? 0 : snapshots.back(),
snapshot_checker);
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
2016-10-18 12:04:56 -07:00
CompactionIterator c_iter(
iter, internal_comparator.user_comparator(), &merge, kMaxSequenceNumber,
&snapshots, earliest_write_conflict_snapshot, snapshot_checker, env,
ShouldReportDetailedTime(env, ioptions.statistics),
Compaction Support for Range Deletion Summary: This diff introduces RangeDelAggregator, which takes ownership of iterators provided to it via AddTombstones(). The tombstones are organized in a two-level map (snapshot stripe -> begin key -> tombstone). Tombstone creation avoids data copy by holding Slices returned by the iterator, which remain valid thanks to pinning. For compaction, we create a hierarchical range tombstone iterator with structure matching the iterator over compaction input data. An aggregator based on that iterator is used by CompactionIterator to determine which keys are covered by range tombstones. In case of merge operand, the same aggregator is used by MergeHelper. Upon finishing each file in the compaction, relevant range tombstones are added to the output file's range tombstone metablock and file boundaries are updated accordingly. To check whether a key is covered by range tombstone, RangeDelAggregator::ShouldDelete() considers tombstones in the key's snapshot stripe. When this function is used outside of compaction, it also checks newer stripes, which can contain covering tombstones. Currently the intra-stripe check involves a linear scan; however, in the future we plan to collapse ranges within a stripe such that binary search can be used. RangeDelAggregator::AddToBuilder() adds all range tombstones in the table's key-range to a new table's range tombstone meta-block. Since range tombstones may fall in the gap between files, we may need to extend some files' key-ranges. The strategy is (1) first file extends as far left as possible and other files do not extend left, (2) all files extend right until either the start of the next file or the end of the last range tombstone in the gap, whichever comes first. One other notable change is adding release/move semantics to ScopedArenaIterator such that it can be used to transfer ownership of an arena-allocated iterator, similar to how unique_ptr is used for malloc'd data. Depends on D61473 Test Plan: compaction_iterator_test, mock_table, end-to-end tests in D63927 Reviewers: sdong, IslamAbdelRahman, wanning, yhchiang, lightmark Reviewed By: lightmark Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62205
2016-10-18 12:04:56 -07:00
true /* internal key corruption is not ok */, range_del_agg.get());
c_iter.SeekToFirst();
for (; c_iter.Valid(); c_iter.Next()) {
const Slice& key = c_iter.key();
const Slice& value = c_iter.value();
builder->Add(key, value);
meta->UpdateBoundaries(key, c_iter.ikey().sequence);
// TODO(noetzli): Update stats after flush, too.
if (io_priority == Env::IO_HIGH &&
IOSTATS(bytes_written) >= kReportFlushIOStatsEvery) {
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::FLUSH_BYTES_WRITTEN, IOSTATS(bytes_written));
}
}
auto range_del_it = range_del_agg->NewIterator();
for (range_del_it->SeekToFirst(); range_del_it->Valid();
range_del_it->Next()) {
auto tombstone = range_del_it->Tombstone();
auto kv = tombstone.Serialize();
builder->Add(kv.first.Encode(), kv.second);
meta->UpdateBoundariesForRange(kv.first, tombstone.SerializeEndKey(),
tombstone.seq_, internal_comparator);
}
// Finish and check for builder errors
tp = builder->GetTableProperties();
bool empty = builder->NumEntries() == 0 && tp.num_range_deletions == 0;
s = c_iter.status();
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
if (!s.ok() || empty) {
builder->Abandon();
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
} else {
s = builder->Finish();
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
if (s.ok() && !empty) {
uint64_t file_size = builder->FileSize();
meta->fd.file_size = file_size;
meta->marked_for_compaction = builder->NeedCompact();
assert(meta->fd.GetFileSize() > 0);
tp = builder->GetTableProperties(); // refresh now that builder is finished
if (table_properties) {
*table_properties = tp;
}
}
delete builder;
// Finish and check for file errors
if (s.ok() && !empty) {
StopWatch sw(env, ioptions.statistics, TABLE_SYNC_MICROS);
s = file_writer->Sync(ioptions.use_fsync);
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
if (s.ok() && !empty) {
s = file_writer->Close();
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
if (s.ok() && !empty) {
// Verify that the table is usable
// We set for_compaction to false and don't OptimizeForCompactionTableRead
// here because this is a special case after we finish the table building
// No matter whether use_direct_io_for_flush_and_compaction is true,
// we will regrad this verification as user reads since the goal is
// to cache it here for further user reads
std::unique_ptr<InternalIterator> it(table_cache->NewIterator(
ReadOptions(), env_options, internal_comparator, *meta,
nullptr /* range_del_agg */,
mutable_cf_options.prefix_extractor.get(), nullptr,
(internal_stats == nullptr) ? nullptr
: internal_stats->GetFileReadHist(0),
false /* for_compaction */, nullptr /* arena */,
false /* skip_filter */, level));
s = it->status();
if (s.ok() && paranoid_file_checks) {
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
for (it->SeekToFirst(); it->Valid(); it->Next()) {
}
s = it->status();
}
}
}
// Check for input iterator errors
if (!iter->status().ok()) {
s = iter->status();
}
Support for SingleDelete() Summary: This patch fixes #7460559. It introduces SingleDelete as a new database operation. This operation can be used to delete keys that were never overwritten (no put following another put of the same key). If an overwritten key is single deleted the behavior is undefined. Single deletion of a non-existent key has no effect but multiple consecutive single deletions are not allowed (see limitations). In contrast to the conventional Delete() operation, the deletion entry is removed along with the value when the two are lined up in a compaction. Note: The semantics are similar to @igor's prototype that allowed to have this behavior on the granularity of a column family ( https://reviews.facebook.net/D42093 ). This new patch, however, is more aggressive when it comes to removing tombstones: It removes the SingleDelete together with the value whenever there is no snapshot between them while the older patch only did this when the sequence number of the deletion was older than the earliest snapshot. Most of the complex additions are in the Compaction Iterator, all other changes should be relatively straightforward. The patch also includes basic support for single deletions in db_stress and db_bench. Limitations: - Not compatible with cuckoo hash tables - Single deletions cannot be used in combination with merges and normal deletions on the same key (other keys are not affected by this) - Consecutive single deletions are currently not allowed (and older version of this patch supported this so it could be resurrected if needed) Test Plan: make all check Reviewers: yhchiang, sdong, rven, anthony, yoshinorim, igor Reviewed By: igor Subscribers: maykov, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D43179
2015-09-17 11:42:56 -07:00
if (!s.ok() || meta->fd.GetFileSize() == 0) {
env->DeleteFile(fname);
}
// Output to event logger and fire events.
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger, ioptions.listeners, dbname, column_family_name, fname,
job_id, meta->fd, tp, reason, s);
return s;
}
} // namespace rocksdb