rocksdb/thrift/lib/cpp/async/TStreamAsyncChannel.tcc

489 lines
16 KiB
Plaintext
Raw Normal View History

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef THRIFT_ASYNC_TSTREAMASYNCCHANNEL_TCC_
#define THRIFT_ASYNC_TSTREAMASYNCCHANNEL_TCC_ 1
#include "thrift/lib/cpp/async/TStreamAsyncChannel.h"
#include "thrift/lib/cpp/transport/TSocketAddress.h"
namespace apache { namespace thrift { namespace async {
template<typename WriteRequest_, typename ReadState_>
TStreamAsyncChannel<WriteRequest_, ReadState_>::TStreamAsyncChannel(
const boost::shared_ptr<TAsyncTransport>& transport)
: TAsyncTimeout(transport->getEventBase())
, transport_(transport)
, writeReqHead_(NULL)
, writeReqTail_(NULL)
, readState_()
, readCallback_()
, readErrorCallback_()
, recvTimeout_(0)
, timedOut_(false) {
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::destroy() {
// When destroy is called, close the channel immediately
closeNow();
// Then call TDelayedDestruction::destroy() to take care of
// whether or not we need immediate or delayed destruction
TDelayedDestruction::destroy();
}
template<typename WriteRequest_, typename ReadState_>
bool TStreamAsyncChannel<WriteRequest_, ReadState_>::readable() const {
return transport_->readable();
}
template<typename WriteRequest_, typename ReadState_>
bool TStreamAsyncChannel<WriteRequest_, ReadState_>::good() const {
return transport_->good();
}
template<typename WriteRequest_, typename ReadState_>
bool TStreamAsyncChannel<WriteRequest_, ReadState_>::error() const {
return (timedOut_ || transport_->error());
}
template<typename WriteRequest_, typename ReadState_>
bool TStreamAsyncChannel<WriteRequest_, ReadState_>::timedOut() const {
return timedOut_;
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::sendMessage(
const VoidCallback& cob,
const VoidCallback& errorCob,
transport::TMemoryBuffer* message) {
assert(message);
DestructorGuard dg(this);
if (!good()) {
T_DEBUG_T("sendMessage: transport went bad, bailing out.");
return errorCob();
}
if (message->available_read() == 0) {
T_ERROR("sendMessage: buffer is empty");
return errorCob();
}
WriteRequest_* writeReq;
try {
writeReq = new WriteRequest_(cob, errorCob, message, this);
} catch (const std::exception& ex) {
T_ERROR("sendMessage: failed to allocate new write request object");
errorCob();
return;
}
pushWriteRequest(writeReq);
writeReq->write(transport_.get(), this);
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::recvMessage(
const VoidCallback& cob,
const VoidCallback& errorCob,
transport::TMemoryBuffer* message) {
assert(message);
DestructorGuard dg(this);
if (!good()) {
T_DEBUG_T("recvMessage: transport went bad, bailing out.");
return errorCob();
}
if (message->available_read() != 0) {
T_ERROR("recvMessage: buffer is not empty.");
return errorCob();
}
if (readCallbackQ_.empty() && readCallback_ == NULL) {
readState_.setCallbackBuffer(message);
readCallback_ = cob;
readErrorCallback_ = errorCob;
} else {
readCallbackQ_.push_back(ReadQueueEntry(cob, errorCob, message));
return;
}
// Some ReadState implementations perform read-ahead,
// and they may already have data waiting to be processed.
// If so, we need to invoke readDataAvailable() immediately, rather than
// waiting for new data from the transport.
if (readState_.hasReadAheadData()) {
if (invokeReadDataAvailable(0)) {
// We already invoked the callback
return;
}
}
// start the read timeout
if (recvTimeout_ > 0) {
scheduleTimeout(recvTimeout_);
}
// start reading from the transport
// Note that setReadCallback() may invoke our read callback methods
// immediately, so the read may complete before setReadCallback() returns.
transport_->setReadCallback(this);
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::sendAndRecvMessage(
const VoidCallback& cob,
const VoidCallback& errorCob,
transport::TMemoryBuffer* sendBuf,
transport::TMemoryBuffer* recvBuf) {
// TODO: it would be better to perform this bind once, rather than
// each time sendAndRecvMessage() is called.
const VoidCallback& send_done =
std::tr1::bind(&TStreamAsyncChannel::recvMessage, this, cob, errorCob,
recvBuf);
return sendMessage(send_done, errorCob, sendBuf);
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::close() {
DestructorGuard dg(this); // transport::close can invoke callbacks
transport_->setReadCallback(NULL);
transport_->close();
if (readCallback_) {
processReadEOF();
}
// no need to free the write-queue here. The underlying transport will
// drain the writes first
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::closeNow() {
DestructorGuard dg(this); // transport::closeNow can invoke callbacks
transport_->setReadCallback(NULL);
transport_->closeNow();
if (readCallback_) {
processReadEOF();
}
// no need to free the write-queue here. The underlying transport will
// fail pending writes first
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::attachEventBase(
TEventBase* eventBase) {
TAsyncTimeout::attachEventBase(eventBase);
transport_->attachEventBase(eventBase);
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::detachEventBase() {
// detachEventBase() may not be called while in the middle of reading or
// writing a message. Make sure there are no read callbacks
assert(!readCallback_ && readCallbackQ_.empty());
// Even though readCallback_ is unset, the read timeout might still be
// installed. This happens when detachEventBase() is invoked by the
// recvMessage() callback, because invokeReadDataAvailable() optimizes and
// leaves the timeout and transport read callback installed while invoking
// the recvMessage() callback. Make sure we cancel the read timeout before
// detaching from the event base.
if (transport_->getReadCallback() == this) {
cancelTimeout();
transport_->setReadCallback(NULL);
}
TAsyncTimeout::detachEventBase();
transport_->detachEventBase();
}
template<typename WriteRequest_, typename ReadState_>
TEventBase*
TStreamAsyncChannel<WriteRequest_, ReadState_>::getEventBase() const {
return transport_->getEventBase();
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::setRecvTimeout(
uint32_t milliseconds) {
recvTimeout_ = milliseconds;
// If we are currently reading, update the timeout
if (transport_->getReadCallback() == this) {
if (milliseconds > 0) {
scheduleTimeout(milliseconds);
} else {
cancelTimeout();
}
}
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::getReadBuffer(
void** bufReturn, size_t* lenReturn) {
readState_.getReadBuffer(bufReturn, lenReturn);
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::readDataAvailable(
size_t len) THRIFT_NOEXCEPT {
invokeReadDataAvailable(len);
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::readEOF() THRIFT_NOEXCEPT {
// readCallback_ may be NULL if readEOF() is invoked while the read callback
// is already running inside invokeReadDataAvailable(), since
// invokeReadDataAvailable() leaves the transport read callback installed
// while calling the channel read callback.
if (readCallback_) {
processReadEOF();
}
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::readError(
const transport::TTransportException& ex) THRIFT_NOEXCEPT {
// readCallback_ may be NULL if readEOF() is invoked while the read callback
// is already running inside invokeReadDataAvailable(), since
// invokeReadDataAvailable() leaves the transport read callback installed
// while calling the channel read callback.
if (!readCallback_) {
return;
}
DestructorGuard dg(this);
cancelTimeout();
failAllReads();
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::writeSuccess()
THRIFT_NOEXCEPT {
DestructorGuard dg(this);
WriteRequest_* req = popWriteRequest();
req->writeSuccess();
delete req;
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::writeError(
size_t bytesWritten,
const transport::TTransportException& ex) THRIFT_NOEXCEPT {
DestructorGuard dg(this);
if (ex.getType() == transport::TTransportException::TIMED_OUT) {
timedOut_ = true;
}
WriteRequest_* req = popWriteRequest();
req->writeError(bytesWritten, ex);
delete req;
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::timeoutExpired()
THRIFT_NOEXCEPT {
DestructorGuard dg(this);
timedOut_ = true;
// Close the transport. It isn't usable anymore, since we are leaving
// it in a state with a partial message outstanding.
transport_->setReadCallback(NULL);
transport_->close();
// TODO: It would be nice not to have to always log an error message here;
// ideally the callback should decide if this is worth logging or not.
// Unfortunately the TAsyncChannel API doesn't allow us to pass any error
// info back to the callback.
T_ERROR("TStreamAsyncChannel: read timeout");
failAllReads();
}
template<typename WriteRequest_, typename ReadState_>
bool TStreamAsyncChannel<WriteRequest_, ReadState_>::invokeReadDataAvailable(
size_t len) THRIFT_NOEXCEPT {
DestructorGuard dg(this);
assert(readCallback_);
bool readDone;
try {
readDone = readState_.readDataAvailable(len);
} catch (const std::exception& ex) {
// The channel is in an unknown state after an error processing read data.
// Close the channel to ensure that callers cannot try to read from this
// channel again.
//
// Make sure we do this after clearing our callbacks, so that the
// channel won't call our readEOF() method.
cancelTimeout();
transport_->setReadCallback(NULL);
std::string addressStr;
try {
transport::TSocketAddress addr;
transport_->getPeerAddress(&addr);
addressStr = addr.describe();
} catch (const std::exception& e) {
addressStr = "unknown";
}
T_ERROR("error reading message from %s: %s", addressStr.c_str(), ex.what());
failAllReads();
return true;
}
if (!readDone) {
// We read some data, but didn't finish reading a full message.
if (recvTimeout_ > 0) {
// Reset the timeout whenever we receive any data.
// TODO: This matches the old TAsyncChannel behavior, but it seems like
// it would make more sense to have the timeout apply to the entire
// message as a whole. Eventually we should remove this code that resets
// the timeout.
scheduleTimeout(recvTimeout_);
}
return false;
}
TEventBase* ourEventBase = transport_->getEventBase();
// We read a full message. Invoke the read callback.
invokeReadCallback(readCallback_, "read callback");
// Note that we cleared readCallback_ and readErrorCallback_ before invoking
// the callback, but left ourself installed as the TAsyncTransport read
// callback.
//
// This allows us to avoid changing the TAsyncTransport read callback if the
// channel read callback immediately called recvMessage() again. This is
// fairly common, and we avoid 2 unnecessary epoll_ctl() calls by not
// changing the transport read callback. This results in a noticeable
// performance improvement.
//
// If readCallback_ is set again after the callback returns, we're still
// reading. recvMessage() will have taken care of reseting the receive
// timeout, so we have nothing else to do.
//
// If readCallback_ is unset, recvMessage() wasn't called again and we need
// to stop reading. If our TEventBase has changed, detachEventBase() will
// have already stopped reading. (Note that if the TEventBase has changed,
// it's possible that readCallback_ has already been set again to start
// reading in the other thread.)
if (transport_->getEventBase() == ourEventBase && !readCallback_) {
if (readCallbackQ_.empty()) {
cancelTimeout();
transport_->setReadCallback(NULL);
} else {
// There are queued readers, pop one. This block should have the same
// effect as if recvMessage were called
const ReadQueueEntry &qentry = readCallbackQ_.front();
readCallback_ = qentry.readCallback;
readErrorCallback_ = qentry.readErrorCallback;
readState_.setCallbackBuffer(qentry.readBuffer);
readCallbackQ_.pop_front();
if (readState_.hasReadAheadData()) {
return invokeReadDataAvailable(0);
} else if (recvTimeout_ > 0) {
scheduleTimeout(recvTimeout_);
}
}
}
return true;
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::failAllReads() {
invokeReadCallback(readErrorCallback_, "read error callback");
while (!readCallbackQ_.empty()) {
const ReadQueueEntry &qentry = readCallbackQ_.front();
invokeReadCallback(qentry.readErrorCallback, "read error callback");
readCallbackQ_.pop_front();
}
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::processReadEOF()
THRIFT_NOEXCEPT {
DestructorGuard dg(this);
assert(readCallback_);
VoidCallback cb;
const char* cbName;
if (readState_.hasPartialMessage()) {
cb = readErrorCallback_;
cbName = "read error callback";
} else {
// We call the normal (non-error) callback if no data has been received yet
// when EOF occurs.
//
// TODO: It would be nicer to have a mechanism to indicate to the caller
// that EOF was received, instead of treating this just like 0-sized
// message.
cb = readCallback_;
cbName = "read callback";
}
cancelTimeout();
invokeReadCallback(cb, cbName);
// Any queued reads should be notified like the else case above as only
// the first reader can have partial data.
while (!readCallbackQ_.empty()) {
const ReadQueueEntry &qentry = readCallbackQ_.front();
invokeReadCallback(qentry.readCallback, cbName);
readCallbackQ_.pop_front();
}
}
template<typename WriteRequest_, typename ReadState_>
void TStreamAsyncChannel<WriteRequest_, ReadState_>::invokeReadCallback(
VoidCallback cb, char const* callbackName) THRIFT_NOEXCEPT {
readState_.unsetCallbackBuffer();
readCallback_ = VoidCallback();
readErrorCallback_ = VoidCallback();
try {
cb();
} catch (const std::exception& ex) {
T_ERROR("TAsyncChannel: %s threw %s exception: %s",
callbackName, typeid(ex).name(), ex.what());
abort();
} catch (...) {
T_ERROR("TAsyncChannel: %s threw exception", callbackName);
abort();
}
}
}}} // apache::thrift::async
#endif // THRIFT_ASYNC_TSTREAMASYNCCHANNEL_TCC_