rocksdb/util/math.h

243 lines
8.6 KiB
C
Raw Normal View History

Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <assert.h>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstdint>
#include <type_traits>
#include "rocksdb/rocksdb_namespace.h"
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
namespace ROCKSDB_NAMESPACE {
// Fast implementation of floor(log2(v)). Undefined for 0 or negative
// numbers (in case of signed type).
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
template <typename T>
inline int FloorLog2(T v) {
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
static_assert(std::is_integral<T>::value, "non-integral type");
assert(v > 0);
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
unsigned long idx = 0;
if (sizeof(T) <= sizeof(uint32_t)) {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
_BitScanReverse(&idx, static_cast<uint32_t>(v));
} else {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
#if defined(_M_X64) || defined(_M_ARM64)
_BitScanReverse64(&idx, static_cast<uint64_t>(v));
#else
const auto vh = static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32);
if (vh != 0) {
_BitScanReverse(&idx, static_cast<uint32_t>(vh));
idx += 32;
} else {
_BitScanReverse(&idx, static_cast<uint32_t>(v));
}
#endif
}
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
return idx;
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
int lz = __builtin_clz(static_cast<unsigned int>(v));
return int{sizeof(unsigned int)} * 8 - 1 - lz;
} else if (sizeof(T) <= sizeof(unsigned long)) {
int lz = __builtin_clzl(static_cast<unsigned long>(v));
return int{sizeof(unsigned long)} * 8 - 1 - lz;
} else {
int lz = __builtin_clzll(static_cast<unsigned long long>(v));
return int{sizeof(unsigned long long)} * 8 - 1 - lz;
}
#endif
}
// Number of low-order zero bits before the first 1 bit. Undefined for 0.
template <typename T>
inline int CountTrailingZeroBits(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
assert(v != 0);
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
unsigned long tz = 0;
if (sizeof(T) <= sizeof(uint32_t)) {
_BitScanForward(&tz, static_cast<uint32_t>(v));
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
} else {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
#if defined(_M_X64) || defined(_M_ARM64)
_BitScanForward64(&tz, static_cast<uint64_t>(v));
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
#else
_BitScanForward(&tz, static_cast<uint32_t>(v));
if (tz == 0) {
_BitScanForward(&tz,
static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32));
tz += 32;
}
#endif
}
return static_cast<int>(tz);
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
return __builtin_ctz(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_ctzl(static_cast<unsigned long>(v));
} else {
return __builtin_ctzll(static_cast<unsigned long long>(v));
}
#endif
}
// Not all MSVC compile settings will use `BitsSetToOneFallback()`. We include
// the following code at coarse granularity for simpler macros. It's important
// to exclude at least so our non-MSVC unit test coverage tool doesn't see it.
#ifdef _MSC_VER
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
namespace detail {
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
template <typename T>
int BitsSetToOneFallback(T v) {
const int kBits = static_cast<int>(sizeof(T)) * 8;
static_assert((kBits & (kBits - 1)) == 0, "must be power of two bits");
// we static_cast these bit patterns in order to truncate them to the correct
// size. Warning C4309 dislikes this technique, so disable it here.
#pragma warning(disable : 4309)
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
v = static_cast<T>(v - ((v >> 1) & static_cast<T>(0x5555555555555555ull)));
v = static_cast<T>((v & static_cast<T>(0x3333333333333333ull)) +
((v >> 2) & static_cast<T>(0x3333333333333333ull)));
v = static_cast<T>((v + (v >> 4)) & static_cast<T>(0x0F0F0F0F0F0F0F0Full));
#pragma warning(default : 4309)
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
for (int shift_bits = 8; shift_bits < kBits; shift_bits <<= 1) {
v += static_cast<T>(v >> shift_bits);
}
// we want the bottom "slot" that's big enough to represent a value up to
// (and including) kBits.
return static_cast<int>(v & static_cast<T>(kBits | (kBits - 1)));
}
} // namespace detail
#endif // _MSC_VER
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
// Number of bits set to 1. Also known as "population count".
template <typename T>
inline int BitsSetToOne(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
if (sizeof(T) < sizeof(uint32_t)) {
// This bit mask is to avoid a compiler warning on unused path
constexpr auto mm = 8 * sizeof(uint32_t) - 1;
// The bit mask is to neutralize sign extension on small signed types
constexpr uint32_t m = (uint32_t{1} << ((8 * sizeof(T)) & mm)) - 1;
#if defined(HAVE_SSE42) && (defined(_M_X64) || defined(_M_IX86))
return static_cast<int>(__popcnt(static_cast<uint32_t>(v) & m));
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
#else
return static_cast<int>(detail::BitsSetToOneFallback(v) & m);
#endif
} else if (sizeof(T) == sizeof(uint32_t)) {
#if defined(HAVE_SSE42) && (defined(_M_X64) || defined(_M_IX86))
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
return static_cast<int>(__popcnt(static_cast<uint32_t>(v)));
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
#else
return detail::BitsSetToOneFallback(static_cast<uint32_t>(v));
#endif
} else {
#if defined(HAVE_SSE42) && defined(_M_X64)
return static_cast<int>(__popcnt64(static_cast<uint64_t>(v)));
#elif defined(HAVE_SSE42) && defined(_M_IX86)
Fix MSVC-related build issues (#7439) Summary: This PR addresses some build and functional issues on MSVC targets, as a step towards an eventual goal of having RocksDB build successfully for Windows on ARM64. Addressed issues include: - BitsSetToOne and CountTrailingZeroBits do not compile on non-x64 MSVC targets. A fallback implementation of BitsSetToOne when Intel intrinsics are not available is added, based on the C++20 `<bit>` popcount implementation in Microsoft's STL. - The implementation of FloorLog2 for MSVC targets (including x64) gives incorrect results. The unit test easily detects this, but CircleCI is currently configured to only run a specific set of tests for Windows CMake builds, so this seems to have been unnoticed. - AsmVolatilePause does not use YieldProcessor on Windows ARM64 targets, even though it is available. - When CondVar::TimedWait calls Microsoft STL's condition_variable::wait_for, it can potentially trigger a bug (just recently fixed in the upcoming VS 16.8's STL) that deadlocks various tests that wait for a timer to execute, since `Timer::Run` doesn't get a chance to execute before being blocked by the test function acquiring the mutex. - In c_test, `GetTempDir` assumes a POSIX-style temp path. - `NormalizePath` did not eliminate consecutive POSIX-style path separators on Windows, resulting in test failures in e.g., wal_manager_test. - Various other test failures. In a followup PR I hope to modify CircleCI's config.yml to invoke all RocksDB unit tests in Windows CMake builds with CTest, instead of the current use of `run_ci_db_test.ps1` which requires individual tests to be specified and is missing many of the existing tests. Notes from peterd: FloorLog2 is not yet used in production code (it's for something in progress). I also added a few more inexpensive platform-dependent tests to Windows CircleCI runs. And included facebook/folly#1461 as requested Pull Request resolved: https://github.com/facebook/rocksdb/pull/7439 Reviewed By: jay-zhuang Differential Revision: D24021563 Pulled By: pdillinger fbshipit-source-id: 0ec2027c0d6a494d8a0fe38d9667fc2f7e29f7e7
2020-10-01 18:21:30 +02:00
return static_cast<int>(
__popcnt(static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32) +
__popcnt(static_cast<uint32_t>(v))));
#else
return detail::BitsSetToOneFallback(static_cast<uint64_t>(v));
#endif
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
}
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) < sizeof(unsigned int)) {
// This bit mask is to avoid a compiler warning on unused path
constexpr auto mm = 8 * sizeof(unsigned int) - 1;
// This bit mask is to neutralize sign extension on small signed types
constexpr unsigned int m = (1U << ((8 * sizeof(T)) & mm)) - 1;
return __builtin_popcount(static_cast<unsigned int>(v) & m);
} else if (sizeof(T) == sizeof(unsigned int)) {
return __builtin_popcount(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
return __builtin_popcountl(static_cast<unsigned long>(v));
} else {
return __builtin_popcountll(static_cast<unsigned long long>(v));
}
#endif
}
template <typename T>
inline int BitParity(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
#ifdef _MSC_VER
// bit parity == oddness of popcount
return BitsSetToOne(v) & 1;
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
// On any sane systen, potential sign extension here won't change parity
return __builtin_parity(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_parityl(static_cast<unsigned long>(v));
} else {
return __builtin_parityll(static_cast<unsigned long long>(v));
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
}
#endif
}
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 02:13:55 +01:00
// Swaps between big and little endian. Can be used in combination with the
// little-endian encoding/decoding functions in coding_lean.h and coding.h to
// encode/decode big endian.
template <typename T>
inline T EndianSwapValue(T v) {
static_assert(std::is_integral<T>::value, "non-integral type");
#ifdef _MSC_VER
if (sizeof(T) == 2) {
return static_cast<T>(_byteswap_ushort(static_cast<uint16_t>(v)));
} else if (sizeof(T) == 4) {
return static_cast<T>(_byteswap_ulong(static_cast<uint32_t>(v)));
} else if (sizeof(T) == 8) {
return static_cast<T>(_byteswap_uint64(static_cast<uint64_t>(v)));
}
#else
if (sizeof(T) == 2) {
return static_cast<T>(__builtin_bswap16(static_cast<uint16_t>(v)));
} else if (sizeof(T) == 4) {
return static_cast<T>(__builtin_bswap32(static_cast<uint32_t>(v)));
} else if (sizeof(T) == 8) {
return static_cast<T>(__builtin_bswap64(static_cast<uint64_t>(v)));
}
#endif
// Recognized by clang as bswap, but not by gcc :(
T ret_val = 0;
for (std::size_t i = 0; i < sizeof(T); ++i) {
ret_val |= ((v >> (8 * i)) & 0xff) << (8 * (sizeof(T) - 1 - i));
}
return ret_val;
}
// Reverses the order of bits in an integral value
template <typename T>
inline T ReverseBits(T v) {
T r = EndianSwapValue(v);
const T kHighestByte = T{1} << ((sizeof(T) - 1) * 8);
const T kEveryByte = kHighestByte | (kHighestByte / 255);
r = ((r & (kEveryByte * 0x0f)) << 4) | ((r >> 4) & (kEveryByte * 0x0f));
r = ((r & (kEveryByte * 0x33)) << 2) | ((r >> 2) & (kEveryByte * 0x33));
r = ((r & (kEveryByte * 0x55)) << 1) | ((r >> 1) & (kEveryByte * 0x55));
return r;
}
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 23:46:13 +02:00
} // namespace ROCKSDB_NAMESPACE