512 lines
15 KiB
C++
512 lines
15 KiB
C++
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
||
|
// This source code is licensed under both the GPLv2 (found in the
|
||
|
// COPYING file in the root directory) and Apache 2.0 License
|
||
|
// (found in the LICENSE.Apache file in the root directory).
|
||
|
//
|
||
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
||
|
|
||
|
#include "cache/fast_lru_cache.h"
|
||
|
|
||
|
#include <cassert>
|
||
|
#include <cstdint>
|
||
|
#include <cstdio>
|
||
|
|
||
|
#include "monitoring/perf_context_imp.h"
|
||
|
#include "monitoring/statistics.h"
|
||
|
#include "port/lang.h"
|
||
|
#include "util/mutexlock.h"
|
||
|
|
||
|
namespace ROCKSDB_NAMESPACE {
|
||
|
|
||
|
namespace fast_lru_cache {
|
||
|
|
||
|
LRUHandleTable::LRUHandleTable(int max_upper_hash_bits)
|
||
|
: length_bits_(/* historical starting size*/ 4),
|
||
|
list_(new LRUHandle* [size_t{1} << length_bits_] {}),
|
||
|
elems_(0),
|
||
|
max_length_bits_(max_upper_hash_bits) {}
|
||
|
|
||
|
LRUHandleTable::~LRUHandleTable() {
|
||
|
ApplyToEntriesRange(
|
||
|
[](LRUHandle* h) {
|
||
|
if (!h->HasRefs()) {
|
||
|
h->Free();
|
||
|
}
|
||
|
},
|
||
|
0, uint32_t{1} << length_bits_);
|
||
|
}
|
||
|
|
||
|
LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
|
||
|
return *FindPointer(key, hash);
|
||
|
}
|
||
|
|
||
|
LRUHandle* LRUHandleTable::Insert(LRUHandle* h) {
|
||
|
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
||
|
LRUHandle* old = *ptr;
|
||
|
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
|
||
|
*ptr = h;
|
||
|
if (old == nullptr) {
|
||
|
++elems_;
|
||
|
if ((elems_ >> length_bits_) > 0) { // elems_ >= length
|
||
|
// Since each cache entry is fairly large, we aim for a small
|
||
|
// average linked list length (<= 1).
|
||
|
Resize();
|
||
|
}
|
||
|
}
|
||
|
return old;
|
||
|
}
|
||
|
|
||
|
LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) {
|
||
|
LRUHandle** ptr = FindPointer(key, hash);
|
||
|
LRUHandle* result = *ptr;
|
||
|
if (result != nullptr) {
|
||
|
*ptr = result->next_hash;
|
||
|
--elems_;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) {
|
||
|
LRUHandle** ptr = &list_[hash >> (32 - length_bits_)];
|
||
|
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
|
||
|
ptr = &(*ptr)->next_hash;
|
||
|
}
|
||
|
return ptr;
|
||
|
}
|
||
|
|
||
|
void LRUHandleTable::Resize() {
|
||
|
if (length_bits_ >= max_length_bits_) {
|
||
|
// Due to reaching limit of hash information, if we made the table bigger,
|
||
|
// we would allocate more addresses but only the same number would be used.
|
||
|
return;
|
||
|
}
|
||
|
if (length_bits_ >= 31) {
|
||
|
// Avoid undefined behavior shifting uint32_t by 32.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
uint32_t old_length = uint32_t{1} << length_bits_;
|
||
|
int new_length_bits = length_bits_ + 1;
|
||
|
std::unique_ptr<LRUHandle* []> new_list {
|
||
|
new LRUHandle* [size_t{1} << new_length_bits] {}
|
||
|
};
|
||
|
uint32_t count = 0;
|
||
|
for (uint32_t i = 0; i < old_length; i++) {
|
||
|
LRUHandle* h = list_[i];
|
||
|
while (h != nullptr) {
|
||
|
LRUHandle* next = h->next_hash;
|
||
|
uint32_t hash = h->hash;
|
||
|
LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)];
|
||
|
h->next_hash = *ptr;
|
||
|
*ptr = h;
|
||
|
h = next;
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
assert(elems_ == count);
|
||
|
list_ = std::move(new_list);
|
||
|
length_bits_ = new_length_bits;
|
||
|
}
|
||
|
|
||
|
LRUCacheShard::LRUCacheShard(size_t capacity, bool strict_capacity_limit,
|
||
|
CacheMetadataChargePolicy metadata_charge_policy,
|
||
|
int max_upper_hash_bits)
|
||
|
: capacity_(0),
|
||
|
strict_capacity_limit_(strict_capacity_limit),
|
||
|
table_(max_upper_hash_bits),
|
||
|
usage_(0),
|
||
|
lru_usage_(0) {
|
||
|
set_metadata_charge_policy(metadata_charge_policy);
|
||
|
// Make empty circular linked list.
|
||
|
lru_.next = &lru_;
|
||
|
lru_.prev = &lru_;
|
||
|
lru_low_pri_ = &lru_;
|
||
|
SetCapacity(capacity);
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::EraseUnRefEntries() {
|
||
|
autovector<LRUHandle*> last_reference_list;
|
||
|
{
|
||
|
MutexLock l(&mutex_);
|
||
|
while (lru_.next != &lru_) {
|
||
|
LRUHandle* old = lru_.next;
|
||
|
// LRU list contains only elements which can be evicted.
|
||
|
assert(old->InCache() && !old->HasRefs());
|
||
|
LRU_Remove(old);
|
||
|
table_.Remove(old->key(), old->hash);
|
||
|
old->SetInCache(false);
|
||
|
size_t total_charge = old->CalcTotalCharge(metadata_charge_policy_);
|
||
|
assert(usage_ >= total_charge);
|
||
|
usage_ -= total_charge;
|
||
|
last_reference_list.push_back(old);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Free the entries here outside of mutex for performance reasons.
|
||
|
for (auto entry : last_reference_list) {
|
||
|
entry->Free();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::ApplyToSomeEntries(
|
||
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
||
|
DeleterFn deleter)>& callback,
|
||
|
uint32_t average_entries_per_lock, uint32_t* state) {
|
||
|
// The state is essentially going to be the starting hash, which works
|
||
|
// nicely even if we resize between calls because we use upper-most
|
||
|
// hash bits for table indexes.
|
||
|
MutexLock l(&mutex_);
|
||
|
uint32_t length_bits = table_.GetLengthBits();
|
||
|
uint32_t length = uint32_t{1} << length_bits;
|
||
|
|
||
|
assert(average_entries_per_lock > 0);
|
||
|
// Assuming we are called with same average_entries_per_lock repeatedly,
|
||
|
// this simplifies some logic (index_end will not overflow).
|
||
|
assert(average_entries_per_lock < length || *state == 0);
|
||
|
|
||
|
uint32_t index_begin = *state >> (32 - length_bits);
|
||
|
uint32_t index_end = index_begin + average_entries_per_lock;
|
||
|
if (index_end >= length) {
|
||
|
// Going to end
|
||
|
index_end = length;
|
||
|
*state = UINT32_MAX;
|
||
|
} else {
|
||
|
*state = index_end << (32 - length_bits);
|
||
|
}
|
||
|
|
||
|
table_.ApplyToEntriesRange(
|
||
|
[callback](LRUHandle* h) {
|
||
|
callback(h->key(), h->value, h->charge, h->deleter);
|
||
|
},
|
||
|
index_begin, index_end);
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::LRU_Remove(LRUHandle* e) {
|
||
|
assert(e->next != nullptr);
|
||
|
assert(e->prev != nullptr);
|
||
|
e->next->prev = e->prev;
|
||
|
e->prev->next = e->next;
|
||
|
e->prev = e->next = nullptr;
|
||
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
||
|
assert(lru_usage_ >= total_charge);
|
||
|
lru_usage_ -= total_charge;
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::LRU_Insert(LRUHandle* e) {
|
||
|
assert(e->next == nullptr);
|
||
|
assert(e->prev == nullptr);
|
||
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
||
|
// Inset "e" to head of LRU list.
|
||
|
e->next = &lru_;
|
||
|
e->prev = lru_.prev;
|
||
|
e->prev->next = e;
|
||
|
e->next->prev = e;
|
||
|
lru_usage_ += total_charge;
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::EvictFromLRU(size_t charge,
|
||
|
autovector<LRUHandle*>* deleted) {
|
||
|
while ((usage_ + charge) > capacity_ && lru_.next != &lru_) {
|
||
|
LRUHandle* old = lru_.next;
|
||
|
// LRU list contains only elements which can be evicted.
|
||
|
assert(old->InCache() && !old->HasRefs());
|
||
|
LRU_Remove(old);
|
||
|
table_.Remove(old->key(), old->hash);
|
||
|
old->SetInCache(false);
|
||
|
size_t old_total_charge = old->CalcTotalCharge(metadata_charge_policy_);
|
||
|
assert(usage_ >= old_total_charge);
|
||
|
usage_ -= old_total_charge;
|
||
|
deleted->push_back(old);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::SetCapacity(size_t capacity) {
|
||
|
autovector<LRUHandle*> last_reference_list;
|
||
|
{
|
||
|
MutexLock l(&mutex_);
|
||
|
capacity_ = capacity;
|
||
|
EvictFromLRU(0, &last_reference_list);
|
||
|
}
|
||
|
|
||
|
// Free the entries here outside of mutex for performance reasons.
|
||
|
for (auto entry : last_reference_list) {
|
||
|
entry->Free();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
|
||
|
MutexLock l(&mutex_);
|
||
|
strict_capacity_limit_ = strict_capacity_limit;
|
||
|
}
|
||
|
|
||
|
Status LRUCacheShard::InsertItem(LRUHandle* e, Cache::Handle** handle,
|
||
|
bool free_handle_on_fail) {
|
||
|
Status s = Status::OK();
|
||
|
autovector<LRUHandle*> last_reference_list;
|
||
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
||
|
|
||
|
{
|
||
|
MutexLock l(&mutex_);
|
||
|
|
||
|
// Free the space following strict LRU policy until enough space
|
||
|
// is freed or the lru list is empty.
|
||
|
EvictFromLRU(total_charge, &last_reference_list);
|
||
|
|
||
|
if ((usage_ + total_charge) > capacity_ &&
|
||
|
(strict_capacity_limit_ || handle == nullptr)) {
|
||
|
e->SetInCache(false);
|
||
|
if (handle == nullptr) {
|
||
|
// Don't insert the entry but still return ok, as if the entry inserted
|
||
|
// into cache and get evicted immediately.
|
||
|
last_reference_list.push_back(e);
|
||
|
} else {
|
||
|
if (free_handle_on_fail) {
|
||
|
delete[] reinterpret_cast<char*>(e);
|
||
|
*handle = nullptr;
|
||
|
}
|
||
|
s = Status::Incomplete("Insert failed due to LRU cache being full.");
|
||
|
}
|
||
|
} else {
|
||
|
// Insert into the cache. Note that the cache might get larger than its
|
||
|
// capacity if not enough space was freed up.
|
||
|
LRUHandle* old = table_.Insert(e);
|
||
|
usage_ += total_charge;
|
||
|
if (old != nullptr) {
|
||
|
s = Status::OkOverwritten();
|
||
|
assert(old->InCache());
|
||
|
old->SetInCache(false);
|
||
|
if (!old->HasRefs()) {
|
||
|
// old is on LRU because it's in cache and its reference count is 0.
|
||
|
LRU_Remove(old);
|
||
|
size_t old_total_charge =
|
||
|
old->CalcTotalCharge(metadata_charge_policy_);
|
||
|
assert(usage_ >= old_total_charge);
|
||
|
usage_ -= old_total_charge;
|
||
|
last_reference_list.push_back(old);
|
||
|
}
|
||
|
}
|
||
|
if (handle == nullptr) {
|
||
|
LRU_Insert(e);
|
||
|
} else {
|
||
|
// If caller already holds a ref, no need to take one here.
|
||
|
if (!e->HasRefs()) {
|
||
|
e->Ref();
|
||
|
}
|
||
|
*handle = reinterpret_cast<Cache::Handle*>(e);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Free the entries here outside of mutex for performance reasons.
|
||
|
for (auto entry : last_reference_list) {
|
||
|
entry->Free();
|
||
|
}
|
||
|
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
Cache::Handle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash) {
|
||
|
LRUHandle* e = nullptr;
|
||
|
{
|
||
|
MutexLock l(&mutex_);
|
||
|
e = table_.Lookup(key, hash);
|
||
|
if (e != nullptr) {
|
||
|
assert(e->InCache());
|
||
|
if (!e->HasRefs()) {
|
||
|
// The entry is in LRU since it's in hash and has no external references
|
||
|
LRU_Remove(e);
|
||
|
}
|
||
|
e->Ref();
|
||
|
}
|
||
|
}
|
||
|
return reinterpret_cast<Cache::Handle*>(e);
|
||
|
}
|
||
|
|
||
|
bool LRUCacheShard::Ref(Cache::Handle* h) {
|
||
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(h);
|
||
|
MutexLock l(&mutex_);
|
||
|
// To create another reference - entry must be already externally referenced.
|
||
|
assert(e->HasRefs());
|
||
|
e->Ref();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool LRUCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) {
|
||
|
if (handle == nullptr) {
|
||
|
return false;
|
||
|
}
|
||
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
|
||
|
bool last_reference = false;
|
||
|
{
|
||
|
MutexLock l(&mutex_);
|
||
|
last_reference = e->Unref();
|
||
|
if (last_reference && e->InCache()) {
|
||
|
// The item is still in cache, and nobody else holds a reference to it.
|
||
|
if (usage_ > capacity_ || erase_if_last_ref) {
|
||
|
// The LRU list must be empty since the cache is full.
|
||
|
assert(lru_.next == &lru_ || erase_if_last_ref);
|
||
|
// Take this opportunity and remove the item.
|
||
|
table_.Remove(e->key(), e->hash);
|
||
|
e->SetInCache(false);
|
||
|
} else {
|
||
|
// Put the item back on the LRU list, and don't free it.
|
||
|
LRU_Insert(e);
|
||
|
last_reference = false;
|
||
|
}
|
||
|
}
|
||
|
// If it was the last reference, then decrement the cache usage.
|
||
|
if (last_reference) {
|
||
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
||
|
assert(usage_ >= total_charge);
|
||
|
usage_ -= total_charge;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Free the entry here outside of mutex for performance reasons.
|
||
|
if (last_reference) {
|
||
|
e->Free();
|
||
|
}
|
||
|
return last_reference;
|
||
|
}
|
||
|
|
||
|
Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
|
||
|
size_t charge, Cache::DeleterFn deleter,
|
||
|
Cache::Handle** handle,
|
||
|
Cache::Priority /*priority*/) {
|
||
|
// Allocate the memory here outside of the mutex.
|
||
|
// If the cache is full, we'll have to release it.
|
||
|
// It shouldn't happen very often though.
|
||
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(
|
||
|
new char[sizeof(LRUHandle) - 1 + key.size()]);
|
||
|
|
||
|
e->value = value;
|
||
|
e->flags = 0;
|
||
|
e->deleter = deleter;
|
||
|
e->charge = charge;
|
||
|
e->key_length = key.size();
|
||
|
e->hash = hash;
|
||
|
e->refs = 0;
|
||
|
e->next = e->prev = nullptr;
|
||
|
e->SetInCache(true);
|
||
|
memcpy(e->key_data, key.data(), key.size());
|
||
|
|
||
|
return InsertItem(e, handle, /* free_handle_on_fail */ true);
|
||
|
}
|
||
|
|
||
|
void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
|
||
|
LRUHandle* e;
|
||
|
bool last_reference = false;
|
||
|
{
|
||
|
MutexLock l(&mutex_);
|
||
|
e = table_.Remove(key, hash);
|
||
|
if (e != nullptr) {
|
||
|
assert(e->InCache());
|
||
|
e->SetInCache(false);
|
||
|
if (!e->HasRefs()) {
|
||
|
// The entry is in LRU since it's in hash and has no external references
|
||
|
LRU_Remove(e);
|
||
|
size_t total_charge = e->CalcTotalCharge(metadata_charge_policy_);
|
||
|
assert(usage_ >= total_charge);
|
||
|
usage_ -= total_charge;
|
||
|
last_reference = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Free the entry here outside of mutex for performance reasons.
|
||
|
// last_reference will only be true if e != nullptr.
|
||
|
if (last_reference) {
|
||
|
e->Free();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
size_t LRUCacheShard::GetUsage() const {
|
||
|
MutexLock l(&mutex_);
|
||
|
return usage_;
|
||
|
}
|
||
|
|
||
|
size_t LRUCacheShard::GetPinnedUsage() const {
|
||
|
MutexLock l(&mutex_);
|
||
|
assert(usage_ >= lru_usage_);
|
||
|
return usage_ - lru_usage_;
|
||
|
}
|
||
|
|
||
|
std::string LRUCacheShard::GetPrintableOptions() const { return std::string{}; }
|
||
|
|
||
|
LRUCache::LRUCache(size_t capacity, int num_shard_bits,
|
||
|
bool strict_capacity_limit,
|
||
|
CacheMetadataChargePolicy metadata_charge_policy)
|
||
|
: ShardedCache(capacity, num_shard_bits, strict_capacity_limit) {
|
||
|
num_shards_ = 1 << num_shard_bits;
|
||
|
shards_ = reinterpret_cast<LRUCacheShard*>(
|
||
|
port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_));
|
||
|
size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_;
|
||
|
for (int i = 0; i < num_shards_; i++) {
|
||
|
new (&shards_[i])
|
||
|
LRUCacheShard(per_shard, strict_capacity_limit, metadata_charge_policy,
|
||
|
/* max_upper_hash_bits */ 32 - num_shard_bits);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
LRUCache::~LRUCache() {
|
||
|
if (shards_ != nullptr) {
|
||
|
assert(num_shards_ > 0);
|
||
|
for (int i = 0; i < num_shards_; i++) {
|
||
|
shards_[i].~LRUCacheShard();
|
||
|
}
|
||
|
port::cacheline_aligned_free(shards_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CacheShard* LRUCache::GetShard(uint32_t shard) {
|
||
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
||
|
}
|
||
|
|
||
|
const CacheShard* LRUCache::GetShard(uint32_t shard) const {
|
||
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
||
|
}
|
||
|
|
||
|
void* LRUCache::Value(Handle* handle) {
|
||
|
return reinterpret_cast<const LRUHandle*>(handle)->value;
|
||
|
}
|
||
|
|
||
|
size_t LRUCache::GetCharge(Handle* handle) const {
|
||
|
return reinterpret_cast<const LRUHandle*>(handle)->charge;
|
||
|
}
|
||
|
|
||
|
Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const {
|
||
|
auto h = reinterpret_cast<const LRUHandle*>(handle);
|
||
|
return h->deleter;
|
||
|
}
|
||
|
|
||
|
uint32_t LRUCache::GetHash(Handle* handle) const {
|
||
|
return reinterpret_cast<const LRUHandle*>(handle)->hash;
|
||
|
}
|
||
|
|
||
|
void LRUCache::DisownData() {
|
||
|
// Leak data only if that won't generate an ASAN/valgrind warning.
|
||
|
if (!kMustFreeHeapAllocations) {
|
||
|
shards_ = nullptr;
|
||
|
num_shards_ = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace fast_lru_cache
|
||
|
|
||
|
std::shared_ptr<Cache> NewFastLRUCache(
|
||
|
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
||
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
||
|
if (num_shard_bits >= 20) {
|
||
|
return nullptr; // The cache cannot be sharded into too many fine pieces.
|
||
|
}
|
||
|
if (num_shard_bits < 0) {
|
||
|
num_shard_bits = GetDefaultCacheShardBits(capacity);
|
||
|
}
|
||
|
return std::make_shared<fast_lru_cache::LRUCache>(
|
||
|
capacity, num_shard_bits, strict_capacity_limit, metadata_charge_policy);
|
||
|
}
|
||
|
|
||
|
} // namespace ROCKSDB_NAMESPACE
|