rocksdb/table/block_based/block_based_table_reader.cc

3714 lines
143 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/block_based/block_based_table_reader.h"
#include <algorithm>
#include <array>
Rewrite memory-charging feature's option API (#9926) Summary: **Context:** Previous PR https://github.com/facebook/rocksdb/pull/9748, https://github.com/facebook/rocksdb/pull/9073, https://github.com/facebook/rocksdb/pull/8428 added separate flag for each charged memory area. Such API design is not scalable as we charge more and more memory areas. Also, we foresee an opportunity to consolidate this feature with other cache usage related features such as `cache_index_and_filter_blocks` using `CacheEntryRole`. Therefore we decided to consolidate all these flags with `CacheUsageOptions cache_usage_options` and this PR serves as the first step by consolidating memory-charging related flags. **Summary:** - Replaced old API reference with new ones, including making `kCompressionDictionaryBuildingBuffer` opt-out and added a unit test for that - Added missing db bench/stress test for some memory charging features - Renamed related test suite to indicate they are under the same theme of memory charging - Refactored a commonly used mocked cache component in memory charging related tests to reduce code duplication - Replaced the phrases "memory tracking" / "cache reservation" (other than CacheReservationManager-related ones) with "memory charging" for standard description of this feature. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9926 Test Plan: - New unit test for opt-out `kCompressionDictionaryBuildingBuffer` `TEST_F(ChargeCompressionDictionaryBuildingBufferTest, Basic)` - New unit test for option validation/sanitization `TEST_F(CacheUsageOptionsOverridesTest, SanitizeAndValidateOptions)` - CI - db bench (in case querying new options introduces regression) **+0.5% micros/op**: `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_compression_dictionary_building_buffer=1(remove this for comparison) -compression_max_dict_bytes=10000 -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 3.9711 | 0.264408 | 3.9914 | 0.254563 | 0.5111933721 20 | 3.83905 | 0.0664488 | 3.8251 | 0.0695456 | **-0.3633711465** 40 | 3.86625 | 0.136669 | 3.8867 | 0.143765 | **0.5289363078** - db_stress: `python3 tools/db_crashtest.py blackbox -charge_compression_dictionary_building_buffer=1 -charge_filter_construction=1 -charge_table_reader=1 -cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D36054712 Pulled By: hx235 fbshipit-source-id: d406e90f5e0c5ea4dbcb585a484ad9302d4302af
2022-05-17 15:01:51 -07:00
#include <cstdint>
#include <limits>
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
#include <memory>
#include <string>
Fix a major performance bug in 7.0 re: filter compatibility (#9736) Summary: Bloom filters generated by pre-7.0 releases are not read by 7.0.x releases (and vice-versa) due to changes to FilterPolicy::Name() in https://github.com/facebook/rocksdb/issues/9590. This can severely impact read performance and read I/O on upgrade or downgrade with existing DB, but not data correctness. To fix, we go back using the old, unified name in SST metadata but (for a while anyway) recognize the aliases that could be generated by early 7.0.x releases. This unfortunately requires a public API change to avoid interfering with all the good changes from https://github.com/facebook/rocksdb/issues/9590, but the API change only affects users with custom FilterPolicy, which should be very few. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9736 Test Plan: manual Generate DBs with ``` ./db_bench.7.0 -db=/dev/shm/rocksdb.7.0 -bloom_bits=10 -cache_index_and_filter_blocks=1 -benchmarks=fillrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 ``` and similar. Compare with ``` for IMPL in 6.29 7.0 fixed; do for DB in 6.29 7.0 fixed; do echo "Testing $IMPL on $DB:"; ./db_bench.$IMPL -db=/dev/shm/rocksdb.$DB -use_existing_db -readonly -bloom_bits=10 -benchmarks=readrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -duration=10 2>&1 | grep micros/op; done; done ``` Results: ``` Testing 6.29 on 6.29: readrandom : 34.381 micros/op 29085 ops/sec; 3.2 MB/s (291999 of 291999 found) Testing 6.29 on 7.0: readrandom : 190.443 micros/op 5249 ops/sec; 0.6 MB/s (52999 of 52999 found) Testing 6.29 on fixed: readrandom : 40.148 micros/op 24907 ops/sec; 2.8 MB/s (249999 of 249999 found) Testing 7.0 on 6.29: readrandom : 229.430 micros/op 4357 ops/sec; 0.5 MB/s (43999 of 43999 found) Testing 7.0 on 7.0: readrandom : 33.348 micros/op 29986 ops/sec; 3.3 MB/s (299999 of 299999 found) Testing 7.0 on fixed: readrandom : 152.734 micros/op 6546 ops/sec; 0.7 MB/s (65999 of 65999 found) Testing fixed on 6.29: readrandom : 32.024 micros/op 31224 ops/sec; 3.5 MB/s (312999 of 312999 found) Testing fixed on 7.0: readrandom : 33.990 micros/op 29390 ops/sec; 3.3 MB/s (294999 of 294999 found) Testing fixed on fixed: readrandom : 28.714 micros/op 34825 ops/sec; 3.9 MB/s (348999 of 348999 found) ``` Just paying attention to order of magnitude of ops/sec (short test durations, lots of noise), it's clear that with the fix we can read <= 6.29 & >= 7.0 at full speed, where neither 6.29 nor 7.0 can on both. And 6.29 release can properly read fixed DB at full speed. Reviewed By: siying, ajkr Differential Revision: D35057844 Pulled By: pdillinger fbshipit-source-id: a46893a6af4bf084375ebe4728066d00eb08f050
2022-03-23 10:00:54 -07:00
#include <unordered_set>
#include <utility>
#include <vector>
Use deleters to label cache entries and collect stats (#8297) Summary: This change gathers and publishes statistics about the kinds of items in block cache. This is especially important for profiling relative usage of cache by index vs. filter vs. data blocks. It works by iterating over the cache during periodic stats dump (InternalStats, stats_dump_period_sec) or on demand when DB::Get(Map)Property(kBlockCacheEntryStats), except that for efficiency and sharing among column families, saved data from the last scan is used when the data is not considered too old. The new information can be seen in info LOG, for example: Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0 Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%) And also through DB::GetProperty and GetMapProperty (here using ldb just for demonstration): $ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats rocksdb.block-cache-entry-stats.bytes.data-block: 0 rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0 rocksdb.block-cache-entry-stats.bytes.index-block: 178992 rocksdb.block-cache-entry-stats.bytes.misc: 0 rocksdb.block-cache-entry-stats.bytes.other-block: 0 rocksdb.block-cache-entry-stats.bytes.write-buffer: 0 rocksdb.block-cache-entry-stats.capacity: 8388608 rocksdb.block-cache-entry-stats.count.data-block: 0 rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-meta-block: 0 rocksdb.block-cache-entry-stats.count.index-block: 215 rocksdb.block-cache-entry-stats.count.misc: 1 rocksdb.block-cache-entry-stats.count.other-block: 0 rocksdb.block-cache-entry-stats.count.write-buffer: 0 rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290 rocksdb.block-cache-entry-stats.percent.data-block: 0.000000 rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000 rocksdb.block-cache-entry-stats.percent.index-block: 2.133751 rocksdb.block-cache-entry-stats.percent.misc: 0.000000 rocksdb.block-cache-entry-stats.percent.other-block: 0.000000 rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000 rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052 rocksdb.block-cache-entry-stats.secs_since_last_collection: 0 Solution detail - We need some way to flag what kind of blocks each entry belongs to, preferably without changing the Cache API. One of the complications is that Cache is a general interface that could have other users that don't adhere to whichever convention we decide on for keys and values. Or we would pay for an extra field in the Handle that would only be used for this purpose. This change uses a back-door approach, the deleter, to indicate the "role" of a Cache entry (in addition to the value type, implicitly). This has the added benefit of ensuring proper code origin whenever we recognize a particular role for a cache entry; if the entry came from some other part of the code, it will use an unrecognized deleter, which we simply attribute to the "Misc" role. An internal API makes for simple instantiation and automatic registration of Cache deleters for a given value type and "role". Another internal API, CacheEntryStatsCollector, solves the problem of caching the results of a scan and sharing them, to ensure scans are neither excessive nor redundant so as not to harm Cache performance. Because code is added to BlocklikeTraits, it is pulled out of block_based_table_reader.cc into its own file. This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option (could still be added), and with actual stat gathering. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297 Test Plan: manual testing with db_bench, and a couple of basic unit tests Reviewed By: ltamasi Differential Revision: D28488721 Pulled By: pdillinger fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
2021-05-19 16:45:51 -07:00
#include "cache/cache_entry_roles.h"
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
#include "cache/cache_key.h"
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
#include "cache/sharded_cache.h"
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
#include "db/compaction/compaction_picker.h"
#include "db/dbformat.h"
Introduce FullMergeV2 (eliminate memcpy from merge operators) Summary: This diff update the code to pin the merge operator operands while the merge operation is done, so that we can eliminate the memcpy cost, to do that we need a new public API for FullMerge that replace the std::deque<std::string> with std::vector<Slice> This diff is stacked on top of D56493 and D56511 In this diff we - Update FullMergeV2 arguments to be encapsulated in MergeOperationInput and MergeOperationOutput which will make it easier to add new arguments in the future - Replace std::deque<std::string> with std::vector<Slice> to pass operands - Replace MergeContext std::deque with std::vector (based on a simple benchmark I ran https://gist.github.com/IslamAbdelRahman/78fc86c9ab9f52b1df791e58943fb187) - Allow FullMergeV2 output to be an existing operand ``` [Everything in Memtable | 10K operands | 10 KB each | 1 operand per key] DEBUG_LEVEL=0 make db_bench -j64 && ./db_bench --benchmarks="mergerandom,readseq,readseq,readseq,readseq,readseq" --merge_operator="max" --merge_keys=10000 --num=10000 --disable_auto_compactions --value_size=10240 --write_buffer_size=1000000000 [FullMergeV2] readseq : 0.607 micros/op 1648235 ops/sec; 16121.2 MB/s readseq : 0.478 micros/op 2091546 ops/sec; 20457.2 MB/s readseq : 0.252 micros/op 3972081 ops/sec; 38850.5 MB/s readseq : 0.237 micros/op 4218328 ops/sec; 41259.0 MB/s readseq : 0.247 micros/op 4043927 ops/sec; 39553.2 MB/s [master] readseq : 3.935 micros/op 254140 ops/sec; 2485.7 MB/s readseq : 3.722 micros/op 268657 ops/sec; 2627.7 MB/s readseq : 3.149 micros/op 317605 ops/sec; 3106.5 MB/s readseq : 3.125 micros/op 320024 ops/sec; 3130.1 MB/s readseq : 4.075 micros/op 245374 ops/sec; 2400.0 MB/s ``` ``` [Everything in Memtable | 10K operands | 10 KB each | 10 operand per key] DEBUG_LEVEL=0 make db_bench -j64 && ./db_bench --benchmarks="mergerandom,readseq,readseq,readseq,readseq,readseq" --merge_operator="max" --merge_keys=1000 --num=10000 --disable_auto_compactions --value_size=10240 --write_buffer_size=1000000000 [FullMergeV2] readseq : 3.472 micros/op 288018 ops/sec; 2817.1 MB/s readseq : 2.304 micros/op 434027 ops/sec; 4245.2 MB/s readseq : 1.163 micros/op 859845 ops/sec; 8410.0 MB/s readseq : 1.192 micros/op 838926 ops/sec; 8205.4 MB/s readseq : 1.250 micros/op 800000 ops/sec; 7824.7 MB/s [master] readseq : 24.025 micros/op 41623 ops/sec; 407.1 MB/s readseq : 18.489 micros/op 54086 ops/sec; 529.0 MB/s readseq : 18.693 micros/op 53495 ops/sec; 523.2 MB/s readseq : 23.621 micros/op 42335 ops/sec; 414.1 MB/s readseq : 18.775 micros/op 53262 ops/sec; 521.0 MB/s ``` ``` [Everything in Block cache | 10K operands | 10 KB each | 1 operand per key] [FullMergeV2] $ DEBUG_LEVEL=0 make db_bench -j64 && ./db_bench --benchmarks="readseq,readseq,readseq,readseq,readseq" --merge_operator="max" --num=100000 --db="/dev/shm/merge-random-10K-10KB" --cache_size=1000000000 --use_existing_db --disable_auto_compactions readseq : 14.741 micros/op 67837 ops/sec; 663.5 MB/s readseq : 1.029 micros/op 971446 ops/sec; 9501.6 MB/s readseq : 0.974 micros/op 1026229 ops/sec; 10037.4 MB/s readseq : 0.965 micros/op 1036080 ops/sec; 10133.8 MB/s readseq : 0.943 micros/op 1060657 ops/sec; 10374.2 MB/s [master] readseq : 16.735 micros/op 59755 ops/sec; 584.5 MB/s readseq : 3.029 micros/op 330151 ops/sec; 3229.2 MB/s readseq : 3.136 micros/op 318883 ops/sec; 3119.0 MB/s readseq : 3.065 micros/op 326245 ops/sec; 3191.0 MB/s readseq : 3.014 micros/op 331813 ops/sec; 3245.4 MB/s ``` ``` [Everything in Block cache | 10K operands | 10 KB each | 10 operand per key] DEBUG_LEVEL=0 make db_bench -j64 && ./db_bench --benchmarks="readseq,readseq,readseq,readseq,readseq" --merge_operator="max" --num=100000 --db="/dev/shm/merge-random-10-operands-10K-10KB" --cache_size=1000000000 --use_existing_db --disable_auto_compactions [FullMergeV2] readseq : 24.325 micros/op 41109 ops/sec; 402.1 MB/s readseq : 1.470 micros/op 680272 ops/sec; 6653.7 MB/s readseq : 1.231 micros/op 812347 ops/sec; 7945.5 MB/s readseq : 1.091 micros/op 916590 ops/sec; 8965.1 MB/s readseq : 1.109 micros/op 901713 ops/sec; 8819.6 MB/s [master] readseq : 27.257 micros/op 36687 ops/sec; 358.8 MB/s readseq : 4.443 micros/op 225073 ops/sec; 2201.4 MB/s readseq : 5.830 micros/op 171526 ops/sec; 1677.7 MB/s readseq : 4.173 micros/op 239635 ops/sec; 2343.8 MB/s readseq : 4.150 micros/op 240963 ops/sec; 2356.8 MB/s ``` Test Plan: COMPILE_WITH_ASAN=1 make check -j64 Reviewers: yhchiang, andrewkr, sdong Reviewed By: sdong Subscribers: lovro, andrewkr, dhruba Differential Revision: https://reviews.facebook.net/D57075
2016-07-20 09:49:03 -07:00
#include "db/pinned_iterators_manager.h"
#include "file/file_prefetch_buffer.h"
#include "file/file_util.h"
#include "file/random_access_file_reader.h"
#include "logging/logging.h"
#include "monitoring/perf_context_imp.h"
#include "port/lang.h"
#include "rocksdb/cache.h"
#include "rocksdb/comparator.h"
#include "rocksdb/convenience.h"
#include "rocksdb/env.h"
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:47:08 -08:00
#include "rocksdb/file_system.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/statistics.h"
#include "rocksdb/system_clock.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "rocksdb/trace_record.h"
#include "table/block_based/binary_search_index_reader.h"
#include "table/block_based/block.h"
#include "table/block_based/block_based_filter_block.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/block_based/block_based_table_iterator.h"
Use deleters to label cache entries and collect stats (#8297) Summary: This change gathers and publishes statistics about the kinds of items in block cache. This is especially important for profiling relative usage of cache by index vs. filter vs. data blocks. It works by iterating over the cache during periodic stats dump (InternalStats, stats_dump_period_sec) or on demand when DB::Get(Map)Property(kBlockCacheEntryStats), except that for efficiency and sharing among column families, saved data from the last scan is used when the data is not considered too old. The new information can be seen in info LOG, for example: Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0 Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%) And also through DB::GetProperty and GetMapProperty (here using ldb just for demonstration): $ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats rocksdb.block-cache-entry-stats.bytes.data-block: 0 rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0 rocksdb.block-cache-entry-stats.bytes.index-block: 178992 rocksdb.block-cache-entry-stats.bytes.misc: 0 rocksdb.block-cache-entry-stats.bytes.other-block: 0 rocksdb.block-cache-entry-stats.bytes.write-buffer: 0 rocksdb.block-cache-entry-stats.capacity: 8388608 rocksdb.block-cache-entry-stats.count.data-block: 0 rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-meta-block: 0 rocksdb.block-cache-entry-stats.count.index-block: 215 rocksdb.block-cache-entry-stats.count.misc: 1 rocksdb.block-cache-entry-stats.count.other-block: 0 rocksdb.block-cache-entry-stats.count.write-buffer: 0 rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290 rocksdb.block-cache-entry-stats.percent.data-block: 0.000000 rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000 rocksdb.block-cache-entry-stats.percent.index-block: 2.133751 rocksdb.block-cache-entry-stats.percent.misc: 0.000000 rocksdb.block-cache-entry-stats.percent.other-block: 0.000000 rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000 rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052 rocksdb.block-cache-entry-stats.secs_since_last_collection: 0 Solution detail - We need some way to flag what kind of blocks each entry belongs to, preferably without changing the Cache API. One of the complications is that Cache is a general interface that could have other users that don't adhere to whichever convention we decide on for keys and values. Or we would pay for an extra field in the Handle that would only be used for this purpose. This change uses a back-door approach, the deleter, to indicate the "role" of a Cache entry (in addition to the value type, implicitly). This has the added benefit of ensuring proper code origin whenever we recognize a particular role for a cache entry; if the entry came from some other part of the code, it will use an unrecognized deleter, which we simply attribute to the "Misc" role. An internal API makes for simple instantiation and automatic registration of Cache deleters for a given value type and "role". Another internal API, CacheEntryStatsCollector, solves the problem of caching the results of a scan and sharing them, to ensure scans are neither excessive nor redundant so as not to harm Cache performance. Because code is added to BlocklikeTraits, it is pulled out of block_based_table_reader.cc into its own file. This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option (could still be added), and with actual stat gathering. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297 Test Plan: manual testing with db_bench, and a couple of basic unit tests Reviewed By: ltamasi Differential Revision: D28488721 Pulled By: pdillinger fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
2021-05-19 16:45:51 -07:00
#include "table/block_based/block_like_traits.h"
#include "table/block_based/block_prefix_index.h"
Use deleters to label cache entries and collect stats (#8297) Summary: This change gathers and publishes statistics about the kinds of items in block cache. This is especially important for profiling relative usage of cache by index vs. filter vs. data blocks. It works by iterating over the cache during periodic stats dump (InternalStats, stats_dump_period_sec) or on demand when DB::Get(Map)Property(kBlockCacheEntryStats), except that for efficiency and sharing among column families, saved data from the last scan is used when the data is not considered too old. The new information can be seen in info LOG, for example: Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0 Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%) And also through DB::GetProperty and GetMapProperty (here using ldb just for demonstration): $ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats rocksdb.block-cache-entry-stats.bytes.data-block: 0 rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0 rocksdb.block-cache-entry-stats.bytes.index-block: 178992 rocksdb.block-cache-entry-stats.bytes.misc: 0 rocksdb.block-cache-entry-stats.bytes.other-block: 0 rocksdb.block-cache-entry-stats.bytes.write-buffer: 0 rocksdb.block-cache-entry-stats.capacity: 8388608 rocksdb.block-cache-entry-stats.count.data-block: 0 rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-meta-block: 0 rocksdb.block-cache-entry-stats.count.index-block: 215 rocksdb.block-cache-entry-stats.count.misc: 1 rocksdb.block-cache-entry-stats.count.other-block: 0 rocksdb.block-cache-entry-stats.count.write-buffer: 0 rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290 rocksdb.block-cache-entry-stats.percent.data-block: 0.000000 rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000 rocksdb.block-cache-entry-stats.percent.index-block: 2.133751 rocksdb.block-cache-entry-stats.percent.misc: 0.000000 rocksdb.block-cache-entry-stats.percent.other-block: 0.000000 rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000 rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052 rocksdb.block-cache-entry-stats.secs_since_last_collection: 0 Solution detail - We need some way to flag what kind of blocks each entry belongs to, preferably without changing the Cache API. One of the complications is that Cache is a general interface that could have other users that don't adhere to whichever convention we decide on for keys and values. Or we would pay for an extra field in the Handle that would only be used for this purpose. This change uses a back-door approach, the deleter, to indicate the "role" of a Cache entry (in addition to the value type, implicitly). This has the added benefit of ensuring proper code origin whenever we recognize a particular role for a cache entry; if the entry came from some other part of the code, it will use an unrecognized deleter, which we simply attribute to the "Misc" role. An internal API makes for simple instantiation and automatic registration of Cache deleters for a given value type and "role". Another internal API, CacheEntryStatsCollector, solves the problem of caching the results of a scan and sharing them, to ensure scans are neither excessive nor redundant so as not to harm Cache performance. Because code is added to BlocklikeTraits, it is pulled out of block_based_table_reader.cc into its own file. This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option (could still be added), and with actual stat gathering. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297 Test Plan: manual testing with db_bench, and a couple of basic unit tests Reviewed By: ltamasi Differential Revision: D28488721 Pulled By: pdillinger fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
2021-05-19 16:45:51 -07:00
#include "table/block_based/block_type.h"
#include "table/block_based/filter_block.h"
Fix a major performance bug in 7.0 re: filter compatibility (#9736) Summary: Bloom filters generated by pre-7.0 releases are not read by 7.0.x releases (and vice-versa) due to changes to FilterPolicy::Name() in https://github.com/facebook/rocksdb/issues/9590. This can severely impact read performance and read I/O on upgrade or downgrade with existing DB, but not data correctness. To fix, we go back using the old, unified name in SST metadata but (for a while anyway) recognize the aliases that could be generated by early 7.0.x releases. This unfortunately requires a public API change to avoid interfering with all the good changes from https://github.com/facebook/rocksdb/issues/9590, but the API change only affects users with custom FilterPolicy, which should be very few. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9736 Test Plan: manual Generate DBs with ``` ./db_bench.7.0 -db=/dev/shm/rocksdb.7.0 -bloom_bits=10 -cache_index_and_filter_blocks=1 -benchmarks=fillrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 ``` and similar. Compare with ``` for IMPL in 6.29 7.0 fixed; do for DB in 6.29 7.0 fixed; do echo "Testing $IMPL on $DB:"; ./db_bench.$IMPL -db=/dev/shm/rocksdb.$DB -use_existing_db -readonly -bloom_bits=10 -benchmarks=readrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -duration=10 2>&1 | grep micros/op; done; done ``` Results: ``` Testing 6.29 on 6.29: readrandom : 34.381 micros/op 29085 ops/sec; 3.2 MB/s (291999 of 291999 found) Testing 6.29 on 7.0: readrandom : 190.443 micros/op 5249 ops/sec; 0.6 MB/s (52999 of 52999 found) Testing 6.29 on fixed: readrandom : 40.148 micros/op 24907 ops/sec; 2.8 MB/s (249999 of 249999 found) Testing 7.0 on 6.29: readrandom : 229.430 micros/op 4357 ops/sec; 0.5 MB/s (43999 of 43999 found) Testing 7.0 on 7.0: readrandom : 33.348 micros/op 29986 ops/sec; 3.3 MB/s (299999 of 299999 found) Testing 7.0 on fixed: readrandom : 152.734 micros/op 6546 ops/sec; 0.7 MB/s (65999 of 65999 found) Testing fixed on 6.29: readrandom : 32.024 micros/op 31224 ops/sec; 3.5 MB/s (312999 of 312999 found) Testing fixed on 7.0: readrandom : 33.990 micros/op 29390 ops/sec; 3.3 MB/s (294999 of 294999 found) Testing fixed on fixed: readrandom : 28.714 micros/op 34825 ops/sec; 3.9 MB/s (348999 of 348999 found) ``` Just paying attention to order of magnitude of ops/sec (short test durations, lots of noise), it's clear that with the fix we can read <= 6.29 & >= 7.0 at full speed, where neither 6.29 nor 7.0 can on both. And 6.29 release can properly read fixed DB at full speed. Reviewed By: siying, ajkr Differential Revision: D35057844 Pulled By: pdillinger fbshipit-source-id: a46893a6af4bf084375ebe4728066d00eb08f050
2022-03-23 10:00:54 -07:00
#include "table/block_based/filter_policy_internal.h"
#include "table/block_based/full_filter_block.h"
#include "table/block_based/hash_index_reader.h"
#include "table/block_based/partitioned_filter_block.h"
#include "table/block_based/partitioned_index_reader.h"
#include "table/block_fetcher.h"
#include "table/format.h"
#include "table/get_context.h"
#include "table/internal_iterator.h"
#include "table/meta_blocks.h"
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
#include "table/multiget_context.h"
#include "table/persistent_cache_helper.h"
#include "table/persistent_cache_options.h"
#include "table/sst_file_writer_collectors.h"
#include "table/two_level_iterator.h"
#include "test_util/sync_point.h"
#include "util/coding.h"
#include "util/crc32c.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
extern const uint64_t kBlockBasedTableMagicNumber;
extern const std::string kHashIndexPrefixesBlock;
extern const std::string kHashIndexPrefixesMetadataBlock;
BlockBasedTable::~BlockBasedTable() {
delete rep_;
}
namespace {
// Read the block identified by "handle" from "file".
// The only relevant option is options.verify_checksums for now.
// On failure return non-OK.
// On success fill *result and return OK - caller owns *result
// @param uncompression_dict Data for presetting the compression library's
// dictionary.
template <typename TBlocklike>
Status ReadBlockFromFile(
RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer,
const Footer& footer, const ReadOptions& options, const BlockHandle& handle,
std::unique_ptr<TBlocklike>* result, const ImmutableOptions& ioptions,
bool do_uncompress, bool maybe_compressed, BlockType block_type,
const UncompressionDict& uncompression_dict,
const PersistentCacheOptions& cache_options, size_t read_amp_bytes_per_bit,
MemoryAllocator* memory_allocator, bool for_compaction, bool using_zstd,
const FilterPolicy* filter_policy) {
assert(result);
BlockContents contents;
BlockFetcher block_fetcher(
file, prefetch_buffer, footer, options, handle, &contents, ioptions,
do_uncompress, maybe_compressed, block_type, uncompression_dict,
cache_options, memory_allocator, nullptr, for_compaction);
Status s = block_fetcher.ReadBlockContents();
if (s.ok()) {
result->reset(BlocklikeTraits<TBlocklike>::Create(
std::move(contents), read_amp_bytes_per_bit, ioptions.stats, using_zstd,
filter_policy));
}
return s;
}
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
// For hash based index, return false if table_properties->prefix_extractor_name
// and prefix_extractor both exist and match, otherwise true.
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
inline bool PrefixExtractorChangedHelper(
const TableProperties* table_properties,
const SliceTransform* prefix_extractor) {
// BlockBasedTableOptions::kHashSearch requires prefix_extractor to be set.
// Turn off hash index in prefix_extractor is not set; if prefix_extractor
// is set but prefix_extractor_block is not set, also disable hash index
if (prefix_extractor == nullptr || table_properties == nullptr ||
table_properties->prefix_extractor_name.empty()) {
return true;
}
// prefix_extractor and prefix_extractor_block are both non-empty
if (table_properties->prefix_extractor_name != prefix_extractor->AsString()) {
return true;
} else {
return false;
}
}
CacheAllocationPtr CopyBufferToHeap(MemoryAllocator* allocator, Slice& buf) {
CacheAllocationPtr heap_buf;
heap_buf = AllocateBlock(buf.size(), allocator);
memcpy(heap_buf.get(), buf.data(), buf.size());
return heap_buf;
}
} // namespace
void BlockBasedTable::UpdateCacheHitMetrics(BlockType block_type,
GetContext* get_context,
size_t usage) const {
Statistics* const statistics = rep_->ioptions.stats;
PERF_COUNTER_ADD(block_cache_hit_count, 1);
PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1,
static_cast<uint32_t>(rep_->level));
if (get_context) {
++get_context->get_context_stats_.num_cache_hit;
get_context->get_context_stats_.num_cache_bytes_read += usage;
} else {
RecordTick(statistics, BLOCK_CACHE_HIT);
RecordTick(statistics, BLOCK_CACHE_BYTES_READ, usage);
}
switch (block_type) {
case BlockType::kFilter:
PERF_COUNTER_ADD(block_cache_filter_hit_count, 1);
if (get_context) {
++get_context->get_context_stats_.num_cache_filter_hit;
} else {
RecordTick(statistics, BLOCK_CACHE_FILTER_HIT);
}
break;
case BlockType::kCompressionDictionary:
// TODO: introduce perf counter for compression dictionary hit count
if (get_context) {
++get_context->get_context_stats_.num_cache_compression_dict_hit;
} else {
RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_HIT);
}
break;
case BlockType::kIndex:
PERF_COUNTER_ADD(block_cache_index_hit_count, 1);
if (get_context) {
++get_context->get_context_stats_.num_cache_index_hit;
} else {
RecordTick(statistics, BLOCK_CACHE_INDEX_HIT);
}
break;
default:
// TODO: introduce dedicated tickers/statistics/counters
// for range tombstones
if (get_context) {
++get_context->get_context_stats_.num_cache_data_hit;
} else {
RecordTick(statistics, BLOCK_CACHE_DATA_HIT);
}
break;
}
}
void BlockBasedTable::UpdateCacheMissMetrics(BlockType block_type,
GetContext* get_context) const {
Statistics* const statistics = rep_->ioptions.stats;
// TODO: introduce aggregate (not per-level) block cache miss count
PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 1,
static_cast<uint32_t>(rep_->level));
if (get_context) {
++get_context->get_context_stats_.num_cache_miss;
} else {
RecordTick(statistics, BLOCK_CACHE_MISS);
}
// TODO: introduce perf counters for misses per block type
switch (block_type) {
case BlockType::kFilter:
if (get_context) {
++get_context->get_context_stats_.num_cache_filter_miss;
} else {
RecordTick(statistics, BLOCK_CACHE_FILTER_MISS);
}
break;
case BlockType::kCompressionDictionary:
if (get_context) {
++get_context->get_context_stats_.num_cache_compression_dict_miss;
} else {
RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_MISS);
}
break;
case BlockType::kIndex:
if (get_context) {
++get_context->get_context_stats_.num_cache_index_miss;
} else {
RecordTick(statistics, BLOCK_CACHE_INDEX_MISS);
}
break;
default:
// TODO: introduce dedicated tickers/statistics/counters
// for range tombstones
if (get_context) {
++get_context->get_context_stats_.num_cache_data_miss;
} else {
RecordTick(statistics, BLOCK_CACHE_DATA_MISS);
}
break;
}
}
void BlockBasedTable::UpdateCacheInsertionMetrics(
BlockType block_type, GetContext* get_context, size_t usage, bool redundant,
Statistics* const statistics) {
// TODO: introduce perf counters for block cache insertions
if (get_context) {
++get_context->get_context_stats_.num_cache_add;
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
++get_context->get_context_stats_.num_cache_add_redundant;
}
get_context->get_context_stats_.num_cache_bytes_write += usage;
} else {
RecordTick(statistics, BLOCK_CACHE_ADD);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
RecordTick(statistics, BLOCK_CACHE_ADD_REDUNDANT);
}
RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, usage);
}
switch (block_type) {
case BlockType::kFilter:
if (get_context) {
++get_context->get_context_stats_.num_cache_filter_add;
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
++get_context->get_context_stats_.num_cache_filter_add_redundant;
}
get_context->get_context_stats_.num_cache_filter_bytes_insert += usage;
} else {
RecordTick(statistics, BLOCK_CACHE_FILTER_ADD);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
RecordTick(statistics, BLOCK_CACHE_FILTER_ADD_REDUNDANT);
}
RecordTick(statistics, BLOCK_CACHE_FILTER_BYTES_INSERT, usage);
}
break;
case BlockType::kCompressionDictionary:
if (get_context) {
++get_context->get_context_stats_.num_cache_compression_dict_add;
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
++get_context->get_context_stats_
.num_cache_compression_dict_add_redundant;
}
get_context->get_context_stats_
.num_cache_compression_dict_bytes_insert += usage;
} else {
RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_ADD);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_ADD_REDUNDANT);
}
RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_BYTES_INSERT,
usage);
}
break;
case BlockType::kIndex:
if (get_context) {
++get_context->get_context_stats_.num_cache_index_add;
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
++get_context->get_context_stats_.num_cache_index_add_redundant;
}
get_context->get_context_stats_.num_cache_index_bytes_insert += usage;
} else {
RecordTick(statistics, BLOCK_CACHE_INDEX_ADD);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
RecordTick(statistics, BLOCK_CACHE_INDEX_ADD_REDUNDANT);
}
RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, usage);
}
break;
default:
// TODO: introduce dedicated tickers/statistics/counters
// for range tombstones
if (get_context) {
++get_context->get_context_stats_.num_cache_data_add;
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
++get_context->get_context_stats_.num_cache_data_add_redundant;
}
get_context->get_context_stats_.num_cache_data_bytes_insert += usage;
} else {
RecordTick(statistics, BLOCK_CACHE_DATA_ADD);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
if (redundant) {
RecordTick(statistics, BLOCK_CACHE_DATA_ADD_REDUNDANT);
}
RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, usage);
}
break;
}
}
Cache::Handle* BlockBasedTable::GetEntryFromCache(
const CacheTier& cache_tier, Cache* block_cache, const Slice& key,
BlockType block_type, const bool wait, GetContext* get_context,
const Cache::CacheItemHelper* cache_helper,
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
const Cache::CreateCallback& create_cb, Cache::Priority priority) const {
Cache::Handle* cache_handle = nullptr;
if (cache_tier == CacheTier::kNonVolatileBlockTier) {
cache_handle = block_cache->Lookup(key, cache_helper, create_cb, priority,
wait, rep_->ioptions.statistics.get());
} else {
cache_handle = block_cache->Lookup(key, rep_->ioptions.statistics.get());
}
if (cache_handle != nullptr) {
UpdateCacheHitMetrics(block_type, get_context,
block_cache->GetUsage(cache_handle));
} else {
UpdateCacheMissMetrics(block_type, get_context);
}
return cache_handle;
}
template <typename TBlocklike>
Status BlockBasedTable::InsertEntryToCache(
const CacheTier& cache_tier, Cache* block_cache, const Slice& key,
const Cache::CacheItemHelper* cache_helper,
std::unique_ptr<TBlocklike>& block_holder, size_t charge,
Cache::Handle** cache_handle, Cache::Priority priority) const {
Status s = Status::OK();
if (cache_tier == CacheTier::kNonVolatileBlockTier) {
s = block_cache->Insert(key, block_holder.get(), cache_helper, charge,
cache_handle, priority);
} else {
s = block_cache->Insert(key, block_holder.get(), charge,
cache_helper->del_cb, cache_handle, priority);
}
return s;
}
namespace {
// Return True if table_properties has `user_prop_name` has a `true` value
// or it doesn't contain this property (for backward compatible).
bool IsFeatureSupported(const TableProperties& table_properties,
const std::string& user_prop_name, Logger* info_log) {
auto& props = table_properties.user_collected_properties;
auto pos = props.find(user_prop_name);
// Older version doesn't have this value set. Skip this check.
if (pos != props.end()) {
if (pos->second == kPropFalse) {
return false;
} else if (pos->second != kPropTrue) {
ROCKS_LOG_WARN(info_log, "Property %s has invalidate value %s",
user_prop_name.c_str(), pos->second.c_str());
}
}
return true;
}
// Caller has to ensure seqno is not nullptr.
Status GetGlobalSequenceNumber(const TableProperties& table_properties,
SequenceNumber largest_seqno,
SequenceNumber* seqno) {
const auto& props = table_properties.user_collected_properties;
const auto version_pos = props.find(ExternalSstFilePropertyNames::kVersion);
const auto seqno_pos = props.find(ExternalSstFilePropertyNames::kGlobalSeqno);
*seqno = kDisableGlobalSequenceNumber;
if (version_pos == props.end()) {
if (seqno_pos != props.end()) {
std::array<char, 200> msg_buf;
// This is not an external sst file, global_seqno is not supported.
snprintf(
msg_buf.data(), msg_buf.max_size(),
"A non-external sst file have global seqno property with value %s",
seqno_pos->second.c_str());
return Status::Corruption(msg_buf.data());
}
return Status::OK();
}
uint32_t version = DecodeFixed32(version_pos->second.c_str());
if (version < 2) {
if (seqno_pos != props.end() || version != 1) {
std::array<char, 200> msg_buf;
// This is a v1 external sst file, global_seqno is not supported.
snprintf(msg_buf.data(), msg_buf.max_size(),
"An external sst file with version %u have global seqno "
"property with value %s",
version, seqno_pos->second.c_str());
return Status::Corruption(msg_buf.data());
}
return Status::OK();
}
// Since we have a plan to deprecate global_seqno, we do not return failure
// if seqno_pos == props.end(). We rely on version_pos to detect whether the
// SST is external.
SequenceNumber global_seqno(0);
if (seqno_pos != props.end()) {
global_seqno = DecodeFixed64(seqno_pos->second.c_str());
}
// SstTableReader open table reader with kMaxSequenceNumber as largest_seqno
// to denote it is unknown.
if (largest_seqno < kMaxSequenceNumber) {
if (global_seqno == 0) {
global_seqno = largest_seqno;
}
if (global_seqno != largest_seqno) {
std::array<char, 200> msg_buf;
snprintf(
msg_buf.data(), msg_buf.max_size(),
"An external sst file with version %u have global seqno property "
"with value %s, while largest seqno in the file is %llu",
version, seqno_pos->second.c_str(),
static_cast<unsigned long long>(largest_seqno));
return Status::Corruption(msg_buf.data());
}
}
*seqno = global_seqno;
if (global_seqno > kMaxSequenceNumber) {
std::array<char, 200> msg_buf;
snprintf(msg_buf.data(), msg_buf.max_size(),
"An external sst file with version %u have global seqno property "
"with value %llu, which is greater than kMaxSequenceNumber",
version, static_cast<unsigned long long>(global_seqno));
return Status::Corruption(msg_buf.data());
}
return Status::OK();
}
} // namespace
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
void BlockBasedTable::SetupBaseCacheKey(const TableProperties* properties,
const std::string& cur_db_session_id,
uint64_t cur_file_number,
uint64_t file_size,
OffsetableCacheKey* out_base_cache_key,
bool* out_is_stable) {
// Use a stable cache key if sufficient data is in table properties
std::string db_session_id;
uint64_t file_num;
std::string db_id;
if (properties && !properties->db_session_id.empty() &&
properties->orig_file_number > 0) {
// (Newer SST file case)
// We must have both properties to get a stable unique id because
// CreateColumnFamilyWithImport or IngestExternalFiles can change the
// file numbers on a file.
db_session_id = properties->db_session_id;
file_num = properties->orig_file_number;
// Less critical, populated in earlier release than above
db_id = properties->db_id;
if (out_is_stable) {
*out_is_stable = true;
}
} else {
// (Old SST file case)
// We use (unique) cache keys based on current identifiers. These are at
// least stable across table file close and re-open, but not across
// different DBs nor DB close and re-open.
db_session_id = cur_db_session_id;
file_num = cur_file_number;
// Plumbing through the DB ID to here would be annoying, and of limited
// value because of the case of VersionSet::Recover opening some table
// files and later setting the DB ID. So we just rely on uniqueness
// level provided by session ID.
db_id = "unknown";
if (out_is_stable) {
*out_is_stable = false;
}
}
// Too many tests to update to get these working
// assert(file_num > 0);
// assert(!db_session_id.empty());
// assert(!db_id.empty());
// Minimum block size is 5 bytes; therefore we can trim off two lower bits
// from offets. See GetCacheKey.
*out_base_cache_key = OffsetableCacheKey(db_id, db_session_id, file_num,
/*max_offset*/ file_size >> 2);
}
CacheKey BlockBasedTable::GetCacheKey(const OffsetableCacheKey& base_cache_key,
const BlockHandle& handle) {
// Minimum block size is 5 bytes; therefore we can trim off two lower bits
// from offet.
return base_cache_key.WithOffset(handle.offset() >> 2);
}
Status BlockBasedTable::Open(
const ReadOptions& read_options, const ImmutableOptions& ioptions,
const EnvOptions& env_options, const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
std::unique_ptr<RandomAccessFileReader>&& file, uint64_t file_size,
std::unique_ptr<TableReader>* table_reader,
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
std::shared_ptr<CacheReservationManager> table_reader_cache_res_mgr,
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
const std::shared_ptr<const SliceTransform>& prefix_extractor,
const bool prefetch_index_and_filter_in_cache, const bool skip_filters,
const int level, const bool immortal_table,
const SequenceNumber largest_seqno, const bool force_direct_prefetch,
TailPrefetchStats* tail_prefetch_stats,
BlockCacheTracer* const block_cache_tracer,
size_t max_file_size_for_l0_meta_pin, const std::string& cur_db_session_id,
uint64_t cur_file_num) {
table_reader->reset();
Status s;
Footer footer;
std::unique_ptr<FilePrefetchBuffer> prefetch_buffer;
Set Read rate limiter priority dynamically and pass it to FS (#9996) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. ### Solution User, Flush, and Compaction reads share some code path. For this task, we update the rate_limiter_priority in ReadOptions for code paths (e.g. FindTable (mainly in BlockBasedTable::Open()) and various iterators), and eventually update the rate_limiter_priority in IOOptions for FSRandomAccessFile. **This PR is for the Read path.** The **Read:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush (verification read in BuildTable()) | IO_USER | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | | User | User provided | User provided | User provided | We will respect the read_options that the user provided and will not set it. The only sst read for Flush is the verification read in BuildTable(). It claims to be "regard as user read". **Details** 1. Set read_options.rate_limiter_priority dynamically: - User: Do not update the read_options. Use the read_options that the user provided. - Compaction: Update read_options in CompactionJob::ProcessKeyValueCompaction(). - Flush: Update read_options in BuildTable(). 2. Pass the rate limiter priority to FSRandomAccessFile functions: - After calling the FindTable(), read_options is passed through GetTableReader(table_cache.cc), BlockBasedTableFactory::NewTableReader(block_based_table_factory.cc), and BlockBasedTable::Open(). The Open() needs some updates for the ReadOptions variable and the updates are also needed for the called functions, including PrefetchTail(), PrepareIOOptions(), ReadFooterFromFile(), ReadMetaIndexblock(), ReadPropertiesBlock(), PrefetchIndexAndFilterBlocks(), and ReadRangeDelBlock(). - In RandomAccessFileReader, the functions to be updated include Read(), MultiRead(), ReadAsync(), and Prefetch(). - Update the downstream functions of NewIndexIterator(), NewDataBlockIterator(), and BlockBasedTableIterator(). ### Test Plans Add unit tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9996 Reviewed By: anand1976 Differential Revision: D36452483 Pulled By: gitbw95 fbshipit-source-id: 60978204a4f849bb9261cb78d9bc1cb56d6008cf
2022-05-18 19:41:44 -07:00
// From read_options, retain deadline, io_timeout, and rate_limiter_priority.
// In future, we may retain more
// options. Specifically, w ignore verify_checksums and default to
// checksum verification anyway when creating the index and filter
// readers.
ReadOptions ro;
ro.deadline = read_options.deadline;
ro.io_timeout = read_options.io_timeout;
Set Read rate limiter priority dynamically and pass it to FS (#9996) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. ### Solution User, Flush, and Compaction reads share some code path. For this task, we update the rate_limiter_priority in ReadOptions for code paths (e.g. FindTable (mainly in BlockBasedTable::Open()) and various iterators), and eventually update the rate_limiter_priority in IOOptions for FSRandomAccessFile. **This PR is for the Read path.** The **Read:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush (verification read in BuildTable()) | IO_USER | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | | User | User provided | User provided | User provided | We will respect the read_options that the user provided and will not set it. The only sst read for Flush is the verification read in BuildTable(). It claims to be "regard as user read". **Details** 1. Set read_options.rate_limiter_priority dynamically: - User: Do not update the read_options. Use the read_options that the user provided. - Compaction: Update read_options in CompactionJob::ProcessKeyValueCompaction(). - Flush: Update read_options in BuildTable(). 2. Pass the rate limiter priority to FSRandomAccessFile functions: - After calling the FindTable(), read_options is passed through GetTableReader(table_cache.cc), BlockBasedTableFactory::NewTableReader(block_based_table_factory.cc), and BlockBasedTable::Open(). The Open() needs some updates for the ReadOptions variable and the updates are also needed for the called functions, including PrefetchTail(), PrepareIOOptions(), ReadFooterFromFile(), ReadMetaIndexblock(), ReadPropertiesBlock(), PrefetchIndexAndFilterBlocks(), and ReadRangeDelBlock(). - In RandomAccessFileReader, the functions to be updated include Read(), MultiRead(), ReadAsync(), and Prefetch(). - Update the downstream functions of NewIndexIterator(), NewDataBlockIterator(), and BlockBasedTableIterator(). ### Test Plans Add unit tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9996 Reviewed By: anand1976 Differential Revision: D36452483 Pulled By: gitbw95 fbshipit-source-id: 60978204a4f849bb9261cb78d9bc1cb56d6008cf
2022-05-18 19:41:44 -07:00
ro.rate_limiter_priority = read_options.rate_limiter_priority;
// prefetch both index and filters, down to all partitions
const bool prefetch_all = prefetch_index_and_filter_in_cache || level == 0;
const bool preload_all = !table_options.cache_index_and_filter_blocks;
if (!ioptions.allow_mmap_reads) {
s = PrefetchTail(ro, file.get(), file_size, force_direct_prefetch,
tail_prefetch_stats, prefetch_all, preload_all,
&prefetch_buffer);
// Return error in prefetch path to users.
if (!s.ok()) {
return s;
}
} else {
// Should not prefetch for mmap mode.
prefetch_buffer.reset(new FilePrefetchBuffer(
0 /* readahead_size */, 0 /* max_readahead_size */, false /* enable */,
true /* track_min_offset */));
}
// Read in the following order:
// 1. Footer
// 2. [metaindex block]
// 3. [meta block: properties]
// 4. [meta block: range deletion tombstone]
// 5. [meta block: compression dictionary]
// 6. [meta block: index]
// 7. [meta block: filter]
IOOptions opts;
s = file->PrepareIOOptions(ro, opts);
if (s.ok()) {
s = ReadFooterFromFile(opts, file.get(), prefetch_buffer.get(), file_size,
&footer, kBlockBasedTableMagicNumber);
}
if (!s.ok()) {
return s;
}
if (!IsSupportedFormatVersion(footer.format_version())) {
return Status::Corruption(
"Unknown Footer version. Maybe this file was created with newer "
"version of RocksDB?");
}
BlockCacheLookupContext lookup_context{TableReaderCaller::kPrefetch};
Rep* rep = new BlockBasedTable::Rep(ioptions, env_options, table_options,
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
internal_comparator, skip_filters,
file_size, level, immortal_table);
rep->file = std::move(file);
rep->footer = footer;
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
// We've successfully read the footer. We are ready to serve requests.
// Better not mutate rep_ after the creation. eg. internal_prefix_transform
// raw pointer will be used to create HashIndexReader, whose reset may
// access a dangling pointer.
// We need to wrap data with internal_prefix_transform to make sure it can
// handle prefix correctly.
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
// FIXME: is changed prefix_extractor handled anywhere for hash index?
if (prefix_extractor != nullptr) {
rep->internal_prefix_transform.reset(
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
new InternalKeySliceTransform(prefix_extractor.get()));
}
// For fully portable/stable cache keys, we need to read the properties
// block before setting up cache keys. TODO: consider setting up a bootstrap
// cache key for PersistentCache to use for metaindex and properties blocks.
rep->persistent_cache_options = PersistentCacheOptions();
// Meta-blocks are not dictionary compressed. Explicitly set the dictionary
// handle to null, otherwise it may be seen as uninitialized during the below
// meta-block reads.
rep->compression_dict_handle = BlockHandle::NullBlockHandle();
// Read metaindex
std::unique_ptr<BlockBasedTable> new_table(
new BlockBasedTable(rep, block_cache_tracer));
std::unique_ptr<Block> metaindex;
std::unique_ptr<InternalIterator> metaindex_iter;
s = new_table->ReadMetaIndexBlock(ro, prefetch_buffer.get(), &metaindex,
&metaindex_iter);
if (!s.ok()) {
return s;
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
// Populates table_properties and some fields that depend on it,
// such as index_type.
s = new_table->ReadPropertiesBlock(ro, prefetch_buffer.get(),
metaindex_iter.get(), largest_seqno);
if (!s.ok()) {
return s;
}
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
if (!PrefixExtractorChangedHelper(rep->table_properties.get(),
prefix_extractor.get())) {
// Establish fast path for unchanged prefix_extractor
rep->table_prefix_extractor = prefix_extractor;
} else {
// Current prefix_extractor doesn't match table
#ifndef ROCKSDB_LITE
if (rep->table_properties) {
//**TODO: If/When the DBOptions has a registry in it, the ConfigOptions
// will need to use it
ConfigOptions config_options;
Status st = SliceTransform::CreateFromString(
config_options, rep->table_properties->prefix_extractor_name,
&(rep->table_prefix_extractor));
if (!st.ok()) {
//**TODO: Should this be error be returned or swallowed?
ROCKS_LOG_ERROR(rep->ioptions.logger,
"Failed to create prefix extractor[%s]: %s",
rep->table_properties->prefix_extractor_name.c_str(),
st.ToString().c_str());
}
}
#endif // ROCKSDB_LITE
}
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
// With properties loaded, we can set up portable/stable cache keys
SetupBaseCacheKey(rep->table_properties.get(), cur_db_session_id,
cur_file_num, file_size, &rep->base_cache_key);
rep->persistent_cache_options =
PersistentCacheOptions(rep->table_options.persistent_cache,
rep->base_cache_key, rep->ioptions.stats);
s = new_table->ReadRangeDelBlock(ro, prefetch_buffer.get(),
metaindex_iter.get(), internal_comparator,
&lookup_context);
if (!s.ok()) {
return s;
}
s = new_table->PrefetchIndexAndFilterBlocks(
ro, prefetch_buffer.get(), metaindex_iter.get(), new_table.get(),
prefetch_all, table_options, level, file_size,
max_file_size_for_l0_meta_pin, &lookup_context);
if (s.ok()) {
// Update tail prefetch stats
assert(prefetch_buffer.get() != nullptr);
if (tail_prefetch_stats != nullptr) {
assert(prefetch_buffer->min_offset_read() < file_size);
tail_prefetch_stats->RecordEffectiveSize(
static_cast<size_t>(file_size) - prefetch_buffer->min_offset_read());
}
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
}
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
if (s.ok() && table_reader_cache_res_mgr) {
std::size_t mem_usage = new_table->ApproximateMemoryUsage();
s = table_reader_cache_res_mgr->MakeCacheReservation(
mem_usage, &(rep->table_reader_cache_res_handle));
if (s.IsIncomplete()) {
s = Status::MemoryLimit(
Rewrite memory-charging feature's option API (#9926) Summary: **Context:** Previous PR https://github.com/facebook/rocksdb/pull/9748, https://github.com/facebook/rocksdb/pull/9073, https://github.com/facebook/rocksdb/pull/8428 added separate flag for each charged memory area. Such API design is not scalable as we charge more and more memory areas. Also, we foresee an opportunity to consolidate this feature with other cache usage related features such as `cache_index_and_filter_blocks` using `CacheEntryRole`. Therefore we decided to consolidate all these flags with `CacheUsageOptions cache_usage_options` and this PR serves as the first step by consolidating memory-charging related flags. **Summary:** - Replaced old API reference with new ones, including making `kCompressionDictionaryBuildingBuffer` opt-out and added a unit test for that - Added missing db bench/stress test for some memory charging features - Renamed related test suite to indicate they are under the same theme of memory charging - Refactored a commonly used mocked cache component in memory charging related tests to reduce code duplication - Replaced the phrases "memory tracking" / "cache reservation" (other than CacheReservationManager-related ones) with "memory charging" for standard description of this feature. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9926 Test Plan: - New unit test for opt-out `kCompressionDictionaryBuildingBuffer` `TEST_F(ChargeCompressionDictionaryBuildingBufferTest, Basic)` - New unit test for option validation/sanitization `TEST_F(CacheUsageOptionsOverridesTest, SanitizeAndValidateOptions)` - CI - db bench (in case querying new options introduces regression) **+0.5% micros/op**: `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_compression_dictionary_building_buffer=1(remove this for comparison) -compression_max_dict_bytes=10000 -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 3.9711 | 0.264408 | 3.9914 | 0.254563 | 0.5111933721 20 | 3.83905 | 0.0664488 | 3.8251 | 0.0695456 | **-0.3633711465** 40 | 3.86625 | 0.136669 | 3.8867 | 0.143765 | **0.5289363078** - db_stress: `python3 tools/db_crashtest.py blackbox -charge_compression_dictionary_building_buffer=1 -charge_filter_construction=1 -charge_table_reader=1 -cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D36054712 Pulled By: hx235 fbshipit-source-id: d406e90f5e0c5ea4dbcb585a484ad9302d4302af
2022-05-17 15:01:51 -07:00
"Can't allocate " +
kCacheEntryRoleToCamelString[static_cast<std::uint32_t>(
CacheEntryRole::kBlockBasedTableReader)] +
" due to memory limit based on "
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
"cache capacity for memory allocation");
}
}
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
if (s.ok()) {
*table_reader = std::move(new_table);
}
return s;
}
Status BlockBasedTable::PrefetchTail(
const ReadOptions& ro, RandomAccessFileReader* file, uint64_t file_size,
bool force_direct_prefetch, TailPrefetchStats* tail_prefetch_stats,
const bool prefetch_all, const bool preload_all,
std::unique_ptr<FilePrefetchBuffer>* prefetch_buffer) {
size_t tail_prefetch_size = 0;
if (tail_prefetch_stats != nullptr) {
// Multiple threads may get a 0 (no history) when running in parallel,
// but it will get cleared after the first of them finishes.
tail_prefetch_size = tail_prefetch_stats->GetSuggestedPrefetchSize();
}
if (tail_prefetch_size == 0) {
// Before read footer, readahead backwards to prefetch data. Do more
// readahead if we're going to read index/filter.
// TODO: This may incorrectly select small readahead in case partitioned
// index/filter is enabled and top-level partition pinning is enabled.
// That's because we need to issue readahead before we read the properties,
// at which point we don't yet know the index type.
tail_prefetch_size = prefetch_all || preload_all ? 512 * 1024 : 4 * 1024;
}
size_t prefetch_off;
size_t prefetch_len;
if (file_size < tail_prefetch_size) {
prefetch_off = 0;
prefetch_len = static_cast<size_t>(file_size);
} else {
prefetch_off = static_cast<size_t>(file_size - tail_prefetch_size);
prefetch_len = tail_prefetch_size;
}
TEST_SYNC_POINT_CALLBACK("BlockBasedTable::Open::TailPrefetchLen",
&tail_prefetch_size);
// Try file system prefetch
if (!file->use_direct_io() && !force_direct_prefetch) {
Set Read rate limiter priority dynamically and pass it to FS (#9996) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. ### Solution User, Flush, and Compaction reads share some code path. For this task, we update the rate_limiter_priority in ReadOptions for code paths (e.g. FindTable (mainly in BlockBasedTable::Open()) and various iterators), and eventually update the rate_limiter_priority in IOOptions for FSRandomAccessFile. **This PR is for the Read path.** The **Read:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush (verification read in BuildTable()) | IO_USER | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | | User | User provided | User provided | User provided | We will respect the read_options that the user provided and will not set it. The only sst read for Flush is the verification read in BuildTable(). It claims to be "regard as user read". **Details** 1. Set read_options.rate_limiter_priority dynamically: - User: Do not update the read_options. Use the read_options that the user provided. - Compaction: Update read_options in CompactionJob::ProcessKeyValueCompaction(). - Flush: Update read_options in BuildTable(). 2. Pass the rate limiter priority to FSRandomAccessFile functions: - After calling the FindTable(), read_options is passed through GetTableReader(table_cache.cc), BlockBasedTableFactory::NewTableReader(block_based_table_factory.cc), and BlockBasedTable::Open(). The Open() needs some updates for the ReadOptions variable and the updates are also needed for the called functions, including PrefetchTail(), PrepareIOOptions(), ReadFooterFromFile(), ReadMetaIndexblock(), ReadPropertiesBlock(), PrefetchIndexAndFilterBlocks(), and ReadRangeDelBlock(). - In RandomAccessFileReader, the functions to be updated include Read(), MultiRead(), ReadAsync(), and Prefetch(). - Update the downstream functions of NewIndexIterator(), NewDataBlockIterator(), and BlockBasedTableIterator(). ### Test Plans Add unit tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9996 Reviewed By: anand1976 Differential Revision: D36452483 Pulled By: gitbw95 fbshipit-source-id: 60978204a4f849bb9261cb78d9bc1cb56d6008cf
2022-05-18 19:41:44 -07:00
if (!file->Prefetch(prefetch_off, prefetch_len, ro.rate_limiter_priority)
.IsNotSupported()) {
prefetch_buffer->reset(new FilePrefetchBuffer(
0 /* readahead_size */, 0 /* max_readahead_size */,
false /* enable */, true /* track_min_offset */));
return Status::OK();
}
}
// Use `FilePrefetchBuffer`
prefetch_buffer->reset(
new FilePrefetchBuffer(0 /* readahead_size */, 0 /* max_readahead_size */,
true /* enable */, true /* track_min_offset */));
Set Read rate limiter priority dynamically and pass it to FS (#9996) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. ### Solution User, Flush, and Compaction reads share some code path. For this task, we update the rate_limiter_priority in ReadOptions for code paths (e.g. FindTable (mainly in BlockBasedTable::Open()) and various iterators), and eventually update the rate_limiter_priority in IOOptions for FSRandomAccessFile. **This PR is for the Read path.** The **Read:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush (verification read in BuildTable()) | IO_USER | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | | User | User provided | User provided | User provided | We will respect the read_options that the user provided and will not set it. The only sst read for Flush is the verification read in BuildTable(). It claims to be "regard as user read". **Details** 1. Set read_options.rate_limiter_priority dynamically: - User: Do not update the read_options. Use the read_options that the user provided. - Compaction: Update read_options in CompactionJob::ProcessKeyValueCompaction(). - Flush: Update read_options in BuildTable(). 2. Pass the rate limiter priority to FSRandomAccessFile functions: - After calling the FindTable(), read_options is passed through GetTableReader(table_cache.cc), BlockBasedTableFactory::NewTableReader(block_based_table_factory.cc), and BlockBasedTable::Open(). The Open() needs some updates for the ReadOptions variable and the updates are also needed for the called functions, including PrefetchTail(), PrepareIOOptions(), ReadFooterFromFile(), ReadMetaIndexblock(), ReadPropertiesBlock(), PrefetchIndexAndFilterBlocks(), and ReadRangeDelBlock(). - In RandomAccessFileReader, the functions to be updated include Read(), MultiRead(), ReadAsync(), and Prefetch(). - Update the downstream functions of NewIndexIterator(), NewDataBlockIterator(), and BlockBasedTableIterator(). ### Test Plans Add unit tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9996 Reviewed By: anand1976 Differential Revision: D36452483 Pulled By: gitbw95 fbshipit-source-id: 60978204a4f849bb9261cb78d9bc1cb56d6008cf
2022-05-18 19:41:44 -07:00
IOOptions opts;
Status s = file->PrepareIOOptions(ro, opts);
if (s.ok()) {
Add rate limiter priority to ReadOptions (#9424) Summary: Users can set the priority for file reads associated with their operation by setting `ReadOptions::rate_limiter_priority` to something other than `Env::IO_TOTAL`. Rate limiting `VerifyChecksum()` and `VerifyFileChecksums()` is the motivation for this PR, so it also includes benchmarks and minor bug fixes to get that working. `RandomAccessFileReader::Read()` already had support for rate limiting compaction reads. I changed that rate limiting to be non-specific to compaction, but rather performed according to the passed in `Env::IOPriority`. Now the compaction read rate limiting is supported by setting `rate_limiter_priority = Env::IO_LOW` on its `ReadOptions`. There is no default value for the new `Env::IOPriority` parameter to `RandomAccessFileReader::Read()`. That means this PR goes through all callers (in some cases multiple layers up the call stack) to find a `ReadOptions` to provide the priority. There are TODOs for cases I believe it would be good to let user control the priority some day (e.g., file footer reads), and no TODO in cases I believe it doesn't matter (e.g., trace file reads). The API doc only lists the missing cases where a file read associated with a provided `ReadOptions` cannot be rate limited. For cases like file ingestion checksum calculation, there is no API to provide `ReadOptions` or `Env::IOPriority`, so I didn't count that as missing. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9424 Test Plan: - new unit tests - new benchmarks on ~50MB database with 1MB/s read rate limit and 100ms refill interval; verified with strace reads are chunked (at 0.1MB per chunk) and spaced roughly 100ms apart. - setup command: `./db_bench -benchmarks=fillrandom,compact -db=/tmp/testdb -target_file_size_base=1048576 -disable_auto_compactions=true -file_checksum=true` - benchmarks command: `strace -ttfe pread64 ./db_bench -benchmarks=verifychecksum,verifyfilechecksums -use_existing_db=true -db=/tmp/testdb -rate_limiter_bytes_per_sec=1048576 -rate_limit_bg_reads=1 -rate_limit_user_ops=true -file_checksum=true` - crash test using IO_USER priority on non-validation reads with https://github.com/facebook/rocksdb/issues/9567 reverted: `python3 tools/db_crashtest.py blackbox --max_key=1000000 --write_buffer_size=524288 --target_file_size_base=524288 --level_compaction_dynamic_level_bytes=true --duration=3600 --rate_limit_bg_reads=true --rate_limit_user_ops=true --rate_limiter_bytes_per_sec=10485760 --interval=10` Reviewed By: hx235 Differential Revision: D33747386 Pulled By: ajkr fbshipit-source-id: a2d985e97912fba8c54763798e04f006ccc56e0c
2022-02-16 23:17:03 -08:00
s = (*prefetch_buffer)
->Prefetch(opts, file, prefetch_off, prefetch_len,
ro.rate_limiter_priority);
}
return s;
}
Status BlockBasedTable::ReadPropertiesBlock(
const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer,
InternalIterator* meta_iter, const SequenceNumber largest_seqno) {
Status s;
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
BlockHandle handle;
s = FindOptionalMetaBlock(meta_iter, kPropertiesBlockName, &handle);
if (!s.ok()) {
ROCKS_LOG_WARN(rep_->ioptions.logger,
"Error when seeking to properties block from file: %s",
s.ToString().c_str());
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
} else if (!handle.IsNull()) {
s = meta_iter->status();
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
std::unique_ptr<TableProperties> table_properties;
if (s.ok()) {
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
s = ReadTablePropertiesHelper(
ro, handle, rep_->file.get(), prefetch_buffer, rep_->footer,
rep_->ioptions, &table_properties, nullptr /* memory_allocator */);
}
IGNORE_STATUS_IF_ERROR(s);
if (!s.ok()) {
ROCKS_LOG_WARN(rep_->ioptions.logger,
"Encountered error while reading data from properties "
"block %s",
s.ToString().c_str());
} else {
assert(table_properties != nullptr);
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
rep_->table_properties = std::move(table_properties);
rep_->blocks_maybe_compressed =
rep_->table_properties->compression_name !=
CompressionTypeToString(kNoCompression);
rep_->blocks_definitely_zstd_compressed =
(rep_->table_properties->compression_name ==
CompressionTypeToString(kZSTD) ||
rep_->table_properties->compression_name ==
CompressionTypeToString(kZSTDNotFinalCompression));
}
} else {
ROCKS_LOG_ERROR(rep_->ioptions.logger,
"Cannot find Properties block from file.");
}
// Read the table properties, if provided.
if (rep_->table_properties) {
rep_->whole_key_filtering &=
IsFeatureSupported(*(rep_->table_properties),
BlockBasedTablePropertyNames::kWholeKeyFiltering,
rep_->ioptions.logger);
rep_->prefix_filtering &= IsFeatureSupported(
*(rep_->table_properties),
BlockBasedTablePropertyNames::kPrefixFiltering, rep_->ioptions.logger);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
rep_->index_key_includes_seq =
rep_->table_properties->index_key_is_user_key == 0;
rep_->index_value_is_full =
rep_->table_properties->index_value_is_delta_encoded == 0;
// Update index_type with the true type.
// If table properties don't contain index type, we assume that the table
// is in very old format and has kBinarySearch index type.
auto& props = rep_->table_properties->user_collected_properties;
auto pos = props.find(BlockBasedTablePropertyNames::kIndexType);
if (pos != props.end()) {
rep_->index_type = static_cast<BlockBasedTableOptions::IndexType>(
DecodeFixed32(pos->second.c_str()));
}
rep_->index_has_first_key =
rep_->index_type == BlockBasedTableOptions::kBinarySearchWithFirstKey;
s = GetGlobalSequenceNumber(*(rep_->table_properties), largest_seqno,
&(rep_->global_seqno));
if (!s.ok()) {
ROCKS_LOG_ERROR(rep_->ioptions.logger, "%s", s.ToString().c_str());
}
}
return s;
}
Status BlockBasedTable::ReadRangeDelBlock(
const ReadOptions& read_options, FilePrefetchBuffer* prefetch_buffer,
InternalIterator* meta_iter,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
const InternalKeyComparator& internal_comparator,
BlockCacheLookupContext* lookup_context) {
Status s;
BlockHandle range_del_handle;
s = FindOptionalMetaBlock(meta_iter, kRangeDelBlockName, &range_del_handle);
if (!s.ok()) {
ROCKS_LOG_WARN(
rep_->ioptions.logger,
"Error when seeking to range delete tombstones block from file: %s",
s.ToString().c_str());
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
} else if (!range_del_handle.IsNull()) {
std::unique_ptr<InternalIterator> iter(NewDataBlockIterator<DataBlockIter>(
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
read_options, range_del_handle,
/*input_iter=*/nullptr, BlockType::kRangeDeletion,
/*get_context=*/nullptr, lookup_context, Status(), prefetch_buffer));
assert(iter != nullptr);
s = iter->status();
Cache fragmented range tombstones in BlockBasedTableReader (#4493) Summary: This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses. On the same DB used in #4449, running `readrandom` results in the following: ``` readrandom : 0.983 micros/op 1017076 ops/sec; 78.3 MB/s (63103 of 100000 found) ``` Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results): ``` Tombstones? | avg micros/op | stddev micros/op | avg ops/s | stddev ops/s ----------------- | ------------- | ---------------- | ------------ | ------------ None | 0.6186 | 0.04637 | 1,625,252.90 | 124,679.41 500 Expanded | 0.6019 | 0.03628 | 1,666,670.40 | 101,142.65 500 Unexpanded | 0.6435 | 0.03994 | 1,559,979.40 | 104,090.52 1k Expanded | 0.6034 | 0.04349 | 1,665,128.10 | 125,144.57 1k Unexpanded | 0.6261 | 0.03093 | 1,600,457.50 | 79,024.94 5k Expanded | 0.6163 | 0.05926 | 1,636,668.80 | 154,888.85 5k Unexpanded | 0.6402 | 0.04002 | 1,567,804.70 | 100,965.55 10k Expanded | 0.6036 | 0.05105 | 1,667,237.70 | 142,830.36 10k Unexpanded | 0.6128 | 0.02598 | 1,634,633.40 | 72,161.82 25k Expanded | 0.6198 | 0.04542 | 1,620,980.50 | 116,662.93 25k Unexpanded | 0.5478 | 0.0362 | 1,833,059.10 | 121,233.81 50k Expanded | 0.5104 | 0.04347 | 1,973,107.90 | 184,073.49 50k Unexpanded | 0.4528 | 0.03387 | 2,219,034.50 | 170,984.32 ``` After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493 Differential Revision: D10842844 Pulled By: abhimadan fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
2018-10-25 19:25:00 -07:00
if (!s.ok()) {
ROCKS_LOG_WARN(
rep_->ioptions.logger,
Cache fragmented range tombstones in BlockBasedTableReader (#4493) Summary: This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses. On the same DB used in #4449, running `readrandom` results in the following: ``` readrandom : 0.983 micros/op 1017076 ops/sec; 78.3 MB/s (63103 of 100000 found) ``` Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results): ``` Tombstones? | avg micros/op | stddev micros/op | avg ops/s | stddev ops/s ----------------- | ------------- | ---------------- | ------------ | ------------ None | 0.6186 | 0.04637 | 1,625,252.90 | 124,679.41 500 Expanded | 0.6019 | 0.03628 | 1,666,670.40 | 101,142.65 500 Unexpanded | 0.6435 | 0.03994 | 1,559,979.40 | 104,090.52 1k Expanded | 0.6034 | 0.04349 | 1,665,128.10 | 125,144.57 1k Unexpanded | 0.6261 | 0.03093 | 1,600,457.50 | 79,024.94 5k Expanded | 0.6163 | 0.05926 | 1,636,668.80 | 154,888.85 5k Unexpanded | 0.6402 | 0.04002 | 1,567,804.70 | 100,965.55 10k Expanded | 0.6036 | 0.05105 | 1,667,237.70 | 142,830.36 10k Unexpanded | 0.6128 | 0.02598 | 1,634,633.40 | 72,161.82 25k Expanded | 0.6198 | 0.04542 | 1,620,980.50 | 116,662.93 25k Unexpanded | 0.5478 | 0.0362 | 1,833,059.10 | 121,233.81 50k Expanded | 0.5104 | 0.04347 | 1,973,107.90 | 184,073.49 50k Unexpanded | 0.4528 | 0.03387 | 2,219,034.50 | 170,984.32 ``` After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493 Differential Revision: D10842844 Pulled By: abhimadan fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
2018-10-25 19:25:00 -07:00
"Encountered error while reading data from range del block %s",
s.ToString().c_str());
IGNORE_STATUS_IF_ERROR(s);
} else {
rep_->fragmented_range_dels =
std::make_shared<FragmentedRangeTombstoneList>(std::move(iter),
internal_comparator);
}
}
return s;
}
Status BlockBasedTable::PrefetchIndexAndFilterBlocks(
const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer,
InternalIterator* meta_iter, BlockBasedTable* new_table, bool prefetch_all,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
const BlockBasedTableOptions& table_options, const int level,
size_t file_size, size_t max_file_size_for_l0_meta_pin,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
BlockCacheLookupContext* lookup_context) {
// Find filter handle and filter type
if (rep_->filter_policy) {
Fix a major performance bug in 7.0 re: filter compatibility (#9736) Summary: Bloom filters generated by pre-7.0 releases are not read by 7.0.x releases (and vice-versa) due to changes to FilterPolicy::Name() in https://github.com/facebook/rocksdb/issues/9590. This can severely impact read performance and read I/O on upgrade or downgrade with existing DB, but not data correctness. To fix, we go back using the old, unified name in SST metadata but (for a while anyway) recognize the aliases that could be generated by early 7.0.x releases. This unfortunately requires a public API change to avoid interfering with all the good changes from https://github.com/facebook/rocksdb/issues/9590, but the API change only affects users with custom FilterPolicy, which should be very few. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9736 Test Plan: manual Generate DBs with ``` ./db_bench.7.0 -db=/dev/shm/rocksdb.7.0 -bloom_bits=10 -cache_index_and_filter_blocks=1 -benchmarks=fillrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 ``` and similar. Compare with ``` for IMPL in 6.29 7.0 fixed; do for DB in 6.29 7.0 fixed; do echo "Testing $IMPL on $DB:"; ./db_bench.$IMPL -db=/dev/shm/rocksdb.$DB -use_existing_db -readonly -bloom_bits=10 -benchmarks=readrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -duration=10 2>&1 | grep micros/op; done; done ``` Results: ``` Testing 6.29 on 6.29: readrandom : 34.381 micros/op 29085 ops/sec; 3.2 MB/s (291999 of 291999 found) Testing 6.29 on 7.0: readrandom : 190.443 micros/op 5249 ops/sec; 0.6 MB/s (52999 of 52999 found) Testing 6.29 on fixed: readrandom : 40.148 micros/op 24907 ops/sec; 2.8 MB/s (249999 of 249999 found) Testing 7.0 on 6.29: readrandom : 229.430 micros/op 4357 ops/sec; 0.5 MB/s (43999 of 43999 found) Testing 7.0 on 7.0: readrandom : 33.348 micros/op 29986 ops/sec; 3.3 MB/s (299999 of 299999 found) Testing 7.0 on fixed: readrandom : 152.734 micros/op 6546 ops/sec; 0.7 MB/s (65999 of 65999 found) Testing fixed on 6.29: readrandom : 32.024 micros/op 31224 ops/sec; 3.5 MB/s (312999 of 312999 found) Testing fixed on 7.0: readrandom : 33.990 micros/op 29390 ops/sec; 3.3 MB/s (294999 of 294999 found) Testing fixed on fixed: readrandom : 28.714 micros/op 34825 ops/sec; 3.9 MB/s (348999 of 348999 found) ``` Just paying attention to order of magnitude of ops/sec (short test durations, lots of noise), it's clear that with the fix we can read <= 6.29 & >= 7.0 at full speed, where neither 6.29 nor 7.0 can on both. And 6.29 release can properly read fixed DB at full speed. Reviewed By: siying, ajkr Differential Revision: D35057844 Pulled By: pdillinger fbshipit-source-id: a46893a6af4bf084375ebe4728066d00eb08f050
2022-03-23 10:00:54 -07:00
auto name = rep_->filter_policy->CompatibilityName();
bool builtin_compatible =
strcmp(name, BuiltinFilterPolicy::kCompatibilityName()) == 0;
for (const auto& [filter_type, prefix] :
{std::make_pair(Rep::FilterType::kFullFilter, kFullFilterBlockPrefix),
std::make_pair(Rep::FilterType::kPartitionedFilter,
kPartitionedFilterBlockPrefix),
std::make_pair(Rep::FilterType::kBlockFilter, kFilterBlockPrefix)}) {
if (builtin_compatible) {
// This code is only here to deal with a hiccup in early 7.0.x where
// there was an unintentional name change in the SST files metadata.
// It should be OK to remove this in the future (late 2022) and just
// have the 'else' code.
// NOTE: the test:: names below are likely not needed but included
// out of caution
static const std::unordered_set<std::string> kBuiltinNameAndAliases = {
BuiltinFilterPolicy::kCompatibilityName(),
test::LegacyBloomFilterPolicy::kClassName(),
test::FastLocalBloomFilterPolicy::kClassName(),
test::Standard128RibbonFilterPolicy::kClassName(),
DeprecatedBlockBasedBloomFilterPolicy::kClassName(),
BloomFilterPolicy::kClassName(),
RibbonFilterPolicy::kClassName(),
};
// For efficiency, do a prefix seek and see if the first match is
// good.
meta_iter->Seek(prefix);
if (meta_iter->status().ok() && meta_iter->Valid()) {
Slice key = meta_iter->key();
if (key.starts_with(prefix)) {
key.remove_prefix(prefix.size());
if (kBuiltinNameAndAliases.find(key.ToString()) !=
kBuiltinNameAndAliases.end()) {
Slice v = meta_iter->value();
Status s = rep_->filter_handle.DecodeFrom(&v);
if (s.ok()) {
rep_->filter_type = filter_type;
break;
}
}
}
}
} else {
std::string filter_block_key = prefix + name;
if (FindMetaBlock(meta_iter, filter_block_key, &rep_->filter_handle)
.ok()) {
rep_->filter_type = filter_type;
break;
Fix a major performance bug in 7.0 re: filter compatibility (#9736) Summary: Bloom filters generated by pre-7.0 releases are not read by 7.0.x releases (and vice-versa) due to changes to FilterPolicy::Name() in https://github.com/facebook/rocksdb/issues/9590. This can severely impact read performance and read I/O on upgrade or downgrade with existing DB, but not data correctness. To fix, we go back using the old, unified name in SST metadata but (for a while anyway) recognize the aliases that could be generated by early 7.0.x releases. This unfortunately requires a public API change to avoid interfering with all the good changes from https://github.com/facebook/rocksdb/issues/9590, but the API change only affects users with custom FilterPolicy, which should be very few. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9736 Test Plan: manual Generate DBs with ``` ./db_bench.7.0 -db=/dev/shm/rocksdb.7.0 -bloom_bits=10 -cache_index_and_filter_blocks=1 -benchmarks=fillrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 ``` and similar. Compare with ``` for IMPL in 6.29 7.0 fixed; do for DB in 6.29 7.0 fixed; do echo "Testing $IMPL on $DB:"; ./db_bench.$IMPL -db=/dev/shm/rocksdb.$DB -use_existing_db -readonly -bloom_bits=10 -benchmarks=readrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -duration=10 2>&1 | grep micros/op; done; done ``` Results: ``` Testing 6.29 on 6.29: readrandom : 34.381 micros/op 29085 ops/sec; 3.2 MB/s (291999 of 291999 found) Testing 6.29 on 7.0: readrandom : 190.443 micros/op 5249 ops/sec; 0.6 MB/s (52999 of 52999 found) Testing 6.29 on fixed: readrandom : 40.148 micros/op 24907 ops/sec; 2.8 MB/s (249999 of 249999 found) Testing 7.0 on 6.29: readrandom : 229.430 micros/op 4357 ops/sec; 0.5 MB/s (43999 of 43999 found) Testing 7.0 on 7.0: readrandom : 33.348 micros/op 29986 ops/sec; 3.3 MB/s (299999 of 299999 found) Testing 7.0 on fixed: readrandom : 152.734 micros/op 6546 ops/sec; 0.7 MB/s (65999 of 65999 found) Testing fixed on 6.29: readrandom : 32.024 micros/op 31224 ops/sec; 3.5 MB/s (312999 of 312999 found) Testing fixed on 7.0: readrandom : 33.990 micros/op 29390 ops/sec; 3.3 MB/s (294999 of 294999 found) Testing fixed on fixed: readrandom : 28.714 micros/op 34825 ops/sec; 3.9 MB/s (348999 of 348999 found) ``` Just paying attention to order of magnitude of ops/sec (short test durations, lots of noise), it's clear that with the fix we can read <= 6.29 & >= 7.0 at full speed, where neither 6.29 nor 7.0 can on both. And 6.29 release can properly read fixed DB at full speed. Reviewed By: siying, ajkr Differential Revision: D35057844 Pulled By: pdillinger fbshipit-source-id: a46893a6af4bf084375ebe4728066d00eb08f050
2022-03-23 10:00:54 -07:00
}
}
}
}
// Partition filters cannot be enabled without partition indexes
assert(rep_->filter_type != Rep::FilterType::kPartitionedFilter ||
rep_->index_type == BlockBasedTableOptions::kTwoLevelIndexSearch);
// Find compression dictionary handle
Fix a major performance bug in 7.0 re: filter compatibility (#9736) Summary: Bloom filters generated by pre-7.0 releases are not read by 7.0.x releases (and vice-versa) due to changes to FilterPolicy::Name() in https://github.com/facebook/rocksdb/issues/9590. This can severely impact read performance and read I/O on upgrade or downgrade with existing DB, but not data correctness. To fix, we go back using the old, unified name in SST metadata but (for a while anyway) recognize the aliases that could be generated by early 7.0.x releases. This unfortunately requires a public API change to avoid interfering with all the good changes from https://github.com/facebook/rocksdb/issues/9590, but the API change only affects users with custom FilterPolicy, which should be very few. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9736 Test Plan: manual Generate DBs with ``` ./db_bench.7.0 -db=/dev/shm/rocksdb.7.0 -bloom_bits=10 -cache_index_and_filter_blocks=1 -benchmarks=fillrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 ``` and similar. Compare with ``` for IMPL in 6.29 7.0 fixed; do for DB in 6.29 7.0 fixed; do echo "Testing $IMPL on $DB:"; ./db_bench.$IMPL -db=/dev/shm/rocksdb.$DB -use_existing_db -readonly -bloom_bits=10 -benchmarks=readrandom -num=10000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -duration=10 2>&1 | grep micros/op; done; done ``` Results: ``` Testing 6.29 on 6.29: readrandom : 34.381 micros/op 29085 ops/sec; 3.2 MB/s (291999 of 291999 found) Testing 6.29 on 7.0: readrandom : 190.443 micros/op 5249 ops/sec; 0.6 MB/s (52999 of 52999 found) Testing 6.29 on fixed: readrandom : 40.148 micros/op 24907 ops/sec; 2.8 MB/s (249999 of 249999 found) Testing 7.0 on 6.29: readrandom : 229.430 micros/op 4357 ops/sec; 0.5 MB/s (43999 of 43999 found) Testing 7.0 on 7.0: readrandom : 33.348 micros/op 29986 ops/sec; 3.3 MB/s (299999 of 299999 found) Testing 7.0 on fixed: readrandom : 152.734 micros/op 6546 ops/sec; 0.7 MB/s (65999 of 65999 found) Testing fixed on 6.29: readrandom : 32.024 micros/op 31224 ops/sec; 3.5 MB/s (312999 of 312999 found) Testing fixed on 7.0: readrandom : 33.990 micros/op 29390 ops/sec; 3.3 MB/s (294999 of 294999 found) Testing fixed on fixed: readrandom : 28.714 micros/op 34825 ops/sec; 3.9 MB/s (348999 of 348999 found) ``` Just paying attention to order of magnitude of ops/sec (short test durations, lots of noise), it's clear that with the fix we can read <= 6.29 & >= 7.0 at full speed, where neither 6.29 nor 7.0 can on both. And 6.29 release can properly read fixed DB at full speed. Reviewed By: siying, ajkr Differential Revision: D35057844 Pulled By: pdillinger fbshipit-source-id: a46893a6af4bf084375ebe4728066d00eb08f050
2022-03-23 10:00:54 -07:00
Status s = FindOptionalMetaBlock(meta_iter, kCompressionDictBlockName,
&rep_->compression_dict_handle);
if (!s.ok()) {
return s;
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockBasedTableOptions::IndexType index_type = rep_->index_type;
const bool use_cache = table_options.cache_index_and_filter_blocks;
const bool maybe_flushed =
level == 0 && file_size <= max_file_size_for_l0_meta_pin;
std::function<bool(PinningTier, PinningTier)> is_pinned =
[maybe_flushed, &is_pinned](PinningTier pinning_tier,
PinningTier fallback_pinning_tier) {
// Fallback to fallback would lead to infinite recursion. Disallow it.
assert(fallback_pinning_tier != PinningTier::kFallback);
switch (pinning_tier) {
case PinningTier::kFallback:
return is_pinned(fallback_pinning_tier,
PinningTier::kNone /* fallback_pinning_tier */);
case PinningTier::kNone:
return false;
case PinningTier::kFlushedAndSimilar:
return maybe_flushed;
case PinningTier::kAll:
return true;
};
// In GCC, this is needed to suppress `control reaches end of non-void
// function [-Werror=return-type]`.
assert(false);
return false;
};
const bool pin_top_level_index = is_pinned(
table_options.metadata_cache_options.top_level_index_pinning,
table_options.pin_top_level_index_and_filter ? PinningTier::kAll
: PinningTier::kNone);
const bool pin_partition =
is_pinned(table_options.metadata_cache_options.partition_pinning,
table_options.pin_l0_filter_and_index_blocks_in_cache
? PinningTier::kFlushedAndSimilar
: PinningTier::kNone);
const bool pin_unpartitioned =
is_pinned(table_options.metadata_cache_options.unpartitioned_pinning,
table_options.pin_l0_filter_and_index_blocks_in_cache
? PinningTier::kFlushedAndSimilar
: PinningTier::kNone);
// pin the first level of index
const bool pin_index =
index_type == BlockBasedTableOptions::kTwoLevelIndexSearch
? pin_top_level_index
: pin_unpartitioned;
// prefetch the first level of index
// WART: this might be redundant (unnecessary cache hit) if !pin_index,
// depending on prepopulate_block_cache option
const bool prefetch_index = prefetch_all || pin_index;
std::unique_ptr<IndexReader> index_reader;
s = new_table->CreateIndexReader(ro, prefetch_buffer, meta_iter, use_cache,
prefetch_index, pin_index, lookup_context,
&index_reader);
if (!s.ok()) {
return s;
}
rep_->index_reader = std::move(index_reader);
// The partitions of partitioned index are always stored in cache. They
// are hence follow the configuration for pin and prefetch regardless of
// the value of cache_index_and_filter_blocks
if (prefetch_all || pin_partition) {
s = rep_->index_reader->CacheDependencies(ro, pin_partition);
}
if (!s.ok()) {
return s;
}
// pin the first level of filter
const bool pin_filter =
rep_->filter_type == Rep::FilterType::kPartitionedFilter
? pin_top_level_index
: pin_unpartitioned;
// prefetch the first level of filter
// WART: this might be redundant (unnecessary cache hit) if !pin_filter,
// depending on prepopulate_block_cache option
const bool prefetch_filter = prefetch_all || pin_filter;
if (rep_->filter_policy) {
auto filter = new_table->CreateFilterBlockReader(
ro, prefetch_buffer, use_cache, prefetch_filter, pin_filter,
lookup_context);
if (filter) {
// Refer to the comment above about paritioned indexes always being cached
if (prefetch_all || pin_partition) {
s = filter->CacheDependencies(ro, pin_partition);
if (!s.ok()) {
return s;
}
}
rep_->filter = std::move(filter);
}
}
if (!rep_->compression_dict_handle.IsNull()) {
std::unique_ptr<UncompressionDictReader> uncompression_dict_reader;
s = UncompressionDictReader::Create(
this, ro, prefetch_buffer, use_cache, prefetch_all || pin_unpartitioned,
pin_unpartitioned, lookup_context, &uncompression_dict_reader);
if (!s.ok()) {
return s;
}
rep_->uncompression_dict_reader = std::move(uncompression_dict_reader);
}
assert(s.ok());
return s;
}
void BlockBasedTable::SetupForCompaction() {
switch (rep_->ioptions.access_hint_on_compaction_start) {
case Options::NONE:
break;
case Options::NORMAL:
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:47:08 -08:00
rep_->file->file()->Hint(FSRandomAccessFile::kNormal);
break;
case Options::SEQUENTIAL:
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:47:08 -08:00
rep_->file->file()->Hint(FSRandomAccessFile::kSequential);
break;
case Options::WILLNEED:
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:47:08 -08:00
rep_->file->file()->Hint(FSRandomAccessFile::kWillNeed);
break;
default:
assert(false);
}
}
std::shared_ptr<const TableProperties> BlockBasedTable::GetTableProperties()
const {
return rep_->table_properties;
}
size_t BlockBasedTable::ApproximateMemoryUsage() const {
size_t usage = 0;
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
if (rep_) {
usage += rep_->ApproximateMemoryUsage();
} else {
return usage;
}
if (rep_->filter) {
usage += rep_->filter->ApproximateMemoryUsage();
}
if (rep_->index_reader) {
usage += rep_->index_reader->ApproximateMemoryUsage();
}
if (rep_->uncompression_dict_reader) {
usage += rep_->uncompression_dict_reader->ApproximateMemoryUsage();
}
Account memory of big memory users in BlockBasedTable in global memory limit (#9748) Summary: **Context:** Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation. **Summary:** - Approximate big memory users (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary) - Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between - Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable used in this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748 Test Plan: - New unit tests - db bench: `OpenDb` : **-0.52% in ms** - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576` - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`: `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'` #-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%) -- | -- | -- | -- | -- | -- 10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694 20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536 40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155 80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632 160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389 320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031** 640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741** - db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op** `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'` #-run | (pre-PR) avg micros/op | std micros/op | (post-PR) avg micros/op | std micros/op | change (%) -- | -- | -- | -- | -- | -- 10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602 20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605 40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461** 80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432** - filter bench: `bloom filter`: **-0.78% in ms/key** - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'` #-run | (pre-PR) avg ns/key | std ns/key | (post-PR) ns/key | std ns/key | change (%) -- | -- | -- | -- | -- | -- 10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565** 20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262** - Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal Reviewed By: ajkr Differential Revision: D35136549 Pulled By: hx235 fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
if (rep_->table_properties) {
usage += rep_->table_properties->ApproximateMemoryUsage();
}
return usage;
}
// Load the meta-index-block from the file. On success, return the loaded
// metaindex
// block and its iterator.
Status BlockBasedTable::ReadMetaIndexBlock(
const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer,
std::unique_ptr<Block>* metaindex_block,
std::unique_ptr<InternalIterator>* iter) {
// TODO(sanjay): Skip this if footer.metaindex_handle() size indicates
// it is an empty block.
std::unique_ptr<Block> metaindex;
Status s = ReadBlockFromFile(
rep_->file.get(), prefetch_buffer, rep_->footer, ro,
rep_->footer.metaindex_handle(), &metaindex, rep_->ioptions,
true /* decompress */, true /*maybe_compressed*/, BlockType::kMetaIndex,
UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options,
0 /* read_amp_bytes_per_bit */, GetMemoryAllocator(rep_->table_options),
false /* for_compaction */, rep_->blocks_definitely_zstd_compressed,
nullptr /* filter_policy */);
if (!s.ok()) {
ROCKS_LOG_ERROR(rep_->ioptions.logger,
"Encountered error while reading data from properties"
" block %s",
s.ToString().c_str());
return s;
}
*metaindex_block = std::move(metaindex);
// meta block uses bytewise comparator.
iter->reset(metaindex_block->get()->NewMetaIterator());
return Status::OK();
}
template <typename TBlocklike>
Status BlockBasedTable::GetDataBlockFromCache(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
const Slice& cache_key, Cache* block_cache, Cache* block_cache_compressed,
const ReadOptions& read_options, CachableEntry<TBlocklike>* block,
const UncompressionDict& uncompression_dict, BlockType block_type,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
const bool wait, GetContext* get_context) const {
const size_t read_amp_bytes_per_bit =
block_type == BlockType::kData
? rep_->table_options.read_amp_bytes_per_bit
: 0;
assert(block);
assert(block->IsEmpty());
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
const Cache::Priority priority =
rep_->table_options.cache_index_and_filter_blocks_with_high_priority &&
(block_type == BlockType::kFilter ||
block_type == BlockType::kCompressionDictionary ||
block_type == BlockType::kIndex)
? Cache::Priority::HIGH
: Cache::Priority::LOW;
Status s;
BlockContents* compressed_block = nullptr;
Cache::Handle* block_cache_compressed_handle = nullptr;
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
Statistics* statistics = rep_->ioptions.statistics.get();
bool using_zstd = rep_->blocks_definitely_zstd_compressed;
const FilterPolicy* filter_policy = rep_->filter_policy;
Cache::CreateCallback create_cb = GetCreateCallback<TBlocklike>(
read_amp_bytes_per_bit, statistics, using_zstd, filter_policy);
// Lookup uncompressed cache first
if (block_cache != nullptr) {
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
assert(!cache_key.empty());
Cache::Handle* cache_handle = nullptr;
cache_handle = GetEntryFromCache(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
rep_->ioptions.lowest_used_cache_tier, block_cache, cache_key,
block_type, wait, get_context,
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
BlocklikeTraits<TBlocklike>::GetCacheItemHelper(block_type), create_cb,
priority);
if (cache_handle != nullptr) {
block->SetCachedValue(
reinterpret_cast<TBlocklike*>(block_cache->Value(cache_handle)),
block_cache, cache_handle);
return s;
}
}
// If not found, search from the compressed block cache.
assert(block->IsEmpty());
if (block_cache_compressed == nullptr) {
return s;
}
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
assert(!cache_key.empty());
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
BlockContents contents;
if (rep_->ioptions.lowest_used_cache_tier ==
CacheTier::kNonVolatileBlockTier) {
Cache::CreateCallback create_cb_special = GetCreateCallback<BlockContents>(
read_amp_bytes_per_bit, statistics, using_zstd, filter_policy);
block_cache_compressed_handle = block_cache_compressed->Lookup(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
cache_key,
BlocklikeTraits<BlockContents>::GetCacheItemHelper(block_type),
create_cb_special, priority, true);
} else {
block_cache_compressed_handle =
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
block_cache_compressed->Lookup(cache_key, statistics);
}
// if we found in the compressed cache, then uncompress and insert into
// uncompressed cache
if (block_cache_compressed_handle == nullptr) {
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS);
return s;
}
// found compressed block
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_HIT);
compressed_block = reinterpret_cast<BlockContents*>(
block_cache_compressed->Value(block_cache_compressed_handle));
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
CompressionType compression_type = GetBlockCompressionType(*compressed_block);
assert(compression_type != kNoCompression);
// Retrieve the uncompressed contents into a new buffer
UncompressionContext context(compression_type);
UncompressionInfo info(context, uncompression_dict, compression_type);
s = UncompressBlockContents(
info, compressed_block->data.data(), compressed_block->data.size(),
&contents, rep_->table_options.format_version, rep_->ioptions,
GetMemoryAllocator(rep_->table_options));
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
// Insert uncompressed block into block cache, the priority is based on the
// data block type.
if (s.ok()) {
std::unique_ptr<TBlocklike> block_holder(
BlocklikeTraits<TBlocklike>::Create(
std::move(contents), read_amp_bytes_per_bit, statistics,
Store the filter bits reader alongside the filter block contents (#5936) Summary: Amongst other things, PR https://github.com/facebook/rocksdb/issues/5504 refactored the filter block readers so that only the filter block contents are stored in the block cache (as opposed to the earlier design where the cache stored the filter block reader itself, leading to potentially dangling pointers and concurrency bugs). However, this change introduced a performance hit since with the new code, the metadata fields are re-parsed upon every access. This patch reunites the block contents with the filter bits reader to eliminate this overhead; since this is still a self-contained pure data object, it is safe to store it in the cache. (Note: this is similar to how the zstd digest is handled.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5936 Test Plan: make asan_check filter_bench results for the old code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.7153 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.4258 Single filter ns/op: 42.5974 Random filter ns/op: 217.861 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.4217 Single filter ns/op: 50.9855 Random filter ns/op: 219.167 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5172 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 32.3556 Single filter ns/op: 83.2239 Random filter ns/op: 370.676 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.2265 Single filter ns/op: 93.5651 Random filter ns/op: 408.393 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` With the new code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 25.4285 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 31.0594 Single filter ns/op: 43.8974 Random filter ns/op: 226.075 ---------------------------- Outside queries... Dry run (25d) ns/op: 31.0295 Single filter ns/op: 50.3824 Random filter ns/op: 226.805 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5308 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.2968 Single filter ns/op: 58.6163 Random filter ns/op: 291.434 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.1839 Single filter ns/op: 66.9039 Random filter ns/op: 292.828 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` Differential Revision: D17991712 Pulled By: ltamasi fbshipit-source-id: 7ea205550217bfaaa1d5158ebd658e5832e60f29
2019-10-18 19:30:47 -07:00
rep_->blocks_definitely_zstd_compressed,
rep_->table_options.filter_policy.get())); // uncompressed block
if (block_cache != nullptr && block_holder->own_bytes() &&
read_options.fill_cache) {
size_t charge = block_holder->ApproximateMemoryUsage();
Cache::Handle* cache_handle = nullptr;
s = InsertEntryToCache(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
rep_->ioptions.lowest_used_cache_tier, block_cache, cache_key,
BlocklikeTraits<TBlocklike>::GetCacheItemHelper(block_type),
block_holder, charge, &cache_handle, priority);
if (s.ok()) {
assert(cache_handle != nullptr);
block->SetCachedValue(block_holder.release(), block_cache,
cache_handle);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
UpdateCacheInsertionMetrics(block_type, get_context, charge,
s.IsOkOverwritten(), rep_->ioptions.stats);
} else {
RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES);
}
} else {
block->SetOwnedValue(block_holder.release());
}
}
// Release hold on compressed cache entry
block_cache_compressed->Release(block_cache_compressed_handle);
return s;
}
template <typename TBlocklike>
Status BlockBasedTable::PutDataBlockToCache(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
const Slice& cache_key, Cache* block_cache, Cache* block_cache_compressed,
CachableEntry<TBlocklike>* cached_block, BlockContents* raw_block_contents,
CompressionType raw_block_comp_type,
const UncompressionDict& uncompression_dict,
MemoryAllocator* memory_allocator, BlockType block_type,
GetContext* get_context) const {
const ImmutableOptions& ioptions = rep_->ioptions;
const uint32_t format_version = rep_->table_options.format_version;
const size_t read_amp_bytes_per_bit =
block_type == BlockType::kData
? rep_->table_options.read_amp_bytes_per_bit
: 0;
const Cache::Priority priority =
rep_->table_options.cache_index_and_filter_blocks_with_high_priority &&
(block_type == BlockType::kFilter ||
block_type == BlockType::kCompressionDictionary ||
block_type == BlockType::kIndex)
? Cache::Priority::HIGH
: Cache::Priority::LOW;
assert(cached_block);
assert(cached_block->IsEmpty());
Status s;
Statistics* statistics = ioptions.stats;
std::unique_ptr<TBlocklike> block_holder;
if (raw_block_comp_type != kNoCompression) {
// Retrieve the uncompressed contents into a new buffer
BlockContents uncompressed_block_contents;
UncompressionContext context(raw_block_comp_type);
UncompressionInfo info(context, uncompression_dict, raw_block_comp_type);
s = UncompressBlockContents(info, raw_block_contents->data.data(),
raw_block_contents->data.size(),
&uncompressed_block_contents, format_version,
ioptions, memory_allocator);
if (!s.ok()) {
return s;
}
block_holder.reset(BlocklikeTraits<TBlocklike>::Create(
std::move(uncompressed_block_contents), read_amp_bytes_per_bit,
Store the filter bits reader alongside the filter block contents (#5936) Summary: Amongst other things, PR https://github.com/facebook/rocksdb/issues/5504 refactored the filter block readers so that only the filter block contents are stored in the block cache (as opposed to the earlier design where the cache stored the filter block reader itself, leading to potentially dangling pointers and concurrency bugs). However, this change introduced a performance hit since with the new code, the metadata fields are re-parsed upon every access. This patch reunites the block contents with the filter bits reader to eliminate this overhead; since this is still a self-contained pure data object, it is safe to store it in the cache. (Note: this is similar to how the zstd digest is handled.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5936 Test Plan: make asan_check filter_bench results for the old code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.7153 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.4258 Single filter ns/op: 42.5974 Random filter ns/op: 217.861 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.4217 Single filter ns/op: 50.9855 Random filter ns/op: 219.167 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5172 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 32.3556 Single filter ns/op: 83.2239 Random filter ns/op: 370.676 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.2265 Single filter ns/op: 93.5651 Random filter ns/op: 408.393 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` With the new code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 25.4285 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 31.0594 Single filter ns/op: 43.8974 Random filter ns/op: 226.075 ---------------------------- Outside queries... Dry run (25d) ns/op: 31.0295 Single filter ns/op: 50.3824 Random filter ns/op: 226.805 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5308 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.2968 Single filter ns/op: 58.6163 Random filter ns/op: 291.434 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.1839 Single filter ns/op: 66.9039 Random filter ns/op: 292.828 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` Differential Revision: D17991712 Pulled By: ltamasi fbshipit-source-id: 7ea205550217bfaaa1d5158ebd658e5832e60f29
2019-10-18 19:30:47 -07:00
statistics, rep_->blocks_definitely_zstd_compressed,
rep_->table_options.filter_policy.get()));
} else {
block_holder.reset(BlocklikeTraits<TBlocklike>::Create(
std::move(*raw_block_contents), read_amp_bytes_per_bit, statistics,
rep_->blocks_definitely_zstd_compressed,
Store the filter bits reader alongside the filter block contents (#5936) Summary: Amongst other things, PR https://github.com/facebook/rocksdb/issues/5504 refactored the filter block readers so that only the filter block contents are stored in the block cache (as opposed to the earlier design where the cache stored the filter block reader itself, leading to potentially dangling pointers and concurrency bugs). However, this change introduced a performance hit since with the new code, the metadata fields are re-parsed upon every access. This patch reunites the block contents with the filter bits reader to eliminate this overhead; since this is still a self-contained pure data object, it is safe to store it in the cache. (Note: this is similar to how the zstd digest is handled.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5936 Test Plan: make asan_check filter_bench results for the old code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.7153 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.4258 Single filter ns/op: 42.5974 Random filter ns/op: 217.861 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.4217 Single filter ns/op: 50.9855 Random filter ns/op: 219.167 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5172 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 32.3556 Single filter ns/op: 83.2239 Random filter ns/op: 370.676 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.2265 Single filter ns/op: 93.5651 Random filter ns/op: 408.393 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` With the new code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 25.4285 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 31.0594 Single filter ns/op: 43.8974 Random filter ns/op: 226.075 ---------------------------- Outside queries... Dry run (25d) ns/op: 31.0295 Single filter ns/op: 50.3824 Random filter ns/op: 226.805 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5308 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.2968 Single filter ns/op: 58.6163 Random filter ns/op: 291.434 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.1839 Single filter ns/op: 66.9039 Random filter ns/op: 292.828 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` Differential Revision: D17991712 Pulled By: ltamasi fbshipit-source-id: 7ea205550217bfaaa1d5158ebd658e5832e60f29
2019-10-18 19:30:47 -07:00
rep_->table_options.filter_policy.get()));
}
// Insert compressed block into compressed block cache.
// Release the hold on the compressed cache entry immediately.
if (block_cache_compressed != nullptr &&
raw_block_comp_type != kNoCompression && raw_block_contents != nullptr &&
raw_block_contents->own_bytes()) {
assert(raw_block_contents->is_raw_block);
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
assert(!cache_key.empty());
// We cannot directly put raw_block_contents because this could point to
// an object in the stack.
std::unique_ptr<BlockContents> block_cont_for_comp_cache(
new BlockContents(std::move(*raw_block_contents)));
s = InsertEntryToCache(
rep_->ioptions.lowest_used_cache_tier, block_cache_compressed,
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
cache_key,
Use new Insert and Lookup APIs in table reader to support secondary cache (#8315) Summary: Secondary cache is implemented to achieve the secondary cache tier for block cache. New Insert and Lookup APIs are introduced in https://github.com/facebook/rocksdb/issues/8271 . To support and use the secondary cache in block based table reader, this PR introduces the corresponding callback functions that will be used in secondary cache, and update the Insert and Lookup APIs accordingly. benchmarking: ./db_bench --benchmarks="fillrandom" -num=1000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/tmp/rocks_t/db -partition_index_and_filters=true ./db_bench -db=/tmp/rocks_t/db -use_existing_db=true -benchmarks=readrandom -num=1000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=5 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -stats_dump_period_sec=30 -reads=50000000 master benchmarking results: readrandom : 3.923 micros/op 254881 ops/sec; 33.4 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.820992 P95 : 5.636716 P99 : 16.450553 P100 : 8396.000000 COUNT : 50000000 SUM : 179947064 Current PR benchmarking results readrandom : 4.083 micros/op 244925 ops/sec; 32.1 MB/s (23849796 of 50000000 found) rocksdb.db.get.micros P50 : 2.967687 P95 : 5.754916 P99 : 15.665912 P100 : 8213.000000 COUNT : 50000000 SUM : 187250053 About 3.8% throughput reduction. P50: 5.2% increasing, P95, 2.09% increasing, P99 4.77% improvement Pull Request resolved: https://github.com/facebook/rocksdb/pull/8315 Test Plan: added the testing case Reviewed By: anand1976 Differential Revision: D28599774 Pulled By: zhichao-cao fbshipit-source-id: 098c4df0d7327d3a546df7604b2f1602f13044ed
2021-05-21 18:28:28 -07:00
BlocklikeTraits<BlockContents>::GetCacheItemHelper(block_type),
block_cont_for_comp_cache,
block_cont_for_comp_cache->ApproximateMemoryUsage(), nullptr,
Cache::Priority::LOW);
BlockContents* block_cont_raw_ptr = block_cont_for_comp_cache.release();
if (s.ok()) {
// Avoid the following code to delete this cached block.
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD);
} else {
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD_FAILURES);
delete block_cont_raw_ptr;
}
}
// insert into uncompressed block cache
if (block_cache != nullptr && block_holder->own_bytes()) {
size_t charge = block_holder->ApproximateMemoryUsage();
Cache::Handle* cache_handle = nullptr;
s = InsertEntryToCache(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
rep_->ioptions.lowest_used_cache_tier, block_cache, cache_key,
BlocklikeTraits<TBlocklike>::GetCacheItemHelper(block_type),
block_holder, charge, &cache_handle, priority);
if (s.ok()) {
assert(cache_handle != nullptr);
cached_block->SetCachedValue(block_holder.release(), block_cache,
cache_handle);
Stats for redundant insertions into block cache (#6681) Summary: Since read threads do not coordinate on loading data into block cache, two threads between Lookup and Insert can end up loading and inserting the same data. This is particularly concerning with cache_index_and_filter_blocks since those are hot and more likely to be race targets if ejected from (or not pre-populated in) the cache. Particularly with moves toward disaggregated / network storage, the cost of redundant retrieval might be high, and we should at least have some hard statistics from which we can estimate impact. Example with full filter thrashing "cliff": $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 ... $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((130 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 14181 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 476 rocksdb.block.cache.data.add COUNT : 12749 rocksdb.block.cache.data.add.redundant COUNT : 18 rocksdb.block.cache.filter.add COUNT : 1003 rocksdb.block.cache.filter.add.redundant COUNT : 217 rocksdb.block.cache.index.add COUNT : 429 rocksdb.block.cache.index.add.redundant COUNT : 241 $ ./db_bench --db=/tmp/rocksdbtest-172704/dbbench --use_existing_db --benchmarks=readrandom,stats --num=200000 --cache_index_and_filter_blocks --cache_size=$((120 * 1024 * 1024)) --bloom_bits=10 --threads=16 -statistics 2>&1 | egrep '^rocksdb.block.cache.(.*add|.*redundant)' | grep -v compress | sort rocksdb.block.cache.add COUNT : 1182223 rocksdb.block.cache.add.failures COUNT : 0 rocksdb.block.cache.add.redundant COUNT : 302728 rocksdb.block.cache.data.add COUNT : 31425 rocksdb.block.cache.data.add.redundant COUNT : 12 rocksdb.block.cache.filter.add COUNT : 795455 rocksdb.block.cache.filter.add.redundant COUNT : 130238 rocksdb.block.cache.index.add COUNT : 355343 rocksdb.block.cache.index.add.redundant COUNT : 172478 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6681 Test Plan: Some manual testing (above) and unit test covering key metrics is included Reviewed By: ltamasi Differential Revision: D21134113 Pulled By: pdillinger fbshipit-source-id: c11497b5f00f4ffdfe919823904e52d0a1a91d87
2020-04-27 13:18:18 -07:00
UpdateCacheInsertionMetrics(block_type, get_context, charge,
s.IsOkOverwritten(), rep_->ioptions.stats);
} else {
RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES);
}
} else {
cached_block->SetOwnedValue(block_holder.release());
}
return s;
}
std::unique_ptr<FilterBlockReader> BlockBasedTable::CreateFilterBlockReader(
const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer, bool use_cache,
bool prefetch, bool pin, BlockCacheLookupContext* lookup_context) {
auto& rep = rep_;
auto filter_type = rep->filter_type;
if (filter_type == Rep::FilterType::kNoFilter) {
return std::unique_ptr<FilterBlockReader>();
}
assert(rep->filter_policy);
switch (filter_type) {
case Rep::FilterType::kPartitionedFilter:
return PartitionedFilterBlockReader::Create(
this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context);
case Rep::FilterType::kBlockFilter:
return BlockBasedFilterBlockReader::Create(
this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context);
case Rep::FilterType::kFullFilter:
return FullFilterBlockReader::Create(this, ro, prefetch_buffer, use_cache,
prefetch, pin, lookup_context);
default:
// filter_type is either kNoFilter (exited the function at the first if),
// or it must be covered in this switch block
assert(false);
return std::unique_ptr<FilterBlockReader>();
}
}
// disable_prefix_seek should be set to true when prefix_extractor found in SST
// differs from the one in mutable_cf_options and index type is HashBasedIndex
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
InternalIteratorBase<IndexValue>* BlockBasedTable::NewIndexIterator(
const ReadOptions& read_options, bool disable_prefix_seek,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
IndexBlockIter* input_iter, GetContext* get_context,
BlockCacheLookupContext* lookup_context) const {
assert(rep_ != nullptr);
assert(rep_->index_reader != nullptr);
// We don't return pinned data from index blocks, so no need
// to set `block_contents_pinned`.
return rep_->index_reader->NewIterator(read_options, disable_prefix_seek,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
input_iter, get_context,
lookup_context);
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
template <>
DataBlockIter* BlockBasedTable::InitBlockIterator<DataBlockIter>(
const Rep* rep, Block* block, BlockType block_type,
DataBlockIter* input_iter, bool block_contents_pinned) {
Separate internal and user key comparators in `BlockIter` (#6944) Summary: Replace `BlockIter::comparator_` and `IndexBlockIter::user_comparator_wrapper_` with a concrete `UserComparatorWrapper` and `InternalKeyComparator`. The motivation for this change was the inconvenience of not knowing the concrete type of `BlockIter::comparator_`, which prevented calling specialized internal key comparison functions to optimize comparison of keys with global seqno applied. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6944 Test Plan: benchmark setup -- single file DBs, in-memory, no compression. "normal_db" created by regular flush; "ingestion_db" created by ingesting a file. Both DBs have same contents. ``` $ TEST_TMPDIR=/dev/shm/normal_db/ ./db_bench -benchmarks=fillrandom,compact -write_buffer_size=10485760000 -disable_auto_compactions=true -compression_type=none -num=1000000 $ ./ldb write_extern_sst ./tmp.sst --db=/dev/shm/ingestion_db/dbbench/ --compression_type=no --hex --create_if_missing < <(./sst_dump --command=scan --output_hex --file=/dev/shm/normal_db/dbbench/000007.sst | awk 'began {print "0x" substr($1, 2, length($1) - 2), "==>", "0x" $5} ; /^Sst file format: block-based/ {began=1}') $ ./ldb ingest_extern_sst ./tmp.sst --db=/dev/shm/ingestion_db/dbbench/ ``` benchmark run command: ``` $ TEST_TMPDIR=/dev/shm/$DB/ ./db_bench -benchmarks=seekrandom -seek_nexts=$SEEK_NEXT -use_existing_db=true -cache_index_and_filter_blocks=false -num=1000000 -cache_size=0 -threads=1 -reads=200000000 -mmap_read=1 -verify_checksum=false ``` results: perf improved marginally for ingestion_db and did not change significantly for normal_db: SEEK_NEXT | DB | code | ops/sec | % change -- | -- | -- | -- | -- 0 | normal_db | master | 350880 |   0 | normal_db | PR6944 | 351040 | 0.0 0 | ingestion_db | master | 343255 |   0 | ingestion_db | PR6944 | 349424 | 1.8 10 | normal_db | master | 218711 |   10 | normal_db | PR6944 | 217892 | -0.4 10 | ingestion_db | master | 220334 |   10 | ingestion_db | PR6944 | 226437 | 2.8 Reviewed By: pdillinger Differential Revision: D21924676 Pulled By: ajkr fbshipit-source-id: ea4288a2eefa8112eb6c651a671c1de18c12e538
2020-07-07 17:25:08 -07:00
return block->NewDataIterator(rep->internal_comparator.user_comparator(),
rep->get_global_seqno(block_type), input_iter,
rep->ioptions.stats, block_contents_pinned);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
}
template <>
IndexBlockIter* BlockBasedTable::InitBlockIterator<IndexBlockIter>(
const Rep* rep, Block* block, BlockType block_type,
IndexBlockIter* input_iter, bool block_contents_pinned) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
return block->NewIndexIterator(
Separate internal and user key comparators in `BlockIter` (#6944) Summary: Replace `BlockIter::comparator_` and `IndexBlockIter::user_comparator_wrapper_` with a concrete `UserComparatorWrapper` and `InternalKeyComparator`. The motivation for this change was the inconvenience of not knowing the concrete type of `BlockIter::comparator_`, which prevented calling specialized internal key comparison functions to optimize comparison of keys with global seqno applied. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6944 Test Plan: benchmark setup -- single file DBs, in-memory, no compression. "normal_db" created by regular flush; "ingestion_db" created by ingesting a file. Both DBs have same contents. ``` $ TEST_TMPDIR=/dev/shm/normal_db/ ./db_bench -benchmarks=fillrandom,compact -write_buffer_size=10485760000 -disable_auto_compactions=true -compression_type=none -num=1000000 $ ./ldb write_extern_sst ./tmp.sst --db=/dev/shm/ingestion_db/dbbench/ --compression_type=no --hex --create_if_missing < <(./sst_dump --command=scan --output_hex --file=/dev/shm/normal_db/dbbench/000007.sst | awk 'began {print "0x" substr($1, 2, length($1) - 2), "==>", "0x" $5} ; /^Sst file format: block-based/ {began=1}') $ ./ldb ingest_extern_sst ./tmp.sst --db=/dev/shm/ingestion_db/dbbench/ ``` benchmark run command: ``` $ TEST_TMPDIR=/dev/shm/$DB/ ./db_bench -benchmarks=seekrandom -seek_nexts=$SEEK_NEXT -use_existing_db=true -cache_index_and_filter_blocks=false -num=1000000 -cache_size=0 -threads=1 -reads=200000000 -mmap_read=1 -verify_checksum=false ``` results: perf improved marginally for ingestion_db and did not change significantly for normal_db: SEEK_NEXT | DB | code | ops/sec | % change -- | -- | -- | -- | -- 0 | normal_db | master | 350880 |   0 | normal_db | PR6944 | 351040 | 0.0 0 | ingestion_db | master | 343255 |   0 | ingestion_db | PR6944 | 349424 | 1.8 10 | normal_db | master | 218711 |   10 | normal_db | PR6944 | 217892 | -0.4 10 | ingestion_db | master | 220334 |   10 | ingestion_db | PR6944 | 226437 | 2.8 Reviewed By: pdillinger Differential Revision: D21924676 Pulled By: ajkr fbshipit-source-id: ea4288a2eefa8112eb6c651a671c1de18c12e538
2020-07-07 17:25:08 -07:00
rep->internal_comparator.user_comparator(),
rep->get_global_seqno(block_type), input_iter, rep->ioptions.stats,
/* total_order_seek */ true, rep->index_has_first_key,
rep->index_key_includes_seq, rep->index_value_is_full,
block_contents_pinned);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
}
// If contents is nullptr, this function looks up the block caches for the
// data block referenced by handle, and read the block from disk if necessary.
// If contents is non-null, it skips the cache lookup and disk read, since
// the caller has already read it. In both cases, if ro.fill_cache is true,
// it inserts the block into the block cache.
template <typename TBlocklike>
Status BlockBasedTable::MaybeReadBlockAndLoadToCache(
FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro,
const BlockHandle& handle, const UncompressionDict& uncompression_dict,
const bool wait, const bool for_compaction,
CachableEntry<TBlocklike>* block_entry, BlockType block_type,
GetContext* get_context, BlockCacheLookupContext* lookup_context,
BlockContents* contents) const {
assert(block_entry != nullptr);
const bool no_io = (ro.read_tier == kBlockCacheTier);
Cache* block_cache = rep_->table_options.block_cache.get();
Cache* block_cache_compressed =
rep_->table_options.block_cache_compressed.get();
// First, try to get the block from the cache
//
// If either block cache is enabled, we'll try to read from it.
Status s;
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
CacheKey key_data;
Slice key;
bool is_cache_hit = false;
if (block_cache != nullptr || block_cache_compressed != nullptr) {
// create key for block cache
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
key_data = GetCacheKey(rep_->base_cache_key, handle);
key = key_data.AsSlice();
if (!contents) {
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
s = GetDataBlockFromCache(key, block_cache, block_cache_compressed, ro,
block_entry, uncompression_dict, block_type,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
wait, get_context);
// Value could still be null at this point, so check the cache handle
// and update the read pattern for prefetching
if (block_entry->GetValue() || block_entry->GetCacheHandle()) {
// TODO(haoyu): Differentiate cache hit on uncompressed block cache and
// compressed block cache.
is_cache_hit = true;
if (prefetch_buffer) {
// Update the block details so that PrefetchBuffer can use the read
// pattern to determine if reads are sequential or not for
// prefetching. It should also take in account blocks read from cache.
Provide implementation to prefetch data asynchronously in FilePrefetchBuffer (#9674) Summary: In FilePrefetchBuffer if reads are sequential, after prefetching call ReadAsync API to prefetch data asynchronously so that in next prefetching data will be available. Data prefetched asynchronously will be readahead_size/2. It uses two buffers, one for synchronous prefetching and one for asynchronous. In case, the data is overlapping, the data is copied from both buffers to third buffer to make it continuous. This feature is under ReadOptions::async_io and is under experimental. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9674 Test Plan: 1. Add new unit tests 2. Run **db_stress** to make sure nothing crashes. - Normal prefetch without `async_io` ran successfully: ``` export CRASH_TEST_EXT_ARGS=" --async_io=0" make crash_test -j ``` 3. **Run Regressions**. i) Main branch without any change for normal prefetching with async_io disabled: ``` ./db_bench -db=/tmp/prefix_scan_prefetch_main -benchmarks="fillseq" -key_size=32 -value_size=512 -num=5000000 - use_direct_io_for_flush_and_compaction=true -target_file_size_base=16777216 ``` ``` ./db_bench -use_existing_db=true -db=/tmp/prefix_scan_prefetch_main -benchmarks="seekrandom" -key_size=32 -value_size=512 -num=5000000 -use_direct_reads=true -seek_nexts=327680 -duration=120 -ops_between_duration_checks=1 Initializing RocksDB Options from the specified file Initializing RocksDB Options from command-line flags RocksDB: version 7.0 Date: Thu Mar 17 13:11:34 2022 CPU: 24 * Intel Core Processor (Broadwell) CPUCache: 16384 KB Keys: 32 bytes each (+ 0 bytes user-defined timestamp) Values: 512 bytes each (256 bytes after compression) Entries: 5000000 Prefix: 0 bytes Keys per prefix: 0 RawSize: 2594.0 MB (estimated) FileSize: 1373.3 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: Snappy Compression sampling rate: 0 Memtablerep: SkipListFactory Perf Level: 1 ------------------------------------------------ DB path: [/tmp/prefix_scan_prefetch_main] seekrandom : 483618.390 micros/op 2 ops/sec; 338.9 MB/s (249 of 249 found) ``` ii) normal prefetching after changes with async_io disable: ``` ./db_bench -use_existing_db=true -db=/tmp/prefix_scan_prefetch_withchange -benchmarks="seekrandom" -key_size=32 -value_size=512 -num=5000000 -use_direct_reads=true -seek_nexts=327680 -duration=120 -ops_between_duration_checks=1 Initializing RocksDB Options from the specified file Initializing RocksDB Options from command-line flags RocksDB: version 7.0 Date: Thu Mar 17 14:11:31 2022 CPU: 24 * Intel Core Processor (Broadwell) CPUCache: 16384 KB Keys: 32 bytes each (+ 0 bytes user-defined timestamp) Values: 512 bytes each (256 bytes after compression) Entries: 5000000 Prefix: 0 bytes Keys per prefix: 0 RawSize: 2594.0 MB (estimated) FileSize: 1373.3 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: Snappy Compression sampling rate: 0 Memtablerep: SkipListFactory Perf Level: 1 ------------------------------------------------ DB path: [/tmp/prefix_scan_prefetch_withchange] seekrandom : 471347.227 micros/op 2 ops/sec; 348.1 MB/s (255 of 255 found) ``` Reviewed By: anand1976 Differential Revision: D34731543 Pulled By: akankshamahajan15 fbshipit-source-id: 8e23aa93453d5fe3c672b9231ad582f60207937f
2022-03-21 07:12:43 -07:00
prefetch_buffer->UpdateReadPattern(
handle.offset(), BlockSizeWithTrailer(handle),
ro.adaptive_readahead /*decrease_readahead_size*/);
}
}
}
// Can't find the block from the cache. If I/O is allowed, read from the
// file.
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
if (block_entry->GetValue() == nullptr &&
block_entry->GetCacheHandle() == nullptr && !no_io && ro.fill_cache) {
Statistics* statistics = rep_->ioptions.stats;
const bool maybe_compressed =
block_type != BlockType::kFilter &&
block_type != BlockType::kCompressionDictionary &&
rep_->blocks_maybe_compressed;
const bool do_uncompress = maybe_compressed && !block_cache_compressed;
CompressionType raw_block_comp_type;
BlockContents raw_block_contents;
if (!contents) {
Histograms histogram = for_compaction ? READ_BLOCK_COMPACTION_MICROS
: READ_BLOCK_GET_MICROS;
StopWatch sw(rep_->ioptions.clock, statistics, histogram);
BlockFetcher block_fetcher(
rep_->file.get(), prefetch_buffer, rep_->footer, ro, handle,
&raw_block_contents, rep_->ioptions, do_uncompress,
maybe_compressed, block_type, uncompression_dict,
rep_->persistent_cache_options,
GetMemoryAllocator(rep_->table_options),
GetMemoryAllocatorForCompressedBlock(rep_->table_options));
s = block_fetcher.ReadBlockContents();
raw_block_comp_type = block_fetcher.get_compression_type();
contents = &raw_block_contents;
if (get_context) {
switch (block_type) {
case BlockType::kIndex:
++get_context->get_context_stats_.num_index_read;
break;
case BlockType::kFilter:
++get_context->get_context_stats_.num_filter_read;
break;
case BlockType::kData:
++get_context->get_context_stats_.num_data_read;
break;
default:
break;
}
}
} else {
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
raw_block_comp_type = GetBlockCompressionType(*contents);
}
if (s.ok()) {
// If filling cache is allowed and a cache is configured, try to put the
// block to the cache.
s = PutDataBlockToCache(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
key, block_cache, block_cache_compressed, block_entry, contents,
raw_block_comp_type, uncompression_dict,
GetMemoryAllocator(rep_->table_options), block_type, get_context);
}
}
}
// Fill lookup_context.
if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled() &&
lookup_context) {
size_t usage = 0;
uint64_t nkeys = 0;
if (block_entry->GetValue()) {
// Approximate the number of keys in the block using restarts.
nkeys =
rep_->table_options.block_restart_interval *
BlocklikeTraits<TBlocklike>::GetNumRestarts(*block_entry->GetValue());
usage = block_entry->GetValue()->ApproximateMemoryUsage();
}
TraceType trace_block_type = TraceType::kTraceMax;
switch (block_type) {
case BlockType::kData:
trace_block_type = TraceType::kBlockTraceDataBlock;
break;
case BlockType::kFilter:
trace_block_type = TraceType::kBlockTraceFilterBlock;
break;
case BlockType::kCompressionDictionary:
trace_block_type = TraceType::kBlockTraceUncompressionDictBlock;
break;
case BlockType::kRangeDeletion:
trace_block_type = TraceType::kBlockTraceRangeDeletionBlock;
break;
case BlockType::kIndex:
trace_block_type = TraceType::kBlockTraceIndexBlock;
break;
default:
// This cannot happen.
assert(false);
break;
}
bool no_insert = no_io || !ro.fill_cache;
if (BlockCacheTraceHelper::IsGetOrMultiGetOnDataBlock(
trace_block_type, lookup_context->caller)) {
// Defer logging the access to Get() and MultiGet() to trace additional
// information, e.g., referenced_key_exist_in_block.
// Make a copy of the block key here since it will be logged later.
lookup_context->FillLookupContext(
is_cache_hit, no_insert, trace_block_type,
/*block_size=*/usage, /*block_key=*/key.ToString(), nkeys);
} else {
// Avoid making copy of block_key and cf_name when constructing the access
// record.
BlockCacheTraceRecord access_record(
rep_->ioptions.clock->NowMicros(),
/*block_key=*/"", trace_block_type,
/*block_size=*/usage, rep_->cf_id_for_tracing(),
/*cf_name=*/"", rep_->level_for_tracing(),
rep_->sst_number_for_tracing(), lookup_context->caller, is_cache_hit,
no_insert, lookup_context->get_id,
lookup_context->get_from_user_specified_snapshot,
/*referenced_key=*/"");
// TODO: Should handle this error?
block_cache_tracer_
->WriteBlockAccess(access_record, key, rep_->cf_name_for_tracing(),
lookup_context->referenced_key)
.PermitUncheckedError();
}
}
assert(s.ok() || block_entry->GetValue() == nullptr);
return s;
}
// This function reads multiple data blocks from disk using Env::MultiRead()
// and optionally inserts them into the block cache. It uses the scratch
// buffer provided by the caller, which is contiguous. If scratch is a nullptr
// it allocates a separate buffer for each block. Typically, if the blocks
// need to be uncompressed and there is no compressed block cache, callers
// can allocate a temporary scratch buffer in order to minimize memory
// allocations.
// If options.fill_cache is true, it inserts the blocks into cache. If its
// false and scratch is non-null and the blocks are uncompressed, it copies
// the buffers to heap. In any case, the CachableEntry<Block> returned will
// own the data bytes.
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
// If compression is enabled and also there is no compressed block cache,
// the adjacent blocks are read out in one IO (combined read)
// batch - A MultiGetRange with only those keys with unique data blocks not
// found in cache
// handles - A vector of block handles. Some of them me be NULL handles
// scratch - An optional contiguous buffer to read compressed blocks into
void BlockBasedTable::RetrieveMultipleBlocks(
const ReadOptions& options, const MultiGetRange* batch,
const autovector<BlockHandle, MultiGetContext::MAX_BATCH_SIZE>* handles,
autovector<Status, MultiGetContext::MAX_BATCH_SIZE>* statuses,
autovector<CachableEntry<Block>, MultiGetContext::MAX_BATCH_SIZE>* results,
char* scratch, const UncompressionDict& uncompression_dict) const {
RandomAccessFileReader* file = rep_->file.get();
const Footer& footer = rep_->footer;
const ImmutableOptions& ioptions = rep_->ioptions;
size_t read_amp_bytes_per_bit = rep_->table_options.read_amp_bytes_per_bit;
MemoryAllocator* memory_allocator = GetMemoryAllocator(rep_->table_options);
if (ioptions.allow_mmap_reads) {
size_t idx_in_batch = 0;
for (auto mget_iter = batch->begin(); mget_iter != batch->end();
++mget_iter, ++idx_in_batch) {
BlockCacheLookupContext lookup_data_block_context(
TableReaderCaller::kUserMultiGet);
const BlockHandle& handle = (*handles)[idx_in_batch];
if (handle.IsNull()) {
continue;
}
Fix regression affecting partitioned indexes/filters when cache_index_and_filter_blocks is false (#5705) Summary: PR https://github.com/facebook/rocksdb/issues/5298 (and subsequent related patches) unintentionally changed the semantics of cache_index_and_filter_blocks: historically, this option only affected the main index/filter block; with the changes, it affects index/filter partitions as well. This can cause performance issues when cache_index_and_filter_blocks is false since in this case, partitions are neither cached nor preloaded (i.e. they are loaded on demand upon each access). The patch reverts to the earlier behavior, that is, partitions are cached similarly to data blocks regardless of the value of the above option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5705 Test Plan: make check ./db_bench -benchmarks=fillrandom --statistics --stats_interval_seconds=1 --duration=30 --num=500000000 --bloom_bits=20 --partition_index_and_filters=true --cache_index_and_filter_blocks=false ./db_bench -benchmarks=readrandom --use_existing_db --statistics --stats_interval_seconds=1 --duration=10 --num=500000000 --bloom_bits=20 --partition_index_and_filters=true --cache_index_and_filter_blocks=false --cache_size=8000000000 Relevant statistics from the readrandom benchmark with the old code: rocksdb.block.cache.index.miss COUNT : 0 rocksdb.block.cache.index.hit COUNT : 0 rocksdb.block.cache.index.add COUNT : 0 rocksdb.block.cache.index.bytes.insert COUNT : 0 rocksdb.block.cache.index.bytes.evict COUNT : 0 rocksdb.block.cache.filter.miss COUNT : 0 rocksdb.block.cache.filter.hit COUNT : 0 rocksdb.block.cache.filter.add COUNT : 0 rocksdb.block.cache.filter.bytes.insert COUNT : 0 rocksdb.block.cache.filter.bytes.evict COUNT : 0 With the new code: rocksdb.block.cache.index.miss COUNT : 2500 rocksdb.block.cache.index.hit COUNT : 42696 rocksdb.block.cache.index.add COUNT : 2500 rocksdb.block.cache.index.bytes.insert COUNT : 4050048 rocksdb.block.cache.index.bytes.evict COUNT : 0 rocksdb.block.cache.filter.miss COUNT : 2500 rocksdb.block.cache.filter.hit COUNT : 4550493 rocksdb.block.cache.filter.add COUNT : 2500 rocksdb.block.cache.filter.bytes.insert COUNT : 10331040 rocksdb.block.cache.filter.bytes.evict COUNT : 0 Differential Revision: D16817382 Pulled By: ltamasi fbshipit-source-id: 28a516b0da1f041a03313e0b70b28cf5cf205d00
2019-08-14 18:13:14 -07:00
(*statuses)[idx_in_batch] =
RetrieveBlock(nullptr, options, handle, uncompression_dict,
&(*results)[idx_in_batch], BlockType::kData,
mget_iter->get_context, &lookup_data_block_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
/* for_compaction */ false, /* use_cache */ true,
/* wait_for_cache */ true);
}
return;
}
// In direct IO mode, blocks share the direct io buffer.
// Otherwise, blocks share the scratch buffer.
const bool use_shared_buffer = file->use_direct_io() || scratch != nullptr;
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:47:08 -08:00
autovector<FSReadRequest, MultiGetContext::MAX_BATCH_SIZE> read_reqs;
size_t buf_offset = 0;
size_t idx_in_batch = 0;
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
uint64_t prev_offset = 0;
size_t prev_len = 0;
autovector<size_t, MultiGetContext::MAX_BATCH_SIZE> req_idx_for_block;
autovector<size_t, MultiGetContext::MAX_BATCH_SIZE> req_offset_for_block;
for (auto mget_iter = batch->begin(); mget_iter != batch->end();
++mget_iter, ++idx_in_batch) {
const BlockHandle& handle = (*handles)[idx_in_batch];
if (handle.IsNull()) {
continue;
}
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
size_t prev_end = static_cast<size_t>(prev_offset) + prev_len;
// If current block is adjacent to the previous one, at the same time,
// compression is enabled and there is no compressed cache, we combine
// the two block read as one.
// We don't combine block reads here in direct IO mode, because when doing
// direct IO read, the block requests will be realigned and merged when
// necessary.
if (use_shared_buffer && !file->use_direct_io() &&
prev_end == handle.offset()) {
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
req_offset_for_block.emplace_back(prev_len);
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
prev_len += BlockSizeWithTrailer(handle);
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
} else {
// No compression or current block and previous one is not adjacent:
// Step 1, create a new request for previous blocks
if (prev_len != 0) {
FSReadRequest req;
req.offset = prev_offset;
req.len = prev_len;
if (file->use_direct_io()) {
req.scratch = nullptr;
} else if (use_shared_buffer) {
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
req.scratch = scratch + buf_offset;
buf_offset += req.len;
} else {
req.scratch = new char[req.len];
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
}
read_reqs.emplace_back(req);
}
// Step 2, remeber the previous block info
prev_offset = handle.offset();
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
prev_len = BlockSizeWithTrailer(handle);
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
req_offset_for_block.emplace_back(0);
}
req_idx_for_block.emplace_back(read_reqs.size());
PERF_COUNTER_ADD(block_read_count, 1);
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
PERF_COUNTER_ADD(block_read_byte, BlockSizeWithTrailer(handle));
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
}
// Handle the last block and process the pending last request
if (prev_len != 0) {
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:47:08 -08:00
FSReadRequest req;
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
req.offset = prev_offset;
req.len = prev_len;
if (file->use_direct_io()) {
req.scratch = nullptr;
} else if (use_shared_buffer) {
req.scratch = scratch + buf_offset;
} else {
req.scratch = new char[req.len];
}
read_reqs.emplace_back(req);
}
AlignedBuf direct_io_buf;
{
IOOptions opts;
IOStatus s = file->PrepareIOOptions(options, opts);
if (s.ok()) {
Add rate limiter priority to ReadOptions (#9424) Summary: Users can set the priority for file reads associated with their operation by setting `ReadOptions::rate_limiter_priority` to something other than `Env::IO_TOTAL`. Rate limiting `VerifyChecksum()` and `VerifyFileChecksums()` is the motivation for this PR, so it also includes benchmarks and minor bug fixes to get that working. `RandomAccessFileReader::Read()` already had support for rate limiting compaction reads. I changed that rate limiting to be non-specific to compaction, but rather performed according to the passed in `Env::IOPriority`. Now the compaction read rate limiting is supported by setting `rate_limiter_priority = Env::IO_LOW` on its `ReadOptions`. There is no default value for the new `Env::IOPriority` parameter to `RandomAccessFileReader::Read()`. That means this PR goes through all callers (in some cases multiple layers up the call stack) to find a `ReadOptions` to provide the priority. There are TODOs for cases I believe it would be good to let user control the priority some day (e.g., file footer reads), and no TODO in cases I believe it doesn't matter (e.g., trace file reads). The API doc only lists the missing cases where a file read associated with a provided `ReadOptions` cannot be rate limited. For cases like file ingestion checksum calculation, there is no API to provide `ReadOptions` or `Env::IOPriority`, so I didn't count that as missing. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9424 Test Plan: - new unit tests - new benchmarks on ~50MB database with 1MB/s read rate limit and 100ms refill interval; verified with strace reads are chunked (at 0.1MB per chunk) and spaced roughly 100ms apart. - setup command: `./db_bench -benchmarks=fillrandom,compact -db=/tmp/testdb -target_file_size_base=1048576 -disable_auto_compactions=true -file_checksum=true` - benchmarks command: `strace -ttfe pread64 ./db_bench -benchmarks=verifychecksum,verifyfilechecksums -use_existing_db=true -db=/tmp/testdb -rate_limiter_bytes_per_sec=1048576 -rate_limit_bg_reads=1 -rate_limit_user_ops=true -file_checksum=true` - crash test using IO_USER priority on non-validation reads with https://github.com/facebook/rocksdb/issues/9567 reverted: `python3 tools/db_crashtest.py blackbox --max_key=1000000 --write_buffer_size=524288 --target_file_size_base=524288 --level_compaction_dynamic_level_bytes=true --duration=3600 --rate_limit_bg_reads=true --rate_limit_user_ops=true --rate_limiter_bytes_per_sec=10485760 --interval=10` Reviewed By: hx235 Differential Revision: D33747386 Pulled By: ajkr fbshipit-source-id: a2d985e97912fba8c54763798e04f006ccc56e0c
2022-02-16 23:17:03 -08:00
s = file->MultiRead(opts, &read_reqs[0], read_reqs.size(), &direct_io_buf,
options.rate_limiter_priority);
}
if (!s.ok()) {
// Discard all the results in this batch if there is any time out
// or overall MultiRead error
for (FSReadRequest& req : read_reqs) {
req.status = s;
}
}
}
idx_in_batch = 0;
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
size_t valid_batch_idx = 0;
for (auto mget_iter = batch->begin(); mget_iter != batch->end();
++mget_iter, ++idx_in_batch) {
const BlockHandle& handle = (*handles)[idx_in_batch];
if (handle.IsNull()) {
continue;
}
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
assert(valid_batch_idx < req_idx_for_block.size());
assert(valid_batch_idx < req_offset_for_block.size());
assert(req_idx_for_block[valid_batch_idx] < read_reqs.size());
size_t& req_idx = req_idx_for_block[valid_batch_idx];
size_t& req_offset = req_offset_for_block[valid_batch_idx];
valid_batch_idx++;
if (mget_iter->get_context) {
++(mget_iter->get_context->get_context_stats_.num_data_read);
}
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
FSReadRequest& req = read_reqs[req_idx];
Status s = req.status;
if (s.ok()) {
if ((req.result.size() != req.len) ||
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
(req_offset + BlockSizeWithTrailer(handle) > req.result.size())) {
s = Status::Corruption("truncated block read from " +
rep_->file->file_name() + " offset " +
std::to_string(handle.offset()) + ", expected " +
std::to_string(req.len) + " bytes, got " +
std::to_string(req.result.size()));
}
}
BlockContents raw_block_contents;
if (s.ok()) {
if (!use_shared_buffer) {
// We allocated a buffer for this block. Give ownership of it to
// BlockContents so it can free the memory
assert(req.result.data() == req.scratch);
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
assert(req.result.size() == BlockSizeWithTrailer(handle));
assert(req_offset == 0);
std::unique_ptr<char[]> raw_block(req.scratch);
raw_block_contents = BlockContents(std::move(raw_block), handle.size());
} else {
// We used the scratch buffer or direct io buffer
// which are shared by the blocks.
// raw_block_contents does not have the ownership.
raw_block_contents =
BlockContents(Slice(req.result.data() + req_offset, handle.size()));
}
#ifndef NDEBUG
raw_block_contents.is_raw_block = true;
#endif
if (options.verify_checksums) {
PERF_TIMER_GUARD(block_checksum_time);
const char* data = req.result.data();
// Since the scratch might be shared, the offset of the data block in
// the buffer might not be 0. req.result.data() only point to the
// begin address of each read request, we need to add the offset
// in each read request. Checksum is stored in the block trailer,
// beyond the payload size.
s = VerifyBlockChecksum(footer.checksum_type(), data + req_offset,
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
handle.size(), rep_->file->file_name(),
handle.offset());
TEST_SYNC_POINT_CALLBACK("RetrieveMultipleBlocks:VerifyChecksum", &s);
}
} else if (!use_shared_buffer) {
// Free the allocated scratch buffer.
delete[] req.scratch;
}
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
if (s.ok()) {
// When the blocks share the same underlying buffer (scratch or direct io
// buffer), we may need to manually copy the block into heap if the raw
// block has to be inserted into a cache. That falls into th following
// cases -
// 1. Raw block is not compressed, it needs to be inserted into the
// uncompressed block cache if there is one
// 2. If the raw block is compressed, it needs to be inserted into the
// compressed block cache if there is one
//
// In all other cases, the raw block is either uncompressed into a heap
// buffer or there is no cache at all.
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
CompressionType compression_type =
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
GetBlockCompressionType(raw_block_contents);
if (use_shared_buffer && (compression_type == kNoCompression ||
(compression_type != kNoCompression &&
rep_->table_options.block_cache_compressed))) {
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
Slice raw =
Slice(req.result.data() + req_offset, BlockSizeWithTrailer(handle));
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
raw_block_contents = BlockContents(
CopyBufferToHeap(GetMemoryAllocator(rep_->table_options), raw),
handle.size());
#ifndef NDEBUG
raw_block_contents.is_raw_block = true;
#endif
}
}
if (s.ok()) {
if (options.fill_cache) {
BlockCacheLookupContext lookup_data_block_context(
TableReaderCaller::kUserMultiGet);
CachableEntry<Block>* block_entry = &(*results)[idx_in_batch];
// MaybeReadBlockAndLoadToCache will insert into the block caches if
// necessary. Since we're passing the raw block contents, it will
// avoid looking up the block cache
s = MaybeReadBlockAndLoadToCache(
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
nullptr, options, handle, uncompression_dict, /*wait=*/true,
/*for_compaction=*/false, block_entry, BlockType::kData,
mget_iter->get_context, &lookup_data_block_context,
&raw_block_contents);
// block_entry value could be null if no block cache is present, i.e
// BlockBasedTableOptions::no_block_cache is true and no compressed
// block cache is configured. In that case, fall
// through and set up the block explicitly
if (block_entry->GetValue() != nullptr) {
s.PermitUncheckedError();
continue;
}
}
CompressionType compression_type =
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
GetBlockCompressionType(raw_block_contents);
BlockContents contents;
if (compression_type != kNoCompression) {
UncompressionContext context(compression_type);
UncompressionInfo info(context, uncompression_dict, compression_type);
s = UncompressBlockContents(
info, req.result.data() + req_offset, handle.size(), &contents,
footer.format_version(), rep_->ioptions, memory_allocator);
} else {
// There are two cases here:
// 1) caller uses the shared buffer (scratch or direct io buffer);
// 2) we use the requst buffer.
// If scratch buffer or direct io buffer is used, we ensure that
Merge adjacent file block reads in RocksDB MultiGet() and Add uncompressed block to cache (#6089) Summary: In the current MultiGet, if the KV-pairs do not belong to the data blocks in the block cache, multiple blocks are read from a SST. It will trigger one block read for each block request and read them in parallel. In some cases, if some data blocks are adjacent in the SST, the reads for these blocks can be combined to a single large read, which can reduce the system calls and reduce the read latency if possible. Considering to fill the block cache, if multiple data blocks are in the same memory buffer, we need to copy them to the heap separately. Therefore, only in the case that 1) data block compression is enabled, and 2) compressed block cache is null, we can do combined read. Otherwise, extra memory copy is needed, which may cause extra overhead. In the current case, data blocks will be uncompressed to a new memory space. Also, in the case that 1) data block compression is enabled, and 2) compressed block cache is null, it is possible the data block is actually not compressed. In the current logic, these data blocks will not be added to the uncompressed_cache. So if memory buffer is shared and the data block is not compressed, the data block are copied to the head and fill the cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6089 Test Plan: Added test case to ParallelIO.MultiGet. Pass make asan_check Differential Revision: D18734668 Pulled By: zhichao-cao fbshipit-source-id: 67c5615ed373e51e42635fd74b36f8f3a66d5da4
2019-12-16 15:55:33 -08:00
// all raw blocks are copyed to the heap as single blocks. If scratch
// buffer is not used, we also have no combined read, so the raw
// block can be used directly.
contents = std::move(raw_block_contents);
}
if (s.ok()) {
(*results)[idx_in_batch].SetOwnedValue(new Block(
std::move(contents), read_amp_bytes_per_bit, ioptions.stats));
}
}
(*statuses)[idx_in_batch] = s;
}
}
template <typename TBlocklike>
Status BlockBasedTable::RetrieveBlock(
FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro,
const BlockHandle& handle, const UncompressionDict& uncompression_dict,
CachableEntry<TBlocklike>* block_entry, BlockType block_type,
GetContext* get_context, BlockCacheLookupContext* lookup_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
bool for_compaction, bool use_cache, bool wait_for_cache) const {
assert(block_entry);
assert(block_entry->IsEmpty());
Status s;
Fix regression affecting partitioned indexes/filters when cache_index_and_filter_blocks is false (#5705) Summary: PR https://github.com/facebook/rocksdb/issues/5298 (and subsequent related patches) unintentionally changed the semantics of cache_index_and_filter_blocks: historically, this option only affected the main index/filter block; with the changes, it affects index/filter partitions as well. This can cause performance issues when cache_index_and_filter_blocks is false since in this case, partitions are neither cached nor preloaded (i.e. they are loaded on demand upon each access). The patch reverts to the earlier behavior, that is, partitions are cached similarly to data blocks regardless of the value of the above option. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5705 Test Plan: make check ./db_bench -benchmarks=fillrandom --statistics --stats_interval_seconds=1 --duration=30 --num=500000000 --bloom_bits=20 --partition_index_and_filters=true --cache_index_and_filter_blocks=false ./db_bench -benchmarks=readrandom --use_existing_db --statistics --stats_interval_seconds=1 --duration=10 --num=500000000 --bloom_bits=20 --partition_index_and_filters=true --cache_index_and_filter_blocks=false --cache_size=8000000000 Relevant statistics from the readrandom benchmark with the old code: rocksdb.block.cache.index.miss COUNT : 0 rocksdb.block.cache.index.hit COUNT : 0 rocksdb.block.cache.index.add COUNT : 0 rocksdb.block.cache.index.bytes.insert COUNT : 0 rocksdb.block.cache.index.bytes.evict COUNT : 0 rocksdb.block.cache.filter.miss COUNT : 0 rocksdb.block.cache.filter.hit COUNT : 0 rocksdb.block.cache.filter.add COUNT : 0 rocksdb.block.cache.filter.bytes.insert COUNT : 0 rocksdb.block.cache.filter.bytes.evict COUNT : 0 With the new code: rocksdb.block.cache.index.miss COUNT : 2500 rocksdb.block.cache.index.hit COUNT : 42696 rocksdb.block.cache.index.add COUNT : 2500 rocksdb.block.cache.index.bytes.insert COUNT : 4050048 rocksdb.block.cache.index.bytes.evict COUNT : 0 rocksdb.block.cache.filter.miss COUNT : 2500 rocksdb.block.cache.filter.hit COUNT : 4550493 rocksdb.block.cache.filter.add COUNT : 2500 rocksdb.block.cache.filter.bytes.insert COUNT : 10331040 rocksdb.block.cache.filter.bytes.evict COUNT : 0 Differential Revision: D16817382 Pulled By: ltamasi fbshipit-source-id: 28a516b0da1f041a03313e0b70b28cf5cf205d00
2019-08-14 18:13:14 -07:00
if (use_cache) {
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
s = MaybeReadBlockAndLoadToCache(
prefetch_buffer, ro, handle, uncompression_dict, wait_for_cache,
for_compaction, block_entry, block_type, get_context, lookup_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
/*contents=*/nullptr);
if (!s.ok()) {
return s;
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
if (block_entry->GetValue() != nullptr ||
block_entry->GetCacheHandle() != nullptr) {
assert(s.ok());
return s;
}
}
assert(block_entry->IsEmpty());
const bool no_io = ro.read_tier == kBlockCacheTier;
if (no_io) {
return Status::Incomplete("no blocking io");
}
const bool maybe_compressed =
block_type != BlockType::kFilter &&
block_type != BlockType::kCompressionDictionary &&
rep_->blocks_maybe_compressed;
const bool do_uncompress = maybe_compressed;
std::unique_ptr<TBlocklike> block;
{
Histograms histogram =
for_compaction ? READ_BLOCK_COMPACTION_MICROS : READ_BLOCK_GET_MICROS;
StopWatch sw(rep_->ioptions.clock, rep_->ioptions.stats, histogram);
s = ReadBlockFromFile(
rep_->file.get(), prefetch_buffer, rep_->footer, ro, handle, &block,
rep_->ioptions, do_uncompress, maybe_compressed, block_type,
uncompression_dict, rep_->persistent_cache_options,
block_type == BlockType::kData
? rep_->table_options.read_amp_bytes_per_bit
: 0,
GetMemoryAllocator(rep_->table_options), for_compaction,
Store the filter bits reader alongside the filter block contents (#5936) Summary: Amongst other things, PR https://github.com/facebook/rocksdb/issues/5504 refactored the filter block readers so that only the filter block contents are stored in the block cache (as opposed to the earlier design where the cache stored the filter block reader itself, leading to potentially dangling pointers and concurrency bugs). However, this change introduced a performance hit since with the new code, the metadata fields are re-parsed upon every access. This patch reunites the block contents with the filter bits reader to eliminate this overhead; since this is still a self-contained pure data object, it is safe to store it in the cache. (Note: this is similar to how the zstd digest is handled.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5936 Test Plan: make asan_check filter_bench results for the old code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.7153 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.4258 Single filter ns/op: 42.5974 Random filter ns/op: 217.861 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.4217 Single filter ns/op: 50.9855 Random filter ns/op: 219.167 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5172 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 32.3556 Single filter ns/op: 83.2239 Random filter ns/op: 370.676 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.2265 Single filter ns/op: 93.5651 Random filter ns/op: 408.393 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` With the new code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 25.4285 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 31.0594 Single filter ns/op: 43.8974 Random filter ns/op: 226.075 ---------------------------- Outside queries... Dry run (25d) ns/op: 31.0295 Single filter ns/op: 50.3824 Random filter ns/op: 226.805 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5308 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.2968 Single filter ns/op: 58.6163 Random filter ns/op: 291.434 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.1839 Single filter ns/op: 66.9039 Random filter ns/op: 292.828 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` Differential Revision: D17991712 Pulled By: ltamasi fbshipit-source-id: 7ea205550217bfaaa1d5158ebd658e5832e60f29
2019-10-18 19:30:47 -07:00
rep_->blocks_definitely_zstd_compressed,
rep_->table_options.filter_policy.get());
if (get_context) {
switch (block_type) {
case BlockType::kIndex:
++(get_context->get_context_stats_.num_index_read);
break;
case BlockType::kFilter:
++(get_context->get_context_stats_.num_filter_read);
break;
case BlockType::kData:
++(get_context->get_context_stats_.num_data_read);
break;
default:
break;
}
}
}
if (!s.ok()) {
return s;
}
block_entry->SetOwnedValue(block.release());
assert(s.ok());
return s;
}
// Explicitly instantiate templates for both "blocklike" types we use.
// This makes it possible to keep the template definitions in the .cc file.
template Status BlockBasedTable::RetrieveBlock<BlockContents>(
FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro,
const BlockHandle& handle, const UncompressionDict& uncompression_dict,
CachableEntry<BlockContents>* block_entry, BlockType block_type,
GetContext* get_context, BlockCacheLookupContext* lookup_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
bool for_compaction, bool use_cache, bool wait_for_cache) const;
Store the filter bits reader alongside the filter block contents (#5936) Summary: Amongst other things, PR https://github.com/facebook/rocksdb/issues/5504 refactored the filter block readers so that only the filter block contents are stored in the block cache (as opposed to the earlier design where the cache stored the filter block reader itself, leading to potentially dangling pointers and concurrency bugs). However, this change introduced a performance hit since with the new code, the metadata fields are re-parsed upon every access. This patch reunites the block contents with the filter bits reader to eliminate this overhead; since this is still a self-contained pure data object, it is safe to store it in the cache. (Note: this is similar to how the zstd digest is handled.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5936 Test Plan: make asan_check filter_bench results for the old code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.7153 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.4258 Single filter ns/op: 42.5974 Random filter ns/op: 217.861 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.4217 Single filter ns/op: 50.9855 Random filter ns/op: 219.167 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5172 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 32.3556 Single filter ns/op: 83.2239 Random filter ns/op: 370.676 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.2265 Single filter ns/op: 93.5651 Random filter ns/op: 408.393 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` With the new code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 25.4285 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 31.0594 Single filter ns/op: 43.8974 Random filter ns/op: 226.075 ---------------------------- Outside queries... Dry run (25d) ns/op: 31.0295 Single filter ns/op: 50.3824 Random filter ns/op: 226.805 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5308 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.2968 Single filter ns/op: 58.6163 Random filter ns/op: 291.434 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.1839 Single filter ns/op: 66.9039 Random filter ns/op: 292.828 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` Differential Revision: D17991712 Pulled By: ltamasi fbshipit-source-id: 7ea205550217bfaaa1d5158ebd658e5832e60f29
2019-10-18 19:30:47 -07:00
template Status BlockBasedTable::RetrieveBlock<ParsedFullFilterBlock>(
FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro,
const BlockHandle& handle, const UncompressionDict& uncompression_dict,
CachableEntry<ParsedFullFilterBlock>* block_entry, BlockType block_type,
GetContext* get_context, BlockCacheLookupContext* lookup_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
bool for_compaction, bool use_cache, bool wait_for_cache) const;
Store the filter bits reader alongside the filter block contents (#5936) Summary: Amongst other things, PR https://github.com/facebook/rocksdb/issues/5504 refactored the filter block readers so that only the filter block contents are stored in the block cache (as opposed to the earlier design where the cache stored the filter block reader itself, leading to potentially dangling pointers and concurrency bugs). However, this change introduced a performance hit since with the new code, the metadata fields are re-parsed upon every access. This patch reunites the block contents with the filter bits reader to eliminate this overhead; since this is still a self-contained pure data object, it is safe to store it in the cache. (Note: this is similar to how the zstd digest is handled.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/5936 Test Plan: make asan_check filter_bench results for the old code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.7153 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.4258 Single filter ns/op: 42.5974 Random filter ns/op: 217.861 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.4217 Single filter ns/op: 50.9855 Random filter ns/op: 219.167 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5172 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 32.3556 Single filter ns/op: 83.2239 Random filter ns/op: 370.676 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.2265 Single filter ns/op: 93.5651 Random filter ns/op: 408.393 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` With the new code: ``` $ ./filter_bench -quick WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 25.4285 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 31.0594 Single filter ns/op: 43.8974 Random filter ns/op: 226.075 ---------------------------- Outside queries... Dry run (25d) ns/op: 31.0295 Single filter ns/op: 50.3824 Random filter ns/op: 226.805 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) $ ./filter_bench -quick -use_full_block_reader WARNING: Assertions are enabled; benchmarks unnecessarily slow Building... Build avg ns/key: 26.5308 Number of filters: 16669 Total memory (MB): 200.009 Bits/key actual: 10.0647 ---------------------------- Inside queries... Dry run (46b) ns/op: 33.2968 Single filter ns/op: 58.6163 Random filter ns/op: 291.434 ---------------------------- Outside queries... Dry run (25d) ns/op: 32.1839 Single filter ns/op: 66.9039 Random filter ns/op: 292.828 Average FP rate %: 1.13993 ---------------------------- Done. (For more info, run with -legend or -help.) ``` Differential Revision: D17991712 Pulled By: ltamasi fbshipit-source-id: 7ea205550217bfaaa1d5158ebd658e5832e60f29
2019-10-18 19:30:47 -07:00
template Status BlockBasedTable::RetrieveBlock<Block>(
FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro,
const BlockHandle& handle, const UncompressionDict& uncompression_dict,
CachableEntry<Block>* block_entry, BlockType block_type,
GetContext* get_context, BlockCacheLookupContext* lookup_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
bool for_compaction, bool use_cache, bool wait_for_cache) const;
template Status BlockBasedTable::RetrieveBlock<UncompressionDict>(
FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro,
const BlockHandle& handle, const UncompressionDict& uncompression_dict,
CachableEntry<UncompressionDict>* block_entry, BlockType block_type,
GetContext* get_context, BlockCacheLookupContext* lookup_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
bool for_compaction, bool use_cache, bool wait_for_cache) const;
BlockBasedTable::PartitionedIndexIteratorState::PartitionedIndexIteratorState(
const BlockBasedTable* table,
Meta-internal folly integration with F14FastMap (#9546) Summary: Especially after updating to C++17, I don't see a compelling case for *requiring* any folly components in RocksDB. I was able to purge the existing hard dependencies, and it can be quite difficult to strip out non-trivial components from folly for use in RocksDB. (The prospect of doing that on F14 has changed my mind on the best approach here.) But this change creates an optional integration where we can plug in components from folly at compile time, starting here with F14FastMap to replace std::unordered_map when possible (probably no public APIs for example). I have replaced the biggest CPU users of std::unordered_map with compile-time pluggable UnorderedMap which will use F14FastMap when USE_FOLLY is set. USE_FOLLY is always set in the Meta-internal buck build, and a simulation of that is in the Makefile for public CI testing. A full folly build is not needed, but checking out the full folly repo is much simpler for getting the dependency, and anything else we might want to optionally integrate in the future. Some picky details: * I don't think the distributed mutex stuff is actually used, so it was easy to remove. * I implemented an alternative to `folly::constexpr_log2` (which is much easier in C++17 than C++11) so that I could pull out the hard dependencies on `ConstexprMath.h` * I had to add noexcept move constructors/operators to some types to make F14's complainUnlessNothrowMoveAndDestroy check happy, and I added a macro to make that easier in some common cases. * Updated Meta-internal buck build to use folly F14Map (always) No updates to HISTORY.md nor INSTALL.md as this is not (yet?) considered a production integration for open source users. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9546 Test Plan: CircleCI tests updated so that a couple of them use folly. Most internal unit & stress/crash tests updated to use Meta-internal latest folly. (Note: they should probably use buck but they currently use Makefile.) Example performance improvement: when filter partitions are pinned in cache, they are tracked by PartitionedFilterBlockReader::filter_map_ and we can build a test that exercises that heavily. Build DB with ``` TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=30000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters ``` and test with (simultaneous runs with & without folly, ~20 times each to see convergence) ``` TEST_TMPDIR=/dev/shm/rocksdb ./db_bench_folly -readonly -use_existing_db -benchmarks=readrandom -num=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters -duration=40 -pin_l0_filter_and_index_blocks_in_cache ``` Average ops/s no folly: 26229.2 Average ops/s with folly: 26853.3 (+2.4%) Reviewed By: ajkr Differential Revision: D34181736 Pulled By: pdillinger fbshipit-source-id: ffa6ad5104c2880321d8a1aa7187e00ab0d02e94
2022-04-13 07:34:01 -07:00
UnorderedMap<uint64_t, CachableEntry<Block>>* block_map)
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
: table_(table), block_map_(block_map) {}
InternalIteratorBase<IndexValue>*
BlockBasedTable::PartitionedIndexIteratorState::NewSecondaryIterator(
const BlockHandle& handle) {
// Return a block iterator on the index partition
auto block = block_map_->find(handle.offset());
// block_map_ must be exhaustive
if (block == block_map_->end()) {
assert(false);
// Signal problem to caller
return nullptr;
}
const Rep* rep = table_->get_rep();
assert(rep);
Statistics* kNullStats = nullptr;
// We don't return pinned data from index blocks, so no need
// to set `block_contents_pinned`.
return block->second.GetValue()->NewIndexIterator(
rep->internal_comparator.user_comparator(),
rep->get_global_seqno(BlockType::kIndex), nullptr, kNullStats, true,
rep->index_has_first_key, rep->index_key_includes_seq,
rep->index_value_is_full);
}
// This will be broken if the user specifies an unusual implementation
// of Options.comparator, or if the user specifies an unusual
// definition of prefixes in BlockBasedTableOptions.filter_policy.
// In particular, we require the following three properties:
//
// 1) key.starts_with(prefix(key))
// 2) Compare(prefix(key), key) <= 0.
// 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0
//
Fix iterator reading filter block despite read_tier == kBlockCacheTier (#6562) Summary: We're seeing iterators with `ReadOptions::read_tier == kBlockCacheTier` sometimes doing file reads. Stack trace: ``` rocksdb::RandomAccessFileReader::Read(unsigned long, unsigned long, rocksdb::Slice*, char*, bool) const rocksdb::BlockFetcher::ReadBlockContents() rocksdb::Status rocksdb::BlockBasedTable::MaybeReadBlockAndLoadToCache<rocksdb::ParsedFullFilterBlock>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::BlockContents*) const rocksdb::Status rocksdb::BlockBasedTable::RetrieveBlock<rocksdb::ParsedFullFilterBlock>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, bool, bool) const rocksdb::FilterBlockReaderCommon<rocksdb::ParsedFullFilterBlock>::ReadFilterBlock(rocksdb::BlockBasedTable const*, rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*) rocksdb::FilterBlockReaderCommon<rocksdb::ParsedFullFilterBlock>::GetOrReadFilterBlock(bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*) const rocksdb::FullFilterBlockReader::MayMatch(rocksdb::Slice const&, bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*) const rocksdb::FullFilterBlockReader::RangeMayExist(rocksdb::Slice const*, rocksdb::Slice const&, rocksdb::SliceTransform const*, rocksdb::Comparator const*, rocksdb::Slice const*, bool*, bool, rocksdb::BlockCacheLookupContext*) rocksdb::BlockBasedTable::PrefixMayMatch(rocksdb::Slice const&, rocksdb::ReadOptions const&, rocksdb::SliceTransform const*, bool, rocksdb::BlockCacheLookupContext*) const rocksdb::BlockBasedTableIterator<rocksdb::DataBlockIter, rocksdb::Slice>::SeekImpl(rocksdb::Slice const*) rocksdb::ForwardIterator::SeekInternal(rocksdb::Slice const&, bool) rocksdb::DBIter::Seek(rocksdb::Slice const&) ``` `BlockBasedTableIterator::CheckPrefixMayMatch` was missing a check for `kBlockCacheTier`. This PR adds it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6562 Test Plan: deployed it to a logdevice test cluster and looked at logdevice's IO tracing. Reviewed By: siying Differential Revision: D20529368 Pulled By: al13n321 fbshipit-source-id: 65bf33964b1951464415c900336635fb20919611
2020-03-26 15:18:03 -07:00
// If read_options.read_tier == kBlockCacheTier, this method will do no I/O and
// will return true if the filter block is not in memory and not found in block
// cache.
//
// REQUIRES: this method shouldn't be called while the DB lock is held.
bool BlockBasedTable::PrefixMayMatch(
const Slice& internal_key, const ReadOptions& read_options,
const SliceTransform* options_prefix_extractor,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
const bool need_upper_bound_check,
BlockCacheLookupContext* lookup_context) const {
if (!rep_->filter_policy) {
return true;
}
const SliceTransform* prefix_extractor;
if (rep_->table_prefix_extractor == nullptr) {
if (need_upper_bound_check) {
return true;
}
prefix_extractor = options_prefix_extractor;
} else {
prefix_extractor = rep_->table_prefix_extractor.get();
}
auto ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size();
auto user_key_without_ts =
ExtractUserKeyAndStripTimestamp(internal_key, ts_sz);
if (!prefix_extractor->InDomain(user_key_without_ts)) {
return true;
}
bool may_match = true;
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
// First, try check with full filter
FilterBlockReader* const filter = rep_->filter.get();
bool filter_checked = true;
if (filter != nullptr) {
Fix iterator reading filter block despite read_tier == kBlockCacheTier (#6562) Summary: We're seeing iterators with `ReadOptions::read_tier == kBlockCacheTier` sometimes doing file reads. Stack trace: ``` rocksdb::RandomAccessFileReader::Read(unsigned long, unsigned long, rocksdb::Slice*, char*, bool) const rocksdb::BlockFetcher::ReadBlockContents() rocksdb::Status rocksdb::BlockBasedTable::MaybeReadBlockAndLoadToCache<rocksdb::ParsedFullFilterBlock>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::BlockContents*) const rocksdb::Status rocksdb::BlockBasedTable::RetrieveBlock<rocksdb::ParsedFullFilterBlock>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, bool, bool) const rocksdb::FilterBlockReaderCommon<rocksdb::ParsedFullFilterBlock>::ReadFilterBlock(rocksdb::BlockBasedTable const*, rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*) rocksdb::FilterBlockReaderCommon<rocksdb::ParsedFullFilterBlock>::GetOrReadFilterBlock(bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*) const rocksdb::FullFilterBlockReader::MayMatch(rocksdb::Slice const&, bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*) const rocksdb::FullFilterBlockReader::RangeMayExist(rocksdb::Slice const*, rocksdb::Slice const&, rocksdb::SliceTransform const*, rocksdb::Comparator const*, rocksdb::Slice const*, bool*, bool, rocksdb::BlockCacheLookupContext*) rocksdb::BlockBasedTable::PrefixMayMatch(rocksdb::Slice const&, rocksdb::ReadOptions const&, rocksdb::SliceTransform const*, bool, rocksdb::BlockCacheLookupContext*) const rocksdb::BlockBasedTableIterator<rocksdb::DataBlockIter, rocksdb::Slice>::SeekImpl(rocksdb::Slice const*) rocksdb::ForwardIterator::SeekInternal(rocksdb::Slice const&, bool) rocksdb::DBIter::Seek(rocksdb::Slice const&) ``` `BlockBasedTableIterator::CheckPrefixMayMatch` was missing a check for `kBlockCacheTier`. This PR adds it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6562 Test Plan: deployed it to a logdevice test cluster and looked at logdevice's IO tracing. Reviewed By: siying Differential Revision: D20529368 Pulled By: al13n321 fbshipit-source-id: 65bf33964b1951464415c900336635fb20919611
2020-03-26 15:18:03 -07:00
const bool no_io = read_options.read_tier == kBlockCacheTier;
if (!filter->IsBlockBased()) {
const Slice* const const_ikey_ptr = &internal_key;
may_match = filter->RangeMayExist(
read_options.iterate_upper_bound, user_key_without_ts,
prefix_extractor, rep_->internal_comparator.user_comparator(),
const_ikey_ptr, &filter_checked, need_upper_bound_check, no_io,
lookup_context);
} else {
// if prefix_extractor changed for block based filter, skip filter
if (need_upper_bound_check) {
return true;
}
auto prefix = prefix_extractor->Transform(user_key_without_ts);
InternalKey internal_key_prefix(prefix, kMaxSequenceNumber, kTypeValue);
auto internal_prefix = internal_key_prefix.Encode();
// To prevent any io operation in this method, we set `read_tier` to make
// sure we always read index or filter only when they have already been
// loaded to memory.
ReadOptions no_io_read_options;
no_io_read_options.read_tier = kBlockCacheTier;
// Then, try find it within each block
// we already know prefix_extractor and prefix_extractor_name must match
// because `CheckPrefixMayMatch` first checks `check_filter_ == true`
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter(NewIndexIterator(
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
no_io_read_options,
/*need_upper_bound_check=*/false, /*input_iter=*/nullptr,
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
/*get_context=*/nullptr, lookup_context));
iiter->Seek(internal_prefix);
if (!iiter->Valid()) {
// we're past end of file
// if it's incomplete, it means that we avoided I/O
// and we're not really sure that we're past the end
// of the file
may_match = iiter->status().IsIncomplete();
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
} else if ((rep_->index_key_includes_seq ? ExtractUserKey(iiter->key())
: iiter->key())
.starts_with(ExtractUserKey(internal_prefix))) {
// we need to check for this subtle case because our only
// guarantee is that "the key is a string >= last key in that data
// block" according to the doc/table_format.txt spec.
//
// Suppose iiter->key() starts with the desired prefix; it is not
// necessarily the case that the corresponding data block will
// contain the prefix, since iiter->key() need not be in the
// block. However, the next data block may contain the prefix, so
// we return true to play it safe.
may_match = true;
} else if (filter->IsBlockBased()) {
// iiter->key() does NOT start with the desired prefix. Because
// Seek() finds the first key that is >= the seek target, this
// means that iiter->key() > prefix. Thus, any data blocks coming
// after the data block corresponding to iiter->key() cannot
// possibly contain the key. Thus, the corresponding data block
// is the only on could potentially contain the prefix.
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockHandle handle = iiter->value().handle;
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
may_match = filter->PrefixMayMatch(
Fix iterator reading filter block despite read_tier == kBlockCacheTier (#6562) Summary: We're seeing iterators with `ReadOptions::read_tier == kBlockCacheTier` sometimes doing file reads. Stack trace: ``` rocksdb::RandomAccessFileReader::Read(unsigned long, unsigned long, rocksdb::Slice*, char*, bool) const rocksdb::BlockFetcher::ReadBlockContents() rocksdb::Status rocksdb::BlockBasedTable::MaybeReadBlockAndLoadToCache<rocksdb::ParsedFullFilterBlock>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::BlockContents*) const rocksdb::Status rocksdb::BlockBasedTable::RetrieveBlock<rocksdb::ParsedFullFilterBlock>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, bool, bool) const rocksdb::FilterBlockReaderCommon<rocksdb::ParsedFullFilterBlock>::ReadFilterBlock(rocksdb::BlockBasedTable const*, rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*) rocksdb::FilterBlockReaderCommon<rocksdb::ParsedFullFilterBlock>::GetOrReadFilterBlock(bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::CachableEntry<rocksdb::ParsedFullFilterBlock>*) const rocksdb::FullFilterBlockReader::MayMatch(rocksdb::Slice const&, bool, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*) const rocksdb::FullFilterBlockReader::RangeMayExist(rocksdb::Slice const*, rocksdb::Slice const&, rocksdb::SliceTransform const*, rocksdb::Comparator const*, rocksdb::Slice const*, bool*, bool, rocksdb::BlockCacheLookupContext*) rocksdb::BlockBasedTable::PrefixMayMatch(rocksdb::Slice const&, rocksdb::ReadOptions const&, rocksdb::SliceTransform const*, bool, rocksdb::BlockCacheLookupContext*) const rocksdb::BlockBasedTableIterator<rocksdb::DataBlockIter, rocksdb::Slice>::SeekImpl(rocksdb::Slice const*) rocksdb::ForwardIterator::SeekInternal(rocksdb::Slice const&, bool) rocksdb::DBIter::Seek(rocksdb::Slice const&) ``` `BlockBasedTableIterator::CheckPrefixMayMatch` was missing a check for `kBlockCacheTier`. This PR adds it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6562 Test Plan: deployed it to a logdevice test cluster and looked at logdevice's IO tracing. Reviewed By: siying Differential Revision: D20529368 Pulled By: al13n321 fbshipit-source-id: 65bf33964b1951464415c900336635fb20919611
2020-03-26 15:18:03 -07:00
prefix, prefix_extractor, handle.offset(), no_io,
/*const_key_ptr=*/nullptr, /*get_context=*/nullptr, lookup_context);
}
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
}
}
if (filter_checked) {
Statistics* statistics = rep_->ioptions.stats;
RecordTick(statistics, BLOOM_FILTER_PREFIX_CHECKED);
if (!may_match) {
RecordTick(statistics, BLOOM_FILTER_PREFIX_USEFUL);
}
}
return may_match;
}
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
bool BlockBasedTable::PrefixExtractorChanged(
const SliceTransform* prefix_extractor) const {
if (prefix_extractor == nullptr) {
return true;
} else if (prefix_extractor == rep_->table_prefix_extractor.get()) {
return false;
} else {
return PrefixExtractorChangedHelper(rep_->table_properties.get(),
prefix_extractor);
}
}
InternalIterator* BlockBasedTable::NewIterator(
const ReadOptions& read_options, const SliceTransform* prefix_extractor,
Arena* arena, bool skip_filters, TableReaderCaller caller,
Properly report IO errors when IndexType::kBinarySearchWithFirstKey is used (#6621) Summary: Context: Index type `kBinarySearchWithFirstKey` added the ability for sst file iterator to sometimes report a key from index without reading the corresponding data block. This is useful when sst blocks are cut at some meaningful boundaries (e.g. one block per key prefix), and many seeks land between blocks (e.g. for each prefix, the ranges of keys in different sst files are nearly disjoint, so a typical seek needs to read a data block from only one file even if all files have the prefix). But this added a new error condition, which rocksdb code was really not equipped to deal with: `InternalIterator::value()` may fail with an IO error or Status::Incomplete, but it's just a method returning a Slice, with no way to report error instead. Before this PR, this type of error wasn't handled at all (an empty slice was returned), and kBinarySearchWithFirstKey implementation was considered a prototype. Now that we (LogDevice) have experimented with kBinarySearchWithFirstKey for a while and confirmed that it's really useful, this PR is adding the missing error handling. It's a pretty inconvenient situation implementation-wise. The error needs to be reported from InternalIterator when trying to access value. But there are ~700 call sites of `InternalIterator::value()`, most of which either can't hit the error condition (because the iterator is reading from memtable or from index or something) or wouldn't benefit from the deferred loading of the value (e.g. compaction iterator that reads all values anyway). Adding error handling to all these call sites would needlessly bloat the code. So instead I made the deferred value loading optional: only the call sites that may use deferred loading have to call the new method `PrepareValue()` before calling `value()`. The feature is enabled with a new bool argument `allow_unprepared_value` to a bunch of methods that create iterators (it wouldn't make sense to put it in ReadOptions because it's completely internal to iterators, with virtually no user-visible effect). Lmk if you have better ideas. Note that the deferred value loading only happens for *internal* iterators. The user-visible iterator (DBIter) always prepares the value before returning from Seek/Next/etc. We could go further and add an API to defer that value loading too, but that's most likely not useful for LogDevice, so it doesn't seem worth the complexity for now. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6621 Test Plan: make -j5 check . Will also deploy to some logdevice test clusters and look at stats. Reviewed By: siying Differential Revision: D20786930 Pulled By: al13n321 fbshipit-source-id: 6da77d918bad3780522e918f17f4d5513d3e99ee
2020-04-15 17:37:23 -07:00
size_t compaction_readahead_size, bool allow_unprepared_value) {
BlockCacheLookupContext lookup_context{caller};
bool need_upper_bound_check =
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
read_options.auto_prefix_mode || PrefixExtractorChanged(prefix_extractor);
De-template block based table iterator (#6531) Summary: Right now block based table iterator is used as both of iterating data for block based table, and for the index iterator for partitioend index. This was initially convenient for introducing a new iterator and block type for new index format, while reducing code change. However, these two usage doesn't go with each other very well. For example, Prev() is never called for partitioned index iterator, and some other complexity is maintained in block based iterators, which is not needed for index iterator but maintainers will always need to reason about it. Furthermore, the template usage is not following Google C++ Style which we are following, and makes a large chunk of code tangled together. This commit separate the two iterators. Right now, here is what it is done: 1. Copy the block based iterator code into partitioned index iterator, and de-template them. 2. Remove some code not needed for partitioned index. The upper bound check and tricks are removed. We never tested performance for those tricks when partitioned index is enabled in the first place. It's unlikelyl to generate performance regression, as creating new partitioned index block is much rarer than data blocks. 3. Separate out the prefetch logic to a helper class and both classes call them. This commit will enable future follow-ups. One direction is that we might separate index iterator interface for data blocks and index blocks, as they are quite different. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6531 Test Plan: build using make and cmake. And build release Differential Revision: D20473108 fbshipit-source-id: e48011783b339a4257c204cc07507b171b834b0f
2020-03-16 12:17:34 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> index_iter(NewIndexIterator(
read_options,
need_upper_bound_check &&
rep_->index_type == BlockBasedTableOptions::kHashSearch,
/*input_iter=*/nullptr, /*get_context=*/nullptr, &lookup_context));
if (arena == nullptr) {
De-template block based table iterator (#6531) Summary: Right now block based table iterator is used as both of iterating data for block based table, and for the index iterator for partitioend index. This was initially convenient for introducing a new iterator and block type for new index format, while reducing code change. However, these two usage doesn't go with each other very well. For example, Prev() is never called for partitioned index iterator, and some other complexity is maintained in block based iterators, which is not needed for index iterator but maintainers will always need to reason about it. Furthermore, the template usage is not following Google C++ Style which we are following, and makes a large chunk of code tangled together. This commit separate the two iterators. Right now, here is what it is done: 1. Copy the block based iterator code into partitioned index iterator, and de-template them. 2. Remove some code not needed for partitioned index. The upper bound check and tricks are removed. We never tested performance for those tricks when partitioned index is enabled in the first place. It's unlikelyl to generate performance regression, as creating new partitioned index block is much rarer than data blocks. 3. Separate out the prefetch logic to a helper class and both classes call them. This commit will enable future follow-ups. One direction is that we might separate index iterator interface for data blocks and index blocks, as they are quite different. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6531 Test Plan: build using make and cmake. And build release Differential Revision: D20473108 fbshipit-source-id: e48011783b339a4257c204cc07507b171b834b0f
2020-03-16 12:17:34 -07:00
return new BlockBasedTableIterator(
this, read_options, rep_->internal_comparator, std::move(index_iter),
!skip_filters && !read_options.total_order_seek &&
prefix_extractor != nullptr,
De-template block based table iterator (#6531) Summary: Right now block based table iterator is used as both of iterating data for block based table, and for the index iterator for partitioend index. This was initially convenient for introducing a new iterator and block type for new index format, while reducing code change. However, these two usage doesn't go with each other very well. For example, Prev() is never called for partitioned index iterator, and some other complexity is maintained in block based iterators, which is not needed for index iterator but maintainers will always need to reason about it. Furthermore, the template usage is not following Google C++ Style which we are following, and makes a large chunk of code tangled together. This commit separate the two iterators. Right now, here is what it is done: 1. Copy the block based iterator code into partitioned index iterator, and de-template them. 2. Remove some code not needed for partitioned index. The upper bound check and tricks are removed. We never tested performance for those tricks when partitioned index is enabled in the first place. It's unlikelyl to generate performance regression, as creating new partitioned index block is much rarer than data blocks. 3. Separate out the prefetch logic to a helper class and both classes call them. This commit will enable future follow-ups. One direction is that we might separate index iterator interface for data blocks and index blocks, as they are quite different. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6531 Test Plan: build using make and cmake. And build release Differential Revision: D20473108 fbshipit-source-id: e48011783b339a4257c204cc07507b171b834b0f
2020-03-16 12:17:34 -07:00
need_upper_bound_check, prefix_extractor, caller,
Properly report IO errors when IndexType::kBinarySearchWithFirstKey is used (#6621) Summary: Context: Index type `kBinarySearchWithFirstKey` added the ability for sst file iterator to sometimes report a key from index without reading the corresponding data block. This is useful when sst blocks are cut at some meaningful boundaries (e.g. one block per key prefix), and many seeks land between blocks (e.g. for each prefix, the ranges of keys in different sst files are nearly disjoint, so a typical seek needs to read a data block from only one file even if all files have the prefix). But this added a new error condition, which rocksdb code was really not equipped to deal with: `InternalIterator::value()` may fail with an IO error or Status::Incomplete, but it's just a method returning a Slice, with no way to report error instead. Before this PR, this type of error wasn't handled at all (an empty slice was returned), and kBinarySearchWithFirstKey implementation was considered a prototype. Now that we (LogDevice) have experimented with kBinarySearchWithFirstKey for a while and confirmed that it's really useful, this PR is adding the missing error handling. It's a pretty inconvenient situation implementation-wise. The error needs to be reported from InternalIterator when trying to access value. But there are ~700 call sites of `InternalIterator::value()`, most of which either can't hit the error condition (because the iterator is reading from memtable or from index or something) or wouldn't benefit from the deferred loading of the value (e.g. compaction iterator that reads all values anyway). Adding error handling to all these call sites would needlessly bloat the code. So instead I made the deferred value loading optional: only the call sites that may use deferred loading have to call the new method `PrepareValue()` before calling `value()`. The feature is enabled with a new bool argument `allow_unprepared_value` to a bunch of methods that create iterators (it wouldn't make sense to put it in ReadOptions because it's completely internal to iterators, with virtually no user-visible effect). Lmk if you have better ideas. Note that the deferred value loading only happens for *internal* iterators. The user-visible iterator (DBIter) always prepares the value before returning from Seek/Next/etc. We could go further and add an API to defer that value loading too, but that's most likely not useful for LogDevice, so it doesn't seem worth the complexity for now. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6621 Test Plan: make -j5 check . Will also deploy to some logdevice test clusters and look at stats. Reviewed By: siying Differential Revision: D20786930 Pulled By: al13n321 fbshipit-source-id: 6da77d918bad3780522e918f17f4d5513d3e99ee
2020-04-15 17:37:23 -07:00
compaction_readahead_size, allow_unprepared_value);
} else {
De-template block based table iterator (#6531) Summary: Right now block based table iterator is used as both of iterating data for block based table, and for the index iterator for partitioend index. This was initially convenient for introducing a new iterator and block type for new index format, while reducing code change. However, these two usage doesn't go with each other very well. For example, Prev() is never called for partitioned index iterator, and some other complexity is maintained in block based iterators, which is not needed for index iterator but maintainers will always need to reason about it. Furthermore, the template usage is not following Google C++ Style which we are following, and makes a large chunk of code tangled together. This commit separate the two iterators. Right now, here is what it is done: 1. Copy the block based iterator code into partitioned index iterator, and de-template them. 2. Remove some code not needed for partitioned index. The upper bound check and tricks are removed. We never tested performance for those tricks when partitioned index is enabled in the first place. It's unlikelyl to generate performance regression, as creating new partitioned index block is much rarer than data blocks. 3. Separate out the prefetch logic to a helper class and both classes call them. This commit will enable future follow-ups. One direction is that we might separate index iterator interface for data blocks and index blocks, as they are quite different. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6531 Test Plan: build using make and cmake. And build release Differential Revision: D20473108 fbshipit-source-id: e48011783b339a4257c204cc07507b171b834b0f
2020-03-16 12:17:34 -07:00
auto* mem = arena->AllocateAligned(sizeof(BlockBasedTableIterator));
return new (mem) BlockBasedTableIterator(
this, read_options, rep_->internal_comparator, std::move(index_iter),
!skip_filters && !read_options.total_order_seek &&
prefix_extractor != nullptr,
De-template block based table iterator (#6531) Summary: Right now block based table iterator is used as both of iterating data for block based table, and for the index iterator for partitioend index. This was initially convenient for introducing a new iterator and block type for new index format, while reducing code change. However, these two usage doesn't go with each other very well. For example, Prev() is never called for partitioned index iterator, and some other complexity is maintained in block based iterators, which is not needed for index iterator but maintainers will always need to reason about it. Furthermore, the template usage is not following Google C++ Style which we are following, and makes a large chunk of code tangled together. This commit separate the two iterators. Right now, here is what it is done: 1. Copy the block based iterator code into partitioned index iterator, and de-template them. 2. Remove some code not needed for partitioned index. The upper bound check and tricks are removed. We never tested performance for those tricks when partitioned index is enabled in the first place. It's unlikelyl to generate performance regression, as creating new partitioned index block is much rarer than data blocks. 3. Separate out the prefetch logic to a helper class and both classes call them. This commit will enable future follow-ups. One direction is that we might separate index iterator interface for data blocks and index blocks, as they are quite different. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6531 Test Plan: build using make and cmake. And build release Differential Revision: D20473108 fbshipit-source-id: e48011783b339a4257c204cc07507b171b834b0f
2020-03-16 12:17:34 -07:00
need_upper_bound_check, prefix_extractor, caller,
Properly report IO errors when IndexType::kBinarySearchWithFirstKey is used (#6621) Summary: Context: Index type `kBinarySearchWithFirstKey` added the ability for sst file iterator to sometimes report a key from index without reading the corresponding data block. This is useful when sst blocks are cut at some meaningful boundaries (e.g. one block per key prefix), and many seeks land between blocks (e.g. for each prefix, the ranges of keys in different sst files are nearly disjoint, so a typical seek needs to read a data block from only one file even if all files have the prefix). But this added a new error condition, which rocksdb code was really not equipped to deal with: `InternalIterator::value()` may fail with an IO error or Status::Incomplete, but it's just a method returning a Slice, with no way to report error instead. Before this PR, this type of error wasn't handled at all (an empty slice was returned), and kBinarySearchWithFirstKey implementation was considered a prototype. Now that we (LogDevice) have experimented with kBinarySearchWithFirstKey for a while and confirmed that it's really useful, this PR is adding the missing error handling. It's a pretty inconvenient situation implementation-wise. The error needs to be reported from InternalIterator when trying to access value. But there are ~700 call sites of `InternalIterator::value()`, most of which either can't hit the error condition (because the iterator is reading from memtable or from index or something) or wouldn't benefit from the deferred loading of the value (e.g. compaction iterator that reads all values anyway). Adding error handling to all these call sites would needlessly bloat the code. So instead I made the deferred value loading optional: only the call sites that may use deferred loading have to call the new method `PrepareValue()` before calling `value()`. The feature is enabled with a new bool argument `allow_unprepared_value` to a bunch of methods that create iterators (it wouldn't make sense to put it in ReadOptions because it's completely internal to iterators, with virtually no user-visible effect). Lmk if you have better ideas. Note that the deferred value loading only happens for *internal* iterators. The user-visible iterator (DBIter) always prepares the value before returning from Seek/Next/etc. We could go further and add an API to defer that value loading too, but that's most likely not useful for LogDevice, so it doesn't seem worth the complexity for now. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6621 Test Plan: make -j5 check . Will also deploy to some logdevice test clusters and look at stats. Reviewed By: siying Differential Revision: D20786930 Pulled By: al13n321 fbshipit-source-id: 6da77d918bad3780522e918f17f4d5513d3e99ee
2020-04-15 17:37:23 -07:00
compaction_readahead_size, allow_unprepared_value);
}
}
FragmentedRangeTombstoneIterator* BlockBasedTable::NewRangeTombstoneIterator(
const ReadOptions& read_options) {
Cache fragmented range tombstones in BlockBasedTableReader (#4493) Summary: This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses. On the same DB used in #4449, running `readrandom` results in the following: ``` readrandom : 0.983 micros/op 1017076 ops/sec; 78.3 MB/s (63103 of 100000 found) ``` Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results): ``` Tombstones? | avg micros/op | stddev micros/op | avg ops/s | stddev ops/s ----------------- | ------------- | ---------------- | ------------ | ------------ None | 0.6186 | 0.04637 | 1,625,252.90 | 124,679.41 500 Expanded | 0.6019 | 0.03628 | 1,666,670.40 | 101,142.65 500 Unexpanded | 0.6435 | 0.03994 | 1,559,979.40 | 104,090.52 1k Expanded | 0.6034 | 0.04349 | 1,665,128.10 | 125,144.57 1k Unexpanded | 0.6261 | 0.03093 | 1,600,457.50 | 79,024.94 5k Expanded | 0.6163 | 0.05926 | 1,636,668.80 | 154,888.85 5k Unexpanded | 0.6402 | 0.04002 | 1,567,804.70 | 100,965.55 10k Expanded | 0.6036 | 0.05105 | 1,667,237.70 | 142,830.36 10k Unexpanded | 0.6128 | 0.02598 | 1,634,633.40 | 72,161.82 25k Expanded | 0.6198 | 0.04542 | 1,620,980.50 | 116,662.93 25k Unexpanded | 0.5478 | 0.0362 | 1,833,059.10 | 121,233.81 50k Expanded | 0.5104 | 0.04347 | 1,973,107.90 | 184,073.49 50k Unexpanded | 0.4528 | 0.03387 | 2,219,034.50 | 170,984.32 ``` After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493 Differential Revision: D10842844 Pulled By: abhimadan fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
2018-10-25 19:25:00 -07:00
if (rep_->fragmented_range_dels == nullptr) {
return nullptr;
}
SequenceNumber snapshot = kMaxSequenceNumber;
if (read_options.snapshot != nullptr) {
snapshot = read_options.snapshot->GetSequenceNumber();
}
return new FragmentedRangeTombstoneIterator(
rep_->fragmented_range_dels, rep_->internal_comparator, snapshot);
Cache fragmented range tombstones in BlockBasedTableReader (#4493) Summary: This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses. On the same DB used in #4449, running `readrandom` results in the following: ``` readrandom : 0.983 micros/op 1017076 ops/sec; 78.3 MB/s (63103 of 100000 found) ``` Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results): ``` Tombstones? | avg micros/op | stddev micros/op | avg ops/s | stddev ops/s ----------------- | ------------- | ---------------- | ------------ | ------------ None | 0.6186 | 0.04637 | 1,625,252.90 | 124,679.41 500 Expanded | 0.6019 | 0.03628 | 1,666,670.40 | 101,142.65 500 Unexpanded | 0.6435 | 0.03994 | 1,559,979.40 | 104,090.52 1k Expanded | 0.6034 | 0.04349 | 1,665,128.10 | 125,144.57 1k Unexpanded | 0.6261 | 0.03093 | 1,600,457.50 | 79,024.94 5k Expanded | 0.6163 | 0.05926 | 1,636,668.80 | 154,888.85 5k Unexpanded | 0.6402 | 0.04002 | 1,567,804.70 | 100,965.55 10k Expanded | 0.6036 | 0.05105 | 1,667,237.70 | 142,830.36 10k Unexpanded | 0.6128 | 0.02598 | 1,634,633.40 | 72,161.82 25k Expanded | 0.6198 | 0.04542 | 1,620,980.50 | 116,662.93 25k Unexpanded | 0.5478 | 0.0362 | 1,833,059.10 | 121,233.81 50k Expanded | 0.5104 | 0.04347 | 1,973,107.90 | 184,073.49 50k Unexpanded | 0.4528 | 0.03387 | 2,219,034.50 | 170,984.32 ``` After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493 Differential Revision: D10842844 Pulled By: abhimadan fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
2018-10-25 19:25:00 -07:00
}
bool BlockBasedTable::FullFilterKeyMayMatch(
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
FilterBlockReader* filter, const Slice& internal_key, const bool no_io,
const SliceTransform* prefix_extractor, GetContext* get_context,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
BlockCacheLookupContext* lookup_context) const {
if (filter == nullptr || filter->IsBlockBased()) {
return true;
}
Slice user_key = ExtractUserKey(internal_key);
const Slice* const const_ikey_ptr = &internal_key;
bool may_match = true;
size_t ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size();
Slice user_key_without_ts = StripTimestampFromUserKey(user_key, ts_sz);
if (rep_->whole_key_filtering) {
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
may_match =
filter->KeyMayMatch(user_key_without_ts, prefix_extractor, kNotValid,
no_io, const_ikey_ptr, get_context, lookup_context);
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
} else if (!PrefixExtractorChanged(prefix_extractor) &&
prefix_extractor->InDomain(user_key_without_ts) &&
!filter->PrefixMayMatch(
prefix_extractor->Transform(user_key_without_ts),
prefix_extractor, kNotValid, no_io, const_ikey_ptr,
get_context, lookup_context)) {
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
// FIXME ^^^: there should be no reason for Get() to depend on current
// prefix_extractor at all. It should always use table_prefix_extractor.
may_match = false;
}
if (may_match) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_POSITIVE);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, rep_->level);
}
return may_match;
}
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
void BlockBasedTable::FullFilterKeysMayMatch(
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
FilterBlockReader* filter, MultiGetRange* range, const bool no_io,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
const SliceTransform* prefix_extractor,
BlockCacheLookupContext* lookup_context) const {
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (filter == nullptr || filter->IsBlockBased()) {
return;
}
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
uint64_t before_keys = range->KeysLeft();
assert(before_keys > 0); // Caller should ensure
if (rep_->whole_key_filtering) {
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
filter->KeysMayMatch(range, prefix_extractor, kNotValid, no_io,
lookup_context);
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
uint64_t after_keys = range->KeysLeft();
if (after_keys) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_POSITIVE, after_keys);
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, after_keys,
rep_->level);
}
uint64_t filtered_keys = before_keys - after_keys;
if (filtered_keys) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_USEFUL, filtered_keys);
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, filtered_keys,
rep_->level);
}
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
} else if (!PrefixExtractorChanged(prefix_extractor)) {
// FIXME ^^^: there should be no reason for MultiGet() to depend on current
// prefix_extractor at all. It should always use table_prefix_extractor.
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
filter->PrefixesMayMatch(range, prefix_extractor, kNotValid, false,
lookup_context);
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_CHECKED, before_keys);
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
uint64_t after_keys = range->KeysLeft();
uint64_t filtered_keys = before_keys - after_keys;
if (filtered_keys) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_USEFUL,
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
filtered_keys);
}
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
}
}
Status BlockBasedTable::Get(const ReadOptions& read_options, const Slice& key,
GetContext* get_context,
const SliceTransform* prefix_extractor,
bool skip_filters) {
assert(key.size() >= 8); // key must be internal key
assert(get_context != nullptr);
Status s;
const bool no_io = read_options.read_tier == kBlockCacheTier;
FilterBlockReader* const filter =
!skip_filters ? rep_->filter.get() : nullptr;
// First check the full filter
// If full filter not useful, Then go into each block
uint64_t tracing_get_id = get_context->get_tracing_get_id();
BlockCacheLookupContext lookup_context{
TableReaderCaller::kUserGet, tracing_get_id,
/*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr};
if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) {
// Trace the key since it contains both user key and sequence number.
lookup_context.referenced_key = key.ToString();
lookup_context.get_from_user_specified_snapshot =
read_options.snapshot != nullptr;
}
TEST_SYNC_POINT("BlockBasedTable::Get:BeforeFilterMatch");
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
const bool may_match = FullFilterKeyMayMatch(
filter, key, no_io, prefix_extractor, get_context, &lookup_context);
TEST_SYNC_POINT("BlockBasedTable::Get:AfterFilterMatch");
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (!may_match) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_USEFUL);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level);
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
} else {
IndexBlockIter iiter_on_stack;
// if prefix_extractor found in block differs from options, disable
// BlockPrefixIndex. Only do this check when index_type is kHashSearch.
bool need_upper_bound_check = false;
if (rep_->index_type == BlockBasedTableOptions::kHashSearch) {
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
need_upper_bound_check = PrefixExtractorChanged(prefix_extractor);
}
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
auto iiter =
NewIndexIterator(read_options, need_upper_bound_check, &iiter_on_stack,
get_context, &lookup_context);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
iiter_unique_ptr.reset(iiter);
}
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
Add support for timestamp in Get/Put (#5079) Summary: It's useful to be able to (optionally) associate key-value pairs with user-provided timestamps. This PR is an early effort towards this goal and continues the work of facebook#4942. A suite of new unit tests exist in DBBasicTestWithTimestampWithParam. Support for timestamp requires the user to provide timestamp as a slice in `ReadOptions` and `WriteOptions`. All timestamps of the same database must share the same length, format, etc. The format of the timestamp is the same throughout the same database, and the user is responsible for providing a comparator function (Comparator) to order the <key, timestamp> tuples. Once created, the format and length of the timestamp cannot change (at least for now). Test plan (on devserver): ``` $COMPILE_WITH_ASAN=1 make -j32 all $./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/* $make check ``` All tests must pass. We also run the following db_bench tests to verify whether there is regression on Get/Put while timestamp is not enabled. ``` $TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000 $TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000 ``` Repeat for 6 times for both versions. Results are as follows: ``` | | readrandom | fillrandom | | master | 16.77 MB/s | 47.05 MB/s | | PR5079 | 16.44 MB/s | 47.03 MB/s | ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/5079 Differential Revision: D15132946 Pulled By: riversand963 fbshipit-source-id: 833a0d657eac21182f0f206c910a6438154c742c
2019-06-05 23:07:28 -07:00
size_t ts_sz =
rep_->internal_comparator.user_comparator()->timestamp_size();
bool matched = false; // if such user key matched a key in SST
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
bool done = false;
for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
IndexValue v = iiter->value();
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
bool not_exist_in_filter =
filter != nullptr && filter->IsBlockBased() == true &&
Add support for timestamp in Get/Put (#5079) Summary: It's useful to be able to (optionally) associate key-value pairs with user-provided timestamps. This PR is an early effort towards this goal and continues the work of facebook#4942. A suite of new unit tests exist in DBBasicTestWithTimestampWithParam. Support for timestamp requires the user to provide timestamp as a slice in `ReadOptions` and `WriteOptions`. All timestamps of the same database must share the same length, format, etc. The format of the timestamp is the same throughout the same database, and the user is responsible for providing a comparator function (Comparator) to order the <key, timestamp> tuples. Once created, the format and length of the timestamp cannot change (at least for now). Test plan (on devserver): ``` $COMPILE_WITH_ASAN=1 make -j32 all $./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/* $make check ``` All tests must pass. We also run the following db_bench tests to verify whether there is regression on Get/Put while timestamp is not enabled. ``` $TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000 $TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000 ``` Repeat for 6 times for both versions. Results are as follows: ``` | | readrandom | fillrandom | | master | 16.77 MB/s | 47.05 MB/s | | PR5079 | 16.44 MB/s | 47.03 MB/s | ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/5079 Differential Revision: D15132946 Pulled By: riversand963 fbshipit-source-id: 833a0d657eac21182f0f206c910a6438154c742c
2019-06-05 23:07:28 -07:00
!filter->KeyMayMatch(ExtractUserKeyAndStripTimestamp(key, ts_sz),
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
prefix_extractor, v.handle.offset(), no_io,
/*const_ikey_ptr=*/nullptr, get_context,
&lookup_context);
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
if (not_exist_in_filter) {
// Not found
// TODO: think about interaction with Merge. If a user key cannot
// cross one data block, we should be fine.
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_USEFUL);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level);
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
break;
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
}
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
if (!v.first_internal_key.empty() && !skip_filters &&
UserComparatorWrapper(rep_->internal_comparator.user_comparator())
.CompareWithoutTimestamp(
ExtractUserKey(key),
ExtractUserKey(v.first_internal_key)) < 0) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
// The requested key falls between highest key in previous block and
// lowest key in current block.
break;
}
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockCacheLookupContext lookup_data_block_context{
TableReaderCaller::kUserGet, tracing_get_id,
/*get_from_user_specified_snapshot=*/read_options.snapshot !=
nullptr};
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
bool does_referenced_key_exist = false;
DataBlockIter biter;
uint64_t referenced_data_size = 0;
NewDataBlockIterator<DataBlockIter>(
read_options, v.handle, &biter, BlockType::kData, get_context,
&lookup_data_block_context,
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
/*s=*/Status(), /*prefetch_buffer*/ nullptr);
if (no_io && biter.status().IsIncomplete()) {
// couldn't get block from block_cache
// Update Saver.state to Found because we are only looking for
// whether we can guarantee the key is not there when "no_io" is set
get_context->MarkKeyMayExist();
s = biter.status();
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
break;
}
if (!biter.status().ok()) {
s = biter.status();
break;
}
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
bool may_exist = biter.SeekForGet(key);
// If user-specified timestamp is supported, we cannot end the search
// just because hash index lookup indicates the key+ts does not exist.
if (!may_exist && ts_sz == 0) {
// HashSeek cannot find the key this block and the the iter is not
// the end of the block, i.e. cannot be in the following blocks
// either. In this case, the seek_key cannot be found, so we break
// from the top level for-loop.
done = true;
} else {
// Call the *saver function on each entry/block until it returns false
for (; biter.Valid(); biter.Next()) {
ParsedInternalKey parsed_key;
Status pik_status = ParseInternalKey(
biter.key(), &parsed_key, false /* log_err_key */); // TODO
if (!pik_status.ok()) {
s = pik_status;
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
}
if (!get_context->SaveValue(
parsed_key, biter.value(), &matched,
biter.IsValuePinned() ? &biter : nullptr)) {
if (get_context->State() == GetContext::GetState::kFound) {
does_referenced_key_exist = true;
referenced_data_size = biter.key().size() + biter.value().size();
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
done = true;
break;
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
}
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
s = biter.status();
}
// Write the block cache access record.
if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
// Avoid making copy of block_key, cf_name, and referenced_key when
// constructing the access record.
Slice referenced_key;
if (does_referenced_key_exist) {
referenced_key = biter.key();
} else {
referenced_key = key;
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockCacheTraceRecord access_record(
rep_->ioptions.clock->NowMicros(),
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
/*block_key=*/"", lookup_data_block_context.block_type,
lookup_data_block_context.block_size, rep_->cf_id_for_tracing(),
/*cf_name=*/"", rep_->level_for_tracing(),
rep_->sst_number_for_tracing(), lookup_data_block_context.caller,
lookup_data_block_context.is_cache_hit,
lookup_data_block_context.no_insert,
lookup_data_block_context.get_id,
lookup_data_block_context.get_from_user_specified_snapshot,
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
/*referenced_key=*/"", referenced_data_size,
lookup_data_block_context.num_keys_in_block,
does_referenced_key_exist);
// TODO: Should handle status here?
block_cache_tracer_
->WriteBlockAccess(access_record,
lookup_data_block_context.block_key,
rep_->cf_name_for_tracing(), referenced_key)
.PermitUncheckedError();
}
if (done) {
// Avoid the extra Next which is expensive in two-level indexes
break;
}
Implement full filter for block based table. Summary: 1. Make filter_block.h a base class. Derive block_based_filter_block and full_filter_block. The previous one is the traditional filter block. The full_filter_block is newly added. It would generate a filter block that contain all the keys in SST file. 2. When querying a key, table would first check if full_filter is available. If not, it would go to the exact data block and check using block_based filter. 3. User could choose to use full_filter or tradional(block_based_filter). They would be stored in SST file with different meta index name. "filter.filter_policy" or "full_filter.filter_policy". Then, Table reader is able to know the fllter block type. 4. Some optimizations have been done for full_filter_block, thus it requires a different interface compared to the original one in filter_policy.h. 5. Actual implementation of filter bits coding/decoding is placed in util/bloom_impl.cc Benchmark: base commit 1d23b5c470844c1208301311f0889eca750431c0 Command: db_bench --db=/dev/shm/rocksdb --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --write_buffer_size=134217728 --max_write_buffer_number=2 --target_file_size_base=33554432 --max_bytes_for_level_base=1073741824 --verify_checksum=false --max_background_compactions=4 --use_plain_table=0 --memtablerep=prefix_hash --open_files=-1 --mmap_read=1 --mmap_write=0 --bloom_bits=10 --bloom_locality=1 --memtable_bloom_bits=500000 --compression_type=lz4 --num=393216000 --use_hash_search=1 --block_size=1024 --block_restart_interval=16 --use_existing_db=1 --threads=1 --benchmarks=readrandom —disable_auto_compactions=1 Read QPS increase for about 30% from 2230002 to 2991411. Test Plan: make all check valgrind db_test db_stress --use_block_based_filter = 0 ./auto_sanity_test.sh Reviewers: igor, yhchiang, ljin, sdong Reviewed By: sdong Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D20979
2014-09-08 10:37:05 -07:00
}
if (matched && filter != nullptr && !filter->IsBlockBased()) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_TRUE_POSITIVE);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1,
rep_->level);
}
if (s.ok() && !iiter->status().IsNotFound()) {
s = iiter->status();
}
}
return s;
}
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
using MultiGetRange = MultiGetContext::Range;
void BlockBasedTable::MultiGet(const ReadOptions& read_options,
const MultiGetRange* mget_range,
const SliceTransform* prefix_extractor,
bool skip_filters) {
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
if (mget_range->empty()) {
// Caller should ensure non-empty (performance bug)
assert(false);
return; // Nothing to do
}
FilterBlockReader* const filter =
!skip_filters ? rep_->filter.get() : nullptr;
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
MultiGetRange sst_file_range(*mget_range, mget_range->begin(),
mget_range->end());
// First check the full filter
// If full filter not useful, Then go into each block
const bool no_io = read_options.read_tier == kBlockCacheTier;
uint64_t tracing_mget_id = BlockCacheTraceHelper::kReservedGetId;
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
if (sst_file_range.begin()->get_context) {
tracing_mget_id = sst_file_range.begin()->get_context->get_tracing_get_id();
}
BlockCacheLookupContext lookup_context{
TableReaderCaller::kUserMultiGet, tracing_mget_id,
/*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr};
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
FullFilterKeysMayMatch(filter, &sst_file_range, no_io, prefix_extractor,
&lookup_context);
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
Basic MultiGet support for partitioned filters (#6757) Summary: In MultiGet, access each applicable filter partition only once per batch, rather than for each applicable key. Also, * Fix Bloom stats for MultiGet * Fix/refactor MultiGetContext::Range::KeysLeft, including * Add efficient BitsSetToOne implementation * Assert that MultiGetContext::Range does not go beyond shift range Performance test: Generate db: $ ./db_bench --benchmarks=fillrandom --num=15000000 --cache_index_and_filter_blocks -bloom_bits=10 -partition_index_and_filters=true ... Before (middle performing run of three; note some missing Bloom stats): $ ./db_bench --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 26.403 micros/op 597517 ops/sec; (548427 of 671968 found) rocksdb.block.cache.filter.hit COUNT : 83443275 rocksdb.bloom.filter.useful COUNT : 0 rocksdb.bloom.filter.full.positive COUNT : 0 rocksdb.bloom.filter.full.true.positive COUNT : 7931450 rocksdb.number.multiget.get COUNT : 385984 rocksdb.number.multiget.keys.read COUNT : 12351488 rocksdb.number.multiget.bytes.read COUNT : 793145000 rocksdb.number.multiget.keys.found COUNT : 7931450 After (middle performing run of three): $ ./db_bench_new --use-existing-db --benchmarks=multireadrandom --num=15000000 --cache_index_and_filter_blocks --bloom_bits=10 --threads=16 --cache_size=20000000 -partition_index_and_filters -batch_size=32 -multiread_batched -statistics --duration=20 2>&1 | egrep 'micros/op|block.cache.filter.hit|bloom.filter.(full|use)|number.multiget' multireadrandom : 21.024 micros/op 752963 ops/sec; (705188 of 863968 found) rocksdb.block.cache.filter.hit COUNT : 49856682 rocksdb.bloom.filter.useful COUNT : 45684579 rocksdb.bloom.filter.full.positive COUNT : 10395458 rocksdb.bloom.filter.full.true.positive COUNT : 9908456 rocksdb.number.multiget.get COUNT : 481984 rocksdb.number.multiget.keys.read COUNT : 15423488 rocksdb.number.multiget.bytes.read COUNT : 990845600 rocksdb.number.multiget.keys.found COUNT : 9908456 So that's about 25% higher throughput even for random keys Pull Request resolved: https://github.com/facebook/rocksdb/pull/6757 Test Plan: unit test included Reviewed By: anand1976 Differential Revision: D21243256 Pulled By: pdillinger fbshipit-source-id: 5644a1468d9e8c8575be02f4e04bc5d62dbbb57f
2020-04-28 14:46:13 -07:00
if (!sst_file_range.empty()) {
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
IndexBlockIter iiter_on_stack;
// if prefix_extractor found in block differs from options, disable
// BlockPrefixIndex. Only do this check when index_type is kHashSearch.
bool need_upper_bound_check = false;
if (rep_->index_type == BlockBasedTableOptions::kHashSearch) {
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 11:36:36 -08:00
need_upper_bound_check = PrefixExtractorChanged(prefix_extractor);
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
}
auto iiter =
NewIndexIterator(read_options, need_upper_bound_check, &iiter_on_stack,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
sst_file_range.begin()->get_context, &lookup_context);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (iiter != &iiter_on_stack) {
iiter_unique_ptr.reset(iiter);
}
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
uint64_t prev_offset = std::numeric_limits<uint64_t>::max();
autovector<BlockHandle, MultiGetContext::MAX_BATCH_SIZE> block_handles;
autovector<CachableEntry<Block>, MultiGetContext::MAX_BATCH_SIZE> results;
autovector<Status, MultiGetContext::MAX_BATCH_SIZE> statuses;
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
MultiGetContext::Mask reused_mask = 0;
char stack_buf[kMultiGetReadStackBufSize];
std::unique_ptr<char[]> block_buf;
{
MultiGetRange data_block_range(sst_file_range, sst_file_range.begin(),
sst_file_range.end());
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
std::vector<Cache::Handle*> cache_handles;
bool wait_for_cache_results = false;
CachableEntry<UncompressionDict> uncompression_dict;
Status uncompression_dict_status;
uncompression_dict_status.PermitUncheckedError();
bool uncompression_dict_inited = false;
size_t total_len = 0;
ReadOptions ro = read_options;
ro.read_tier = kBlockCacheTier;
for (auto miter = data_block_range.begin();
miter != data_block_range.end(); ++miter) {
const Slice& key = miter->ikey;
iiter->Seek(miter->ikey);
IndexValue v;
if (iiter->Valid()) {
v = iiter->value();
}
if (!iiter->Valid() ||
(!v.first_internal_key.empty() && !skip_filters &&
UserComparatorWrapper(rep_->internal_comparator.user_comparator())
.CompareWithoutTimestamp(
ExtractUserKey(key),
ExtractUserKey(v.first_internal_key)) < 0)) {
// The requested key falls between highest key in previous block and
// lowest key in current block.
if (!iiter->status().IsNotFound()) {
*(miter->s) = iiter->status();
}
data_block_range.SkipKey(miter);
sst_file_range.SkipKey(miter);
continue;
}
if (!uncompression_dict_inited && rep_->uncompression_dict_reader) {
uncompression_dict_status =
rep_->uncompression_dict_reader->GetOrReadUncompressionDictionary(
nullptr /* prefetch_buffer */, no_io,
read_options.verify_checksums,
sst_file_range.begin()->get_context, &lookup_context,
&uncompression_dict);
uncompression_dict_inited = true;
}
if (!uncompression_dict_status.ok()) {
assert(!uncompression_dict_status.IsNotFound());
*(miter->s) = uncompression_dict_status;
data_block_range.SkipKey(miter);
sst_file_range.SkipKey(miter);
continue;
}
statuses.emplace_back();
results.emplace_back();
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
if (v.handle.offset() == prev_offset) {
// This key can reuse the previous block (later on).
// Mark previous as "reused"
reused_mask |= MultiGetContext::Mask{1} << (block_handles.size() - 1);
// Use null handle to indicate this one reuses same block as
// previous.
block_handles.emplace_back(BlockHandle::NullBlockHandle());
continue;
}
// Lookup the cache for the given data block referenced by an index
// iterator value (i.e BlockHandle). If it exists in the cache,
// initialize block to the contents of the data block.
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
prev_offset = v.handle.offset();
BlockHandle handle = v.handle;
BlockCacheLookupContext lookup_data_block_context(
TableReaderCaller::kUserMultiGet);
const UncompressionDict& dict = uncompression_dict.GetValue()
? *uncompression_dict.GetValue()
: UncompressionDict::GetEmptyDict();
Status s = RetrieveBlock(
nullptr, ro, handle, dict, &(results.back()), BlockType::kData,
miter->get_context, &lookup_data_block_context,
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
/* for_compaction */ false, /* use_cache */ true,
/* wait_for_cache */ false);
if (s.IsIncomplete()) {
s = Status::OK();
}
if (s.ok() && !results.back().IsEmpty()) {
// Since we have a valid handle, check the value. If its nullptr,
// it means the cache is waiting for the final result and we're
// supposed to call WaitAll() to wait for the result.
if (results.back().GetValue() != nullptr) {
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
// Found it in the cache. Add NULL handle to indicate there is
// nothing to read from disk.
if (results.back().GetCacheHandle()) {
results.back().UpdateCachedValue();
}
block_handles.emplace_back(BlockHandle::NullBlockHandle());
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
} else {
// We have to wait for the cache lookup to finish in the
// background, and then we may have to read the block from disk
// anyway
assert(results.back().GetCacheHandle());
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
wait_for_cache_results = true;
block_handles.emplace_back(handle);
cache_handles.emplace_back(results.back().GetCacheHandle());
}
} else {
block_handles.emplace_back(handle);
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
total_len += BlockSizeWithTrailer(handle);
}
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
if (wait_for_cache_results) {
Cache* block_cache = rep_->table_options.block_cache.get();
block_cache->WaitAll(cache_handles);
for (size_t i = 0; i < block_handles.size(); ++i) {
// If this block was a success or failure or not needed because
// the corresponding key is in the same block as a prior key, skip
if (block_handles[i] == BlockHandle::NullBlockHandle() ||
results[i].IsEmpty()) {
continue;
}
results[i].UpdateCachedValue();
void* val = results[i].GetValue();
if (!val) {
// The async cache lookup failed - could be due to an error
// or a false positive. We need to read the data block from
// the SST file
results[i].Reset();
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
total_len += BlockSizeWithTrailer(block_handles[i]);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:03 -07:00
} else {
block_handles[i] = BlockHandle::NullBlockHandle();
}
}
}
if (total_len) {
char* scratch = nullptr;
const UncompressionDict& dict = uncompression_dict.GetValue()
? *uncompression_dict.GetValue()
: UncompressionDict::GetEmptyDict();
assert(uncompression_dict_inited || !rep_->uncompression_dict_reader);
assert(uncompression_dict_status.ok());
// If using direct IO, then scratch is not used, so keep it nullptr.
// If the blocks need to be uncompressed and we don't need the
// compressed blocks, then we can use a contiguous block of
// memory to read in all the blocks as it will be temporary
// storage
// 1. If blocks are compressed and compressed block cache is there,
// alloc heap bufs
// 2. If blocks are uncompressed, alloc heap bufs
// 3. If blocks are compressed and no compressed block cache, use
// stack buf
if (!rep_->file->use_direct_io() &&
rep_->table_options.block_cache_compressed == nullptr &&
rep_->blocks_maybe_compressed) {
if (total_len <= kMultiGetReadStackBufSize) {
scratch = stack_buf;
} else {
scratch = new char[total_len];
block_buf.reset(scratch);
}
}
RetrieveMultipleBlocks(read_options, &data_block_range, &block_handles,
&statuses, &results, scratch, dict);
if (sst_file_range.begin()->get_context) {
++(sst_file_range.begin()
->get_context->get_context_stats_.num_sst_read);
}
}
}
DataBlockIter first_biter;
DataBlockIter next_biter;
size_t idx_in_batch = 0;
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
SharedCleanablePtr shared_cleanable;
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
for (auto miter = sst_file_range.begin(); miter != sst_file_range.end();
++miter) {
Status s;
GetContext* get_context = miter->get_context;
const Slice& key = miter->ikey;
bool matched = false; // if such user key matched a key in SST
bool done = false;
bool first_block = true;
do {
DataBlockIter* biter = nullptr;
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
bool reusing_prev_block;
bool later_reused;
uint64_t referenced_data_size = 0;
bool does_referenced_key_exist = false;
BlockCacheLookupContext lookup_data_block_context(
TableReaderCaller::kUserMultiGet, tracing_mget_id,
/*get_from_user_specified_snapshot=*/read_options.snapshot !=
nullptr);
if (first_block) {
if (!block_handles[idx_in_batch].IsNull() ||
!results[idx_in_batch].IsEmpty()) {
first_biter.Invalidate(Status::OK());
NewDataBlockIterator<DataBlockIter>(
read_options, results[idx_in_batch], &first_biter,
statuses[idx_in_batch]);
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
reusing_prev_block = false;
} else {
// If handler is null and result is empty, then the status is never
// set, which should be the initial value: ok().
assert(statuses[idx_in_batch].ok());
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
reusing_prev_block = true;
}
biter = &first_biter;
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
later_reused =
(reused_mask & (MultiGetContext::Mask{1} << idx_in_batch)) != 0;
idx_in_batch++;
} else {
IndexValue v = iiter->value();
if (!v.first_internal_key.empty() && !skip_filters &&
UserComparatorWrapper(rep_->internal_comparator.user_comparator())
.CompareWithoutTimestamp(
ExtractUserKey(key),
ExtractUserKey(v.first_internal_key)) < 0) {
// The requested key falls between highest key in previous block and
// lowest key in current block.
break;
}
next_biter.Invalidate(Status::OK());
NewDataBlockIterator<DataBlockIter>(
read_options, iiter->value().handle, &next_biter,
BlockType::kData, get_context, &lookup_data_block_context,
Status(), nullptr);
biter = &next_biter;
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
reusing_prev_block = false;
later_reused = false;
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (read_options.read_tier == kBlockCacheTier &&
biter->status().IsIncomplete()) {
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
// couldn't get block from block_cache
// Update Saver.state to Found because we are only looking for
// whether we can guarantee the key is not there when "no_io" is set
get_context->MarkKeyMayExist();
break;
}
if (!biter->status().ok()) {
s = biter->status();
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
break;
}
bool may_exist = biter->SeekForGet(key);
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (!may_exist) {
// HashSeek cannot find the key this block and the the iter is not
// the end of the block, i.e. cannot be in the following blocks
// either. In this case, the seek_key cannot be found, so we break
// from the top level for-loop.
break;
}
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
// Reusing blocks complicates pinning/Cleanable, because the cache
// entry referenced by biter can only be released once all returned
// pinned values are released. This code previously did an extra
// block_cache Ref for each reuse, but that unnecessarily increases
// block cache contention. Instead we can use a variant of shared_ptr
// to release in block cache only once.
//
// Although the biter loop below might SaveValue multiple times for
// merges, just one value_pinner suffices, as MultiGet will merge
// the operands before returning to the API user.
Cleanable* value_pinner;
if (biter->IsValuePinned()) {
if (reusing_prev_block) {
// Note that we don't yet know if the MultiGet results will need
// to pin this block, so we might wrap a block for sharing and
// still end up with 1 (or 0) pinning ref. Not ideal but OK.
//
// Here we avoid adding redundant cleanups if we didn't end up
// delegating the cleanup from last time around.
if (!biter->HasCleanups()) {
assert(shared_cleanable.get());
if (later_reused) {
shared_cleanable.RegisterCopyWith(biter);
} else {
shared_cleanable.MoveAsCleanupTo(biter);
}
}
} else if (later_reused) {
assert(biter->HasCleanups());
// Make the existing cleanups on `biter` sharable:
shared_cleanable.Allocate();
// Move existing `biter` cleanup(s) to `shared_cleanable`
biter->DelegateCleanupsTo(&*shared_cleanable);
// Reference `shared_cleanable` as new cleanup for `biter`
shared_cleanable.RegisterCopyWith(biter);
}
assert(biter->HasCleanups());
value_pinner = biter;
} else {
value_pinner = nullptr;
}
// Call the *saver function on each entry/block until it returns false
for (; biter->Valid(); biter->Next()) {
ParsedInternalKey parsed_key;
Status pik_status = ParseInternalKey(
biter->key(), &parsed_key, false /* log_err_key */); // TODO
if (!pik_status.ok()) {
s = pik_status;
}
if (!get_context->SaveValue(parsed_key, biter->value(), &matched,
value_pinner)) {
if (get_context->State() == GetContext::GetState::kFound) {
does_referenced_key_exist = true;
referenced_data_size =
biter->key().size() + biter->value().size();
}
done = true;
break;
}
s = biter->status();
}
// Write the block cache access.
Eliminate unnecessary (slow) block cache Ref()ing in MultiGet (#9899) Summary: When MultiGet() determines that multiple query keys can be served by examining the same data block in block cache (one Lookup()), each PinnableSlice referring to data in that data block needs to hold on to the block in cache so that they can be released at arbitrary times by the API user. Historically this is accomplished with extra calls to Ref() on the Handle from Lookup(), with each PinnableSlice cleanup calling Release() on the Handle, but this creates extra contention on the block cache for the extra Ref()s and Release()es, especially because they hit the same cache shard repeatedly. In the case of merge operands (possibly more cases?), the problem was compounded by doing an extra Ref()+eventual Release() for each merge operand for a key reusing a block (which could be the same key!), rather than one Ref() per key. (Note: the non-shared case with `biter` was already one per key.) This change optimizes MultiGet not to rely on these extra, contentious Ref()+Release() calls by instead, in the shared block case, wrapping the cache Release() cleanup in a refcounted object referenced by the PinnableSlices, such that after the last wrapped reference is released, the cache entry is Release()ed. Relaxed atomic refcounts should be much faster than mutex-guarded Ref() and Release(), and much less prone to a performance cliff when MultiGet() does a lot of block sharing. Note that I did not use std::shared_ptr, because that would require an extra indirection object (shared_ptr itself new/delete) in order to associate a ref increment/decrement with a Cleanable cleanup entry. (If I assumed it was the size of two pointers, I could do some hackery to make it work without the extra indirection, but that's too fragile.) Some details: * Fixed (removed) extra block cache tracing entries in cases of cache entry reuse in MultiGet, but it's likely that in some other cases traces are missing (XXX comment inserted) * Moved existing implementations for cleanable.h from iterator.cc to new cleanable.cc * Improved API comments on Cleanable * Added a public SharedCleanablePtr class to cleanable.h in case others could benefit from the same pattern (potentially many Cleanables and/or smart pointers referencing a shared Cleanable) * Add a typedef for MultiGetContext::Mask * Some variable renaming for clarity Pull Request resolved: https://github.com/facebook/rocksdb/pull/9899 Test Plan: Added unit tests for SharedCleanablePtr. Greatly enhanced ability of existing tests to detect cache use-after-free. * Release PinnableSlices from MultiGet as they are read rather than in bulk (in db_test_util wrapper). * In ASAN build, default to using a trivially small LRUCache for block_cache so that entries are immediately erased when unreferenced. (Updated two tests that depend on caching.) New ASAN testsuite running time seems OK to me. If I introduce a bug into my implementation where we skip the shared cleanups on block reuse, ASAN detects the bug in `db_basic_test *MultiGet*`. If I remove either of the above testing enhancements, the bug is not detected. Consider for follow-up work: manipulate or randomize ordering of PinnableSlice use and release from MultiGet db_test_util wrapper. But in typical cases, natural ordering gives pretty good functional coverage. Performance test: In the extreme (but possible) case of MultiGetting the same or adjacent keys in a batch, throughput can improve by an order of magnitude. `./db_bench -benchmarks=multireadrandom -db=/dev/shm/testdb -readonly -num=5 -duration=10 -threads=20 -multiread_batched -batch_size=200` Before ops/sec, num=5: 1,384,394 Before ops/sec, num=500: 6,423,720 After ops/sec, num=500: 10,658,794 After ops/sec, num=5: 16,027,257 Also note that previously, with high parallelism, having query keys concentrated in a single block was worse than spreading them out a bit. Now concentrated in a single block is faster than spread out, which is hopefully consistent with natural expectation. Random query performance: with num=1000000, over 999 x 10s runs running before & after simultaneously (each -threads=12): Before: multireadrandom [AVG 999 runs] : 1088699 (± 7344) ops/sec; 120.4 (± 0.8 ) MB/sec After: multireadrandom [AVG 999 runs] : 1090402 (± 7230) ops/sec; 120.6 (± 0.8 ) MB/sec Possibly better, possibly in the noise. Reviewed By: anand1976 Differential Revision: D35907003 Pulled By: pdillinger fbshipit-source-id: bbd244d703649a8ca12d476f2d03853ed9d1a17e
2022-04-26 21:59:24 -07:00
// XXX: There appear to be 'break' statements above that bypass this
// writing of the block cache trace record
if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled() &&
!reusing_prev_block) {
// Avoid making copy of block_key, cf_name, and referenced_key when
// constructing the access record.
Slice referenced_key;
if (does_referenced_key_exist) {
referenced_key = biter->key();
} else {
referenced_key = key;
}
BlockCacheTraceRecord access_record(
rep_->ioptions.clock->NowMicros(),
/*block_key=*/"", lookup_data_block_context.block_type,
lookup_data_block_context.block_size, rep_->cf_id_for_tracing(),
/*cf_name=*/"", rep_->level_for_tracing(),
rep_->sst_number_for_tracing(), lookup_data_block_context.caller,
lookup_data_block_context.is_cache_hit,
lookup_data_block_context.no_insert,
lookup_data_block_context.get_id,
lookup_data_block_context.get_from_user_specified_snapshot,
/*referenced_key=*/"", referenced_data_size,
lookup_data_block_context.num_keys_in_block,
does_referenced_key_exist);
// TODO: Should handle status here?
block_cache_tracer_
->WriteBlockAccess(access_record,
lookup_data_block_context.block_key,
rep_->cf_name_for_tracing(), referenced_key)
.PermitUncheckedError();
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
}
s = biter->status();
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (done) {
// Avoid the extra Next which is expensive in two-level indexes
break;
}
if (first_block) {
iiter->Seek(key);
if (!iiter->Valid()) {
break;
}
}
first_block = false;
iiter->Next();
} while (iiter->Valid());
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
if (matched && filter != nullptr && !filter->IsBlockBased()) {
RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_TRUE_POSITIVE);
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1,
rep_->level);
}
if (s.ok() && !iiter->status().IsNotFound()) {
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
s = iiter->status();
}
*(miter->s) = s;
}
#ifdef ROCKSDB_ASSERT_STATUS_CHECKED
// Not sure why we need to do it. Should investigate more.
for (auto& st : statuses) {
st.PermitUncheckedError();
}
#endif // ROCKSDB_ASSERT_STATUS_CHECKED
Introduce a new MultiGet batching implementation (#5011) Summary: This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching. Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to - 1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch() 2. Bloom filter cachelines can be prefetched, hiding the cache miss latency The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress. Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32). Batch Sizes 1 | 2 | 4 | 8 | 16 | 32 Random pattern (Stride length 0) 4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get 4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching) 4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching) Good locality (Stride length 16) 4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753 4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781 4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135 Good locality (Stride length 256) 4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232 4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268 4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62 Medium locality (Stride length 4096) 4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555 4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465 4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891 dbbench command used (on a DB with 4 levels, 12 million keys)- TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011 Differential Revision: D14348703 Pulled By: anand1976 fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
2019-04-11 14:24:09 -07:00
}
}
Status BlockBasedTable::Prefetch(const Slice* const begin,
const Slice* const end) {
auto& comparator = rep_->internal_comparator;
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
UserComparatorWrapper user_comparator(comparator.user_comparator());
// pre-condition
if (begin && end && comparator.Compare(*begin, *end) > 0) {
return Status::InvalidArgument(*begin, *end);
}
BlockCacheLookupContext lookup_context{TableReaderCaller::kPrefetch};
IndexBlockIter iiter_on_stack;
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
auto iiter = NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false,
&iiter_on_stack, /*get_context=*/nullptr,
&lookup_context);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
iiter_unique_ptr = std::unique_ptr<InternalIteratorBase<IndexValue>>(iiter);
}
if (!iiter->status().ok()) {
// error opening index iterator
return iiter->status();
}
// indicates if we are on the last page that need to be pre-fetched
bool prefetching_boundary_page = false;
for (begin ? iiter->Seek(*begin) : iiter->SeekToFirst(); iiter->Valid();
iiter->Next()) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockHandle block_handle = iiter->value().handle;
const bool is_user_key = !rep_->index_key_includes_seq;
if (end &&
((!is_user_key && comparator.Compare(iiter->key(), *end) >= 0) ||
(is_user_key &&
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
user_comparator.Compare(iiter->key(), ExtractUserKey(*end)) >= 0))) {
if (prefetching_boundary_page) {
break;
}
// The index entry represents the last key in the data block.
// We should load this page into memory as well, but no more
prefetching_boundary_page = true;
}
// Load the block specified by the block_handle into the block cache
DataBlockIter biter;
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
NewDataBlockIterator<DataBlockIter>(
ReadOptions(), block_handle, &biter, /*type=*/BlockType::kData,
/*get_context=*/nullptr, &lookup_context, Status(),
/*prefetch_buffer=*/nullptr);
if (!biter.status().ok()) {
// there was an unexpected error while pre-fetching
return biter.status();
}
}
return Status::OK();
}
Status BlockBasedTable::VerifyChecksum(const ReadOptions& read_options,
TableReaderCaller caller) {
Status s;
// Check Meta blocks
std::unique_ptr<Block> metaindex;
std::unique_ptr<InternalIterator> metaindex_iter;
ReadOptions ro;
s = ReadMetaIndexBlock(ro, nullptr /* prefetch buffer */, &metaindex,
&metaindex_iter);
if (s.ok()) {
s = VerifyChecksumInMetaBlocks(metaindex_iter.get());
if (!s.ok()) {
return s;
}
} else {
return s;
}
// Check Data blocks
IndexBlockIter iiter_on_stack;
BlockCacheLookupContext context{caller};
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
InternalIteratorBase<IndexValue>* iiter = NewIndexIterator(
read_options, /*disable_prefix_seek=*/false, &iiter_on_stack,
/*get_context=*/nullptr, &context);
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
iiter_unique_ptr = std::unique_ptr<InternalIteratorBase<IndexValue>>(iiter);
}
if (!iiter->status().ok()) {
// error opening index iterator
return iiter->status();
}
s = VerifyChecksumInBlocks(read_options, iiter);
return s;
}
Status BlockBasedTable::VerifyChecksumInBlocks(
const ReadOptions& read_options,
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
InternalIteratorBase<IndexValue>* index_iter) {
Status s;
// We are scanning the whole file, so no need to do exponential
// increasing of the buffer size.
size_t readahead_size = (read_options.readahead_size != 0)
? read_options.readahead_size
: rep_->table_options.max_auto_readahead_size;
// FilePrefetchBuffer doesn't work in mmap mode and readahead is not
// needed there.
FilePrefetchBuffer prefetch_buffer(
readahead_size /* readahead_size */,
readahead_size /* max_readahead_size */,
!rep_->ioptions.allow_mmap_reads /* enable */);
for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) {
s = index_iter->status();
if (!s.ok()) {
break;
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockHandle handle = index_iter->value().handle;
BlockContents contents;
BlockFetcher block_fetcher(
Add rate limiter priority to ReadOptions (#9424) Summary: Users can set the priority for file reads associated with their operation by setting `ReadOptions::rate_limiter_priority` to something other than `Env::IO_TOTAL`. Rate limiting `VerifyChecksum()` and `VerifyFileChecksums()` is the motivation for this PR, so it also includes benchmarks and minor bug fixes to get that working. `RandomAccessFileReader::Read()` already had support for rate limiting compaction reads. I changed that rate limiting to be non-specific to compaction, but rather performed according to the passed in `Env::IOPriority`. Now the compaction read rate limiting is supported by setting `rate_limiter_priority = Env::IO_LOW` on its `ReadOptions`. There is no default value for the new `Env::IOPriority` parameter to `RandomAccessFileReader::Read()`. That means this PR goes through all callers (in some cases multiple layers up the call stack) to find a `ReadOptions` to provide the priority. There are TODOs for cases I believe it would be good to let user control the priority some day (e.g., file footer reads), and no TODO in cases I believe it doesn't matter (e.g., trace file reads). The API doc only lists the missing cases where a file read associated with a provided `ReadOptions` cannot be rate limited. For cases like file ingestion checksum calculation, there is no API to provide `ReadOptions` or `Env::IOPriority`, so I didn't count that as missing. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9424 Test Plan: - new unit tests - new benchmarks on ~50MB database with 1MB/s read rate limit and 100ms refill interval; verified with strace reads are chunked (at 0.1MB per chunk) and spaced roughly 100ms apart. - setup command: `./db_bench -benchmarks=fillrandom,compact -db=/tmp/testdb -target_file_size_base=1048576 -disable_auto_compactions=true -file_checksum=true` - benchmarks command: `strace -ttfe pread64 ./db_bench -benchmarks=verifychecksum,verifyfilechecksums -use_existing_db=true -db=/tmp/testdb -rate_limiter_bytes_per_sec=1048576 -rate_limit_bg_reads=1 -rate_limit_user_ops=true -file_checksum=true` - crash test using IO_USER priority on non-validation reads with https://github.com/facebook/rocksdb/issues/9567 reverted: `python3 tools/db_crashtest.py blackbox --max_key=1000000 --write_buffer_size=524288 --target_file_size_base=524288 --level_compaction_dynamic_level_bytes=true --duration=3600 --rate_limit_bg_reads=true --rate_limit_user_ops=true --rate_limiter_bytes_per_sec=10485760 --interval=10` Reviewed By: hx235 Differential Revision: D33747386 Pulled By: ajkr fbshipit-source-id: a2d985e97912fba8c54763798e04f006ccc56e0c
2022-02-16 23:17:03 -08:00
rep_->file.get(), &prefetch_buffer, rep_->footer, read_options, handle,
&contents, rep_->ioptions, false /* decompress */,
false /*maybe_compressed*/, BlockType::kData,
UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options);
s = block_fetcher.ReadBlockContents();
if (!s.ok()) {
break;
}
}
if (s.ok()) {
// In the case of two level indexes, we would have exited the above loop
// by checking index_iter->Valid(), but Valid() might have returned false
// due to an IO error. So check the index_iter status
s = index_iter->status();
}
return s;
}
BlockType BlockBasedTable::GetBlockTypeForMetaBlockByName(
const Slice& meta_block_name) {
if (meta_block_name.starts_with(kFilterBlockPrefix) ||
meta_block_name.starts_with(kFullFilterBlockPrefix) ||
meta_block_name.starts_with(kPartitionedFilterBlockPrefix)) {
return BlockType::kFilter;
}
if (meta_block_name == kPropertiesBlockName) {
return BlockType::kProperties;
}
if (meta_block_name == kCompressionDictBlockName) {
return BlockType::kCompressionDictionary;
}
if (meta_block_name == kRangeDelBlockName) {
return BlockType::kRangeDeletion;
}
if (meta_block_name == kHashIndexPrefixesBlock) {
return BlockType::kHashIndexPrefixes;
}
if (meta_block_name == kHashIndexPrefixesMetadataBlock) {
return BlockType::kHashIndexMetadata;
}
assert(false);
return BlockType::kInvalid;
}
Status BlockBasedTable::VerifyChecksumInMetaBlocks(
InternalIteratorBase<Slice>* index_iter) {
Status s;
for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) {
s = index_iter->status();
if (!s.ok()) {
break;
}
BlockHandle handle;
Slice input = index_iter->value();
s = handle.DecodeFrom(&input);
BlockContents contents;
const Slice meta_block_name = index_iter->key();
if (meta_block_name == kPropertiesBlockName) {
Improve / clean up meta block code & integrity (#9163) Summary: * Checksums are now checked on meta blocks unless specifically suppressed or not applicable (e.g. plain table). (Was other way around.) This means a number of cases that were not checking checksums now are, including direct read TableProperties in Version::GetTableProperties (fixed in meta_blocks ReadTableProperties), reading any block from PersistentCache (fixed in BlockFetcher), read TableProperties in SstFileDumper (ldb/sst_dump/BackupEngine) before table reader open, maybe more. * For that to work, I moved the global_seqno+TableProperties checksum logic to the shared table/ code, because that is used by many utilies such as SstFileDumper. * Also for that to work, we have to know when we're dealing with a block that has a checksum (trailer), so added that capability to Footer based on magic number, and from there BlockFetcher. * Knowledge of trailer presence has also fixed a problem where other table formats were reading blocks including bytes for a non-existant trailer--and awkwardly kind-of not using them, e.g. no shared code checking checksums. (BlockFetcher compression type was populated incorrectly.) Now we only read what is needed. * Minimized code duplication and differing/incompatible/awkward abstractions in meta_blocks.{cc,h} (e.g. SeekTo in metaindex block without parsing block handle) * Moved some meta block handling code from table_properties*.* * Moved some code specific to block-based table from shared table/ code to BlockBasedTable class. The checksum stuff means we can't completely separate it, but things that don't need to be in shared table/ code should not be. * Use unique_ptr rather than raw ptr in more places. (Note: you can std::move from unique_ptr to shared_ptr.) Without enhancements to GetPropertiesOfAllTablesTest (see below), net reduction of roughly 100 lines of code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9163 Test Plan: existing tests and * Enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to verify that checksums are now checked on direct read of table properties by TableCache (new test would fail before this change) * Also enhanced DBTablePropertiesTest.GetPropertiesOfAllTablesTest to test putting table properties under old meta name * Also generally enhanced that same test to actually test what it was supposed to be testing already, by kicking things out of table cache when we don't want them there. Reviewed By: ajkr, mrambacher Differential Revision: D32514757 Pulled By: pdillinger fbshipit-source-id: 507964b9311d186ae8d1131182290cbd97a99fa9
2021-11-18 11:42:12 -08:00
// Unfortunate special handling for properties block checksum w/
// global seqno
std::unique_ptr<TableProperties> table_properties;
s = ReadTablePropertiesHelper(ReadOptions(), handle, rep_->file.get(),
nullptr /* prefetch_buffer */, rep_->footer,
rep_->ioptions, &table_properties,
nullptr /* memory_allocator */);
} else {
s = BlockFetcher(
rep_->file.get(), nullptr /* prefetch buffer */, rep_->footer,
ReadOptions(), handle, &contents, rep_->ioptions,
false /* decompress */, false /*maybe_compressed*/,
GetBlockTypeForMetaBlockByName(meta_block_name),
UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options)
.ReadBlockContents();
}
if (!s.ok()) {
break;
}
}
return s;
}
bool BlockBasedTable::TEST_BlockInCache(const BlockHandle& handle) const {
assert(rep_ != nullptr);
Cache* const cache = rep_->table_options.block_cache.get();
if (cache == nullptr) {
return false;
}
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
CacheKey key = GetCacheKey(rep_->base_cache_key, handle);
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
Cache::Handle* const cache_handle = cache->Lookup(key.AsSlice());
if (cache_handle == nullptr) {
return false;
}
cache->Release(cache_handle);
return true;
}
bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options,
const Slice& key) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter(NewIndexIterator(
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr,
/*get_context=*/nullptr, /*lookup_context=*/nullptr));
iiter->Seek(key);
assert(iiter->Valid());
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
return TEST_BlockInCache(iiter->value().handle);
}
// REQUIRES: The following fields of rep_ should have already been populated:
// 1. file
// 2. index_handle,
// 3. options
// 4. internal_comparator
// 5. index_type
Status BlockBasedTable::CreateIndexReader(
const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer,
InternalIterator* meta_iter, bool use_cache, bool prefetch, bool pin,
BlockCacheLookupContext* lookup_context,
std::unique_ptr<IndexReader>* index_reader) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
switch (rep_->index_type) {
case BlockBasedTableOptions::kTwoLevelIndexSearch: {
return PartitionIndexReader::Create(this, ro, prefetch_buffer, use_cache,
prefetch, pin, lookup_context,
index_reader);
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
case BlockBasedTableOptions::kBinarySearch:
FALLTHROUGH_INTENDED;
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
case BlockBasedTableOptions::kBinarySearchWithFirstKey: {
return BinarySearchIndexReader::Create(this, ro, prefetch_buffer,
use_cache, prefetch, pin,
lookup_context, index_reader);
}
case BlockBasedTableOptions::kHashSearch: {
std::unique_ptr<Block> metaindex_guard;
std::unique_ptr<InternalIterator> metaindex_iter_guard;
bool should_fallback = false;
Ignore `total_order_seek` in DB::Get (#9427) Summary: Apparently setting total_order_seek=true for DB::Get was intended to allow accurate read semantics if the current prefix extractor doesn't match what was used to generate SST files on disk. But since prefix_extractor was made a mutable option in 5.14.0, we have been able to detect this case and provide the correct semantics regardless of the total_order_seek option. Since that time, the option has only made Get() slower in a reasonably common case: prefix_extractor unchanged and whole_key_filtering=false. So this change primarily removes unnecessary effect of total_order_seek on Get. Also cleans up some related comments. Also adds a -total_order_seek option to db_bench and canonicalizes handling of ReadOptions in db_bench so that command line options have the expected association with library features. (There is potential for change in regression test behavior, but the old behavior is likely indefensible, or some other inconsistency would need to be fixed.) TODO in follow-up work: there should be no reason for Get() to depend on current prefix extractor at all. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9427 Test Plan: Unit tests updated. Performance (using db_bench update) Create DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12 -whole_key_filtering=0` Test with and without `-total_order_seek` on `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=readrandom -num=10000000 -duration=40 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Before this change, total_order_seek=false: 25188 ops/sec Before this change, total_order_seek=true: 1222 ops/sec (~20x slower) After this change, total_order_seek=false: 24570 ops/sec After this change, total_order_seek=true: 25012 ops/sec (indistinguishable) Reviewed By: siying Differential Revision: D33753458 Pulled By: pdillinger fbshipit-source-id: bf892f34907a5e407d9c40bd4d42f0adbcbe0014
2022-01-31 19:45:17 -08:00
// FIXME: is changed prefix_extractor handled anywhere for hash index?
if (rep_->internal_prefix_transform.get() == nullptr) {
ROCKS_LOG_WARN(rep_->ioptions.logger,
"No prefix extractor passed in. Fall back to binary"
" search index.");
should_fallback = true;
}
if (should_fallback) {
return BinarySearchIndexReader::Create(this, ro, prefetch_buffer,
use_cache, prefetch, pin,
lookup_context, index_reader);
} else {
return HashIndexReader::Create(this, ro, prefetch_buffer, meta_iter,
use_cache, prefetch, pin, lookup_context,
index_reader);
}
}
default: {
std::string error_message =
"Unrecognized index type: " + std::to_string(rep_->index_type);
return Status::InvalidArgument(error_message.c_str());
}
}
}
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
uint64_t BlockBasedTable::ApproximateDataOffsetOf(
const InternalIteratorBase<IndexValue>& index_iter,
uint64_t data_size) const {
Handle failures in block-based table size/offset approximation (#9615) Summary: In crash test with fault injection, we were seeing stack traces like the following: ``` https://github.com/facebook/rocksdb/issues/3 0x00007f75f763c533 in __GI___assert_fail (assertion=assertion@entry=0x1c5b2a0 "end_offset >= start_offset", file=file@entry=0x1c580a0 "table/block_based/block_based_table_reader.cc", line=line@entry=3245, function=function@entry=0x1c60e60 "virtual uint64_t rocksdb::BlockBasedTable::ApproximateSize(const rocksdb::Slice&, const rocksdb::Slice&, rocksdb::TableReaderCaller)") at assert.c:101 https://github.com/facebook/rocksdb/issues/4 0x00000000010ea9b4 in rocksdb::BlockBasedTable::ApproximateSize (this=<optimized out>, start=..., end=..., caller=<optimized out>) at table/block_based/block_based_table_reader.cc:3224 https://github.com/facebook/rocksdb/issues/5 0x0000000000be61fb in rocksdb::TableCache::ApproximateSize (this=0x60f0000161b0, start=..., end=..., fd=..., caller=caller@entry=rocksdb::kCompaction, internal_comparator=..., prefix_extractor=...) at db/table_cache.cc:719 https://github.com/facebook/rocksdb/issues/6 0x0000000000c3eaec in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, v=<optimized out>, f=..., start=..., end=..., caller=<optimized out>) at ./db/version_set.h:850 https://github.com/facebook/rocksdb/issues/7 0x0000000000c6ebc3 in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, options=..., v=v@entry=0x621000047500, start=..., end=..., start_level=start_level@entry=0, end_level=<optimized out>, caller=<optimized out>) at db/version_set.cc:5657 https://github.com/facebook/rocksdb/issues/8 0x000000000166e894 in rocksdb::CompactionJob::GenSubcompactionBoundaries (this=<optimized out>) at ./include/rocksdb/options.h:1869 https://github.com/facebook/rocksdb/issues/9 0x000000000168c526 in rocksdb::CompactionJob::Prepare (this=this@entry=0x7f75f3ffcf00) at db/compaction/compaction_job.cc:546 ``` The problem occurred in `ApproximateSize()` when the index `Seek()` for the first `ApproximateDataOffsetOf()` encountered an I/O error, while the second `Seek()` did not. In the old code that scenario caused `start_offset == data_size` , thus it was easy to trip the assertion that `end_offset >= start_offset`. The fix is to set `start_offset == 0` when the first index `Seek()` fails, and `end_offset == data_size` when the second index `Seek()` fails. I doubt these give an "on average correct" answer for how this function is used, but I/O errors in index seeks are hopefully rare, it looked consistent with what was already there, and it was easier to calculate. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9615 Test Plan: run the repro command for a while and stopped seeing coredumps - ``` $ while ! ./db_stress --block_size=128 --cache_size=32768 --clear_column_family_one_in=0 --column_families=1 --continuous_verification_interval=0 --db=/dev/shm/rocksdb_crashtest --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --expected_values_dir=/dev/shm/rocksdb_crashtest_expected --index_type=2 --iterpercent=10 --kill_random_test=18887 --max_key=1000000 --max_bytes_for_level_base=2048576 --nooverwritepercent=1 --open_files=-1 --open_read_fault_one_in=32 --ops_per_thread=1000000 --prefixpercent=5 --read_fault_one_in=0 --readpercent=45 --reopen=0 --skip_verifydb=1 --subcompactions=2 --target_file_size_base=524288 --test_batches_snapshots=0 --value_size_mult=32 --write_buffer_size=524288 --writepercent=35 ; do : ; done ``` Reviewed By: pdillinger Differential Revision: D34383069 Pulled By: ajkr fbshipit-source-id: fac26c3b20ea962e75387515ba5f2724dc48719f
2022-02-28 23:45:08 -08:00
assert(index_iter.status().ok());
if (index_iter.Valid()) {
BlockHandle handle = index_iter.value().handle;
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
return handle.offset();
} else {
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
// The iterator is past the last key in the file.
return data_size;
}
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
}
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
uint64_t BlockBasedTable::GetApproximateDataSize() {
// Should be in table properties unless super old version
if (rep_->table_properties) {
return rep_->table_properties->data_size;
}
// Fall back to rough estimate from footer
return rep_->footer.metaindex_handle().offset();
}
uint64_t BlockBasedTable::ApproximateOffsetOf(const Slice& key,
TableReaderCaller caller) {
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
uint64_t data_size = GetApproximateDataSize();
if (UNLIKELY(data_size == 0)) {
// Hmm. Let's just split in half to avoid skewing one way or another,
// since we don't know whether we're operating on lower bound or
// upper bound.
return rep_->file_size / 2;
}
BlockCacheLookupContext context(caller);
IndexBlockIter iiter_on_stack;
ReadOptions ro;
ro.total_order_seek = true;
auto index_iter =
NewIndexIterator(ro, /*disable_prefix_seek=*/true,
/*input_iter=*/&iiter_on_stack, /*get_context=*/nullptr,
/*lookup_context=*/&context);
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
if (index_iter != &iiter_on_stack) {
iiter_unique_ptr.reset(index_iter);
}
index_iter->Seek(key);
Handle failures in block-based table size/offset approximation (#9615) Summary: In crash test with fault injection, we were seeing stack traces like the following: ``` https://github.com/facebook/rocksdb/issues/3 0x00007f75f763c533 in __GI___assert_fail (assertion=assertion@entry=0x1c5b2a0 "end_offset >= start_offset", file=file@entry=0x1c580a0 "table/block_based/block_based_table_reader.cc", line=line@entry=3245, function=function@entry=0x1c60e60 "virtual uint64_t rocksdb::BlockBasedTable::ApproximateSize(const rocksdb::Slice&, const rocksdb::Slice&, rocksdb::TableReaderCaller)") at assert.c:101 https://github.com/facebook/rocksdb/issues/4 0x00000000010ea9b4 in rocksdb::BlockBasedTable::ApproximateSize (this=<optimized out>, start=..., end=..., caller=<optimized out>) at table/block_based/block_based_table_reader.cc:3224 https://github.com/facebook/rocksdb/issues/5 0x0000000000be61fb in rocksdb::TableCache::ApproximateSize (this=0x60f0000161b0, start=..., end=..., fd=..., caller=caller@entry=rocksdb::kCompaction, internal_comparator=..., prefix_extractor=...) at db/table_cache.cc:719 https://github.com/facebook/rocksdb/issues/6 0x0000000000c3eaec in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, v=<optimized out>, f=..., start=..., end=..., caller=<optimized out>) at ./db/version_set.h:850 https://github.com/facebook/rocksdb/issues/7 0x0000000000c6ebc3 in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, options=..., v=v@entry=0x621000047500, start=..., end=..., start_level=start_level@entry=0, end_level=<optimized out>, caller=<optimized out>) at db/version_set.cc:5657 https://github.com/facebook/rocksdb/issues/8 0x000000000166e894 in rocksdb::CompactionJob::GenSubcompactionBoundaries (this=<optimized out>) at ./include/rocksdb/options.h:1869 https://github.com/facebook/rocksdb/issues/9 0x000000000168c526 in rocksdb::CompactionJob::Prepare (this=this@entry=0x7f75f3ffcf00) at db/compaction/compaction_job.cc:546 ``` The problem occurred in `ApproximateSize()` when the index `Seek()` for the first `ApproximateDataOffsetOf()` encountered an I/O error, while the second `Seek()` did not. In the old code that scenario caused `start_offset == data_size` , thus it was easy to trip the assertion that `end_offset >= start_offset`. The fix is to set `start_offset == 0` when the first index `Seek()` fails, and `end_offset == data_size` when the second index `Seek()` fails. I doubt these give an "on average correct" answer for how this function is used, but I/O errors in index seeks are hopefully rare, it looked consistent with what was already there, and it was easier to calculate. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9615 Test Plan: run the repro command for a while and stopped seeing coredumps - ``` $ while ! ./db_stress --block_size=128 --cache_size=32768 --clear_column_family_one_in=0 --column_families=1 --continuous_verification_interval=0 --db=/dev/shm/rocksdb_crashtest --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --expected_values_dir=/dev/shm/rocksdb_crashtest_expected --index_type=2 --iterpercent=10 --kill_random_test=18887 --max_key=1000000 --max_bytes_for_level_base=2048576 --nooverwritepercent=1 --open_files=-1 --open_read_fault_one_in=32 --ops_per_thread=1000000 --prefixpercent=5 --read_fault_one_in=0 --readpercent=45 --reopen=0 --skip_verifydb=1 --subcompactions=2 --target_file_size_base=524288 --test_batches_snapshots=0 --value_size_mult=32 --write_buffer_size=524288 --writepercent=35 ; do : ; done ``` Reviewed By: pdillinger Differential Revision: D34383069 Pulled By: ajkr fbshipit-source-id: fac26c3b20ea962e75387515ba5f2724dc48719f
2022-02-28 23:45:08 -08:00
uint64_t offset;
if (index_iter->status().ok()) {
offset = ApproximateDataOffsetOf(*index_iter, data_size);
} else {
// Split in half to avoid skewing one way or another,
// since we don't know whether we're operating on lower bound or
// upper bound.
return rep_->file_size / 2;
}
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
// Pro-rate file metadata (incl filters) size-proportionally across data
// blocks.
double size_ratio =
static_cast<double>(offset) / static_cast<double>(data_size);
return static_cast<uint64_t>(size_ratio *
static_cast<double>(rep_->file_size));
}
uint64_t BlockBasedTable::ApproximateSize(const Slice& start, const Slice& end,
TableReaderCaller caller) {
assert(rep_->internal_comparator.Compare(start, end) <= 0);
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
uint64_t data_size = GetApproximateDataSize();
if (UNLIKELY(data_size == 0)) {
// Hmm. Assume whole file is involved, since we have lower and upper
Handle failures in block-based table size/offset approximation (#9615) Summary: In crash test with fault injection, we were seeing stack traces like the following: ``` https://github.com/facebook/rocksdb/issues/3 0x00007f75f763c533 in __GI___assert_fail (assertion=assertion@entry=0x1c5b2a0 "end_offset >= start_offset", file=file@entry=0x1c580a0 "table/block_based/block_based_table_reader.cc", line=line@entry=3245, function=function@entry=0x1c60e60 "virtual uint64_t rocksdb::BlockBasedTable::ApproximateSize(const rocksdb::Slice&, const rocksdb::Slice&, rocksdb::TableReaderCaller)") at assert.c:101 https://github.com/facebook/rocksdb/issues/4 0x00000000010ea9b4 in rocksdb::BlockBasedTable::ApproximateSize (this=<optimized out>, start=..., end=..., caller=<optimized out>) at table/block_based/block_based_table_reader.cc:3224 https://github.com/facebook/rocksdb/issues/5 0x0000000000be61fb in rocksdb::TableCache::ApproximateSize (this=0x60f0000161b0, start=..., end=..., fd=..., caller=caller@entry=rocksdb::kCompaction, internal_comparator=..., prefix_extractor=...) at db/table_cache.cc:719 https://github.com/facebook/rocksdb/issues/6 0x0000000000c3eaec in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, v=<optimized out>, f=..., start=..., end=..., caller=<optimized out>) at ./db/version_set.h:850 https://github.com/facebook/rocksdb/issues/7 0x0000000000c6ebc3 in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, options=..., v=v@entry=0x621000047500, start=..., end=..., start_level=start_level@entry=0, end_level=<optimized out>, caller=<optimized out>) at db/version_set.cc:5657 https://github.com/facebook/rocksdb/issues/8 0x000000000166e894 in rocksdb::CompactionJob::GenSubcompactionBoundaries (this=<optimized out>) at ./include/rocksdb/options.h:1869 https://github.com/facebook/rocksdb/issues/9 0x000000000168c526 in rocksdb::CompactionJob::Prepare (this=this@entry=0x7f75f3ffcf00) at db/compaction/compaction_job.cc:546 ``` The problem occurred in `ApproximateSize()` when the index `Seek()` for the first `ApproximateDataOffsetOf()` encountered an I/O error, while the second `Seek()` did not. In the old code that scenario caused `start_offset == data_size` , thus it was easy to trip the assertion that `end_offset >= start_offset`. The fix is to set `start_offset == 0` when the first index `Seek()` fails, and `end_offset == data_size` when the second index `Seek()` fails. I doubt these give an "on average correct" answer for how this function is used, but I/O errors in index seeks are hopefully rare, it looked consistent with what was already there, and it was easier to calculate. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9615 Test Plan: run the repro command for a while and stopped seeing coredumps - ``` $ while ! ./db_stress --block_size=128 --cache_size=32768 --clear_column_family_one_in=0 --column_families=1 --continuous_verification_interval=0 --db=/dev/shm/rocksdb_crashtest --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --expected_values_dir=/dev/shm/rocksdb_crashtest_expected --index_type=2 --iterpercent=10 --kill_random_test=18887 --max_key=1000000 --max_bytes_for_level_base=2048576 --nooverwritepercent=1 --open_files=-1 --open_read_fault_one_in=32 --ops_per_thread=1000000 --prefixpercent=5 --read_fault_one_in=0 --readpercent=45 --reopen=0 --skip_verifydb=1 --subcompactions=2 --target_file_size_base=524288 --test_batches_snapshots=0 --value_size_mult=32 --write_buffer_size=524288 --writepercent=35 ; do : ; done ``` Reviewed By: pdillinger Differential Revision: D34383069 Pulled By: ajkr fbshipit-source-id: fac26c3b20ea962e75387515ba5f2724dc48719f
2022-02-28 23:45:08 -08:00
// bound. This likely skews the estimate if we consider that this function
// is typically called with `[start, end]` fully contained in the file's
// key-range.
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
return rep_->file_size;
}
BlockCacheLookupContext context(caller);
IndexBlockIter iiter_on_stack;
ReadOptions ro;
ro.total_order_seek = true;
auto index_iter =
NewIndexIterator(ro, /*disable_prefix_seek=*/true,
/*input_iter=*/&iiter_on_stack, /*get_context=*/nullptr,
/*lookup_context=*/&context);
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
if (index_iter != &iiter_on_stack) {
iiter_unique_ptr.reset(index_iter);
}
index_iter->Seek(start);
Handle failures in block-based table size/offset approximation (#9615) Summary: In crash test with fault injection, we were seeing stack traces like the following: ``` https://github.com/facebook/rocksdb/issues/3 0x00007f75f763c533 in __GI___assert_fail (assertion=assertion@entry=0x1c5b2a0 "end_offset >= start_offset", file=file@entry=0x1c580a0 "table/block_based/block_based_table_reader.cc", line=line@entry=3245, function=function@entry=0x1c60e60 "virtual uint64_t rocksdb::BlockBasedTable::ApproximateSize(const rocksdb::Slice&, const rocksdb::Slice&, rocksdb::TableReaderCaller)") at assert.c:101 https://github.com/facebook/rocksdb/issues/4 0x00000000010ea9b4 in rocksdb::BlockBasedTable::ApproximateSize (this=<optimized out>, start=..., end=..., caller=<optimized out>) at table/block_based/block_based_table_reader.cc:3224 https://github.com/facebook/rocksdb/issues/5 0x0000000000be61fb in rocksdb::TableCache::ApproximateSize (this=0x60f0000161b0, start=..., end=..., fd=..., caller=caller@entry=rocksdb::kCompaction, internal_comparator=..., prefix_extractor=...) at db/table_cache.cc:719 https://github.com/facebook/rocksdb/issues/6 0x0000000000c3eaec in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, v=<optimized out>, f=..., start=..., end=..., caller=<optimized out>) at ./db/version_set.h:850 https://github.com/facebook/rocksdb/issues/7 0x0000000000c6ebc3 in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, options=..., v=v@entry=0x621000047500, start=..., end=..., start_level=start_level@entry=0, end_level=<optimized out>, caller=<optimized out>) at db/version_set.cc:5657 https://github.com/facebook/rocksdb/issues/8 0x000000000166e894 in rocksdb::CompactionJob::GenSubcompactionBoundaries (this=<optimized out>) at ./include/rocksdb/options.h:1869 https://github.com/facebook/rocksdb/issues/9 0x000000000168c526 in rocksdb::CompactionJob::Prepare (this=this@entry=0x7f75f3ffcf00) at db/compaction/compaction_job.cc:546 ``` The problem occurred in `ApproximateSize()` when the index `Seek()` for the first `ApproximateDataOffsetOf()` encountered an I/O error, while the second `Seek()` did not. In the old code that scenario caused `start_offset == data_size` , thus it was easy to trip the assertion that `end_offset >= start_offset`. The fix is to set `start_offset == 0` when the first index `Seek()` fails, and `end_offset == data_size` when the second index `Seek()` fails. I doubt these give an "on average correct" answer for how this function is used, but I/O errors in index seeks are hopefully rare, it looked consistent with what was already there, and it was easier to calculate. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9615 Test Plan: run the repro command for a while and stopped seeing coredumps - ``` $ while ! ./db_stress --block_size=128 --cache_size=32768 --clear_column_family_one_in=0 --column_families=1 --continuous_verification_interval=0 --db=/dev/shm/rocksdb_crashtest --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --expected_values_dir=/dev/shm/rocksdb_crashtest_expected --index_type=2 --iterpercent=10 --kill_random_test=18887 --max_key=1000000 --max_bytes_for_level_base=2048576 --nooverwritepercent=1 --open_files=-1 --open_read_fault_one_in=32 --ops_per_thread=1000000 --prefixpercent=5 --read_fault_one_in=0 --readpercent=45 --reopen=0 --skip_verifydb=1 --subcompactions=2 --target_file_size_base=524288 --test_batches_snapshots=0 --value_size_mult=32 --write_buffer_size=524288 --writepercent=35 ; do : ; done ``` Reviewed By: pdillinger Differential Revision: D34383069 Pulled By: ajkr fbshipit-source-id: fac26c3b20ea962e75387515ba5f2724dc48719f
2022-02-28 23:45:08 -08:00
uint64_t start_offset;
if (index_iter->status().ok()) {
start_offset = ApproximateDataOffsetOf(*index_iter, data_size);
} else {
// Assume file is involved from the start. This likely skews the estimate
// but is consistent with the above error handling.
start_offset = 0;
}
index_iter->Seek(end);
Handle failures in block-based table size/offset approximation (#9615) Summary: In crash test with fault injection, we were seeing stack traces like the following: ``` https://github.com/facebook/rocksdb/issues/3 0x00007f75f763c533 in __GI___assert_fail (assertion=assertion@entry=0x1c5b2a0 "end_offset >= start_offset", file=file@entry=0x1c580a0 "table/block_based/block_based_table_reader.cc", line=line@entry=3245, function=function@entry=0x1c60e60 "virtual uint64_t rocksdb::BlockBasedTable::ApproximateSize(const rocksdb::Slice&, const rocksdb::Slice&, rocksdb::TableReaderCaller)") at assert.c:101 https://github.com/facebook/rocksdb/issues/4 0x00000000010ea9b4 in rocksdb::BlockBasedTable::ApproximateSize (this=<optimized out>, start=..., end=..., caller=<optimized out>) at table/block_based/block_based_table_reader.cc:3224 https://github.com/facebook/rocksdb/issues/5 0x0000000000be61fb in rocksdb::TableCache::ApproximateSize (this=0x60f0000161b0, start=..., end=..., fd=..., caller=caller@entry=rocksdb::kCompaction, internal_comparator=..., prefix_extractor=...) at db/table_cache.cc:719 https://github.com/facebook/rocksdb/issues/6 0x0000000000c3eaec in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, v=<optimized out>, f=..., start=..., end=..., caller=<optimized out>) at ./db/version_set.h:850 https://github.com/facebook/rocksdb/issues/7 0x0000000000c6ebc3 in rocksdb::VersionSet::ApproximateSize (this=<optimized out>, options=..., v=v@entry=0x621000047500, start=..., end=..., start_level=start_level@entry=0, end_level=<optimized out>, caller=<optimized out>) at db/version_set.cc:5657 https://github.com/facebook/rocksdb/issues/8 0x000000000166e894 in rocksdb::CompactionJob::GenSubcompactionBoundaries (this=<optimized out>) at ./include/rocksdb/options.h:1869 https://github.com/facebook/rocksdb/issues/9 0x000000000168c526 in rocksdb::CompactionJob::Prepare (this=this@entry=0x7f75f3ffcf00) at db/compaction/compaction_job.cc:546 ``` The problem occurred in `ApproximateSize()` when the index `Seek()` for the first `ApproximateDataOffsetOf()` encountered an I/O error, while the second `Seek()` did not. In the old code that scenario caused `start_offset == data_size` , thus it was easy to trip the assertion that `end_offset >= start_offset`. The fix is to set `start_offset == 0` when the first index `Seek()` fails, and `end_offset == data_size` when the second index `Seek()` fails. I doubt these give an "on average correct" answer for how this function is used, but I/O errors in index seeks are hopefully rare, it looked consistent with what was already there, and it was easier to calculate. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9615 Test Plan: run the repro command for a while and stopped seeing coredumps - ``` $ while ! ./db_stress --block_size=128 --cache_size=32768 --clear_column_family_one_in=0 --column_families=1 --continuous_verification_interval=0 --db=/dev/shm/rocksdb_crashtest --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --expected_values_dir=/dev/shm/rocksdb_crashtest_expected --index_type=2 --iterpercent=10 --kill_random_test=18887 --max_key=1000000 --max_bytes_for_level_base=2048576 --nooverwritepercent=1 --open_files=-1 --open_read_fault_one_in=32 --ops_per_thread=1000000 --prefixpercent=5 --read_fault_one_in=0 --readpercent=45 --reopen=0 --skip_verifydb=1 --subcompactions=2 --target_file_size_base=524288 --test_batches_snapshots=0 --value_size_mult=32 --write_buffer_size=524288 --writepercent=35 ; do : ; done ``` Reviewed By: pdillinger Differential Revision: D34383069 Pulled By: ajkr fbshipit-source-id: fac26c3b20ea962e75387515ba5f2724dc48719f
2022-02-28 23:45:08 -08:00
uint64_t end_offset;
if (index_iter->status().ok()) {
end_offset = ApproximateDataOffsetOf(*index_iter, data_size);
} else {
// Assume file is involved until the end. This likely skews the estimate
// but is consistent with the above error handling.
end_offset = data_size;
}
assert(end_offset >= start_offset);
For ApproximateSizes, pro-rate table metadata size over data blocks (#6784) Summary: The implementation of GetApproximateSizes was inconsistent in its treatment of the size of non-data blocks of SST files, sometimes including and sometimes now. This was at its worst with large portion of table file used by filters and querying a small range that crossed a table boundary: the size estimate would include large filter size. It's conceivable that someone might want only to know the size in terms of data blocks, but I believe that's unlikely enough to ignore for now. Similarly, there's no evidence the internal function AppoximateOffsetOf is used for anything other than a one-sided ApproximateSize, so I intend to refactor to remove redundancy in a follow-up commit. So to fix this, GetApproximateSizes (and implementation details ApproximateSize and ApproximateOffsetOf) now consistently include in their returned sizes a portion of table file metadata (incl filters and indexes) based on the size portion of the data blocks in range. In other words, if a key range covers data blocks that are X% by size of all the table's data blocks, returned approximate size is X% of the total file size. It would technically be more accurate to attribute metadata based on number of keys, but that's not computationally efficient with data available and rarely a meaningful difference. Also includes miscellaneous comment improvements / clarifications. Also included is a new approximatesizerandom benchmark for db_bench. No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784 Test Plan: Test added to DBTest.ApproximateSizesFilesWithErrorMargin. Old code running new test... [ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin db/db_test.cc:1562: Failure Expected: (size) <= (11 * 100), actual: 9478 vs 1100 Other tests updated to reflect consistent accounting of metadata. Reviewed By: siying Differential Revision: D21334706 Pulled By: pdillinger fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
2020-06-02 12:27:59 -07:00
// Pro-rate file metadata (incl filters) size-proportionally across data
// blocks.
double size_ratio = static_cast<double>(end_offset - start_offset) /
static_cast<double>(data_size);
return static_cast<uint64_t>(size_ratio *
static_cast<double>(rep_->file_size));
}
bool BlockBasedTable::TEST_FilterBlockInCache() const {
assert(rep_ != nullptr);
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:13:55 -08:00
return rep_->filter_type != Rep::FilterType::kNoFilter &&
TEST_BlockInCache(rep_->filter_handle);
}
bool BlockBasedTable::TEST_IndexBlockInCache() const {
assert(rep_ != nullptr);
return TEST_BlockInCache(rep_->footer.index_handle());
}
Status BlockBasedTable::GetKVPairsFromDataBlocks(
std::vector<KVPairBlock>* kv_pair_blocks) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> blockhandles_iter(
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false,
/*input_iter=*/nullptr, /*get_context=*/nullptr,
/*lookup_contex=*/nullptr));
Status s = blockhandles_iter->status();
if (!s.ok()) {
// Cannot read Index Block
return s;
}
for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid();
blockhandles_iter->Next()) {
s = blockhandles_iter->status();
if (!s.ok()) {
break;
}
std::unique_ptr<InternalIterator> datablock_iter;
datablock_iter.reset(NewDataBlockIterator<DataBlockIter>(
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
ReadOptions(), blockhandles_iter->value().handle,
/*input_iter=*/nullptr, /*type=*/BlockType::kData,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
/*get_context=*/nullptr, /*lookup_context=*/nullptr, Status(),
/*prefetch_buffer=*/nullptr));
s = datablock_iter->status();
if (!s.ok()) {
// Error reading the block - Skipped
continue;
}
KVPairBlock kv_pair_block;
for (datablock_iter->SeekToFirst(); datablock_iter->Valid();
datablock_iter->Next()) {
s = datablock_iter->status();
if (!s.ok()) {
// Error reading the block - Skipped
break;
}
const Slice& key = datablock_iter->key();
const Slice& value = datablock_iter->value();
std::string key_copy = std::string(key.data(), key.size());
std::string value_copy = std::string(value.data(), value.size());
kv_pair_block.push_back(
std::make_pair(std::move(key_copy), std::move(value_copy)));
}
kv_pair_blocks->push_back(std::move(kv_pair_block));
}
return Status::OK();
}
Status BlockBasedTable::DumpTable(WritableFile* out_file) {
WritableFileStringStreamAdapter out_file_wrapper(out_file);
std::ostream out_stream(&out_file_wrapper);
// Output Footer
out_stream << "Footer Details:\n"
"--------------------------------------\n";
out_stream << " " << rep_->footer.ToString() << "\n";
// Output MetaIndex
out_stream << "Metaindex Details:\n"
"--------------------------------------\n";
std::unique_ptr<Block> metaindex;
std::unique_ptr<InternalIterator> metaindex_iter;
ReadOptions ro;
Status s = ReadMetaIndexBlock(ro, nullptr /* prefetch_buffer */, &metaindex,
&metaindex_iter);
if (s.ok()) {
for (metaindex_iter->SeekToFirst(); metaindex_iter->Valid();
metaindex_iter->Next()) {
s = metaindex_iter->status();
if (!s.ok()) {
return s;
}
if (metaindex_iter->key() == kPropertiesBlockName) {
out_stream << " Properties block handle: "
<< metaindex_iter->value().ToString(true) << "\n";
} else if (metaindex_iter->key() == kCompressionDictBlockName) {
out_stream << " Compression dictionary block handle: "
<< metaindex_iter->value().ToString(true) << "\n";
} else if (strstr(metaindex_iter->key().ToString().c_str(),
"filter.rocksdb.") != nullptr) {
out_stream << " Filter block handle: "
<< metaindex_iter->value().ToString(true) << "\n";
} else if (metaindex_iter->key() == kRangeDelBlockName) {
out_stream << " Range deletion block handle: "
<< metaindex_iter->value().ToString(true) << "\n";
}
}
out_stream << "\n";
} else {
return s;
}
// Output TableProperties
const ROCKSDB_NAMESPACE::TableProperties* table_properties;
table_properties = rep_->table_properties.get();
if (table_properties != nullptr) {
out_stream << "Table Properties:\n"
"--------------------------------------\n";
out_stream << " " << table_properties->ToString("\n ", ": ") << "\n";
}
if (rep_->filter) {
out_stream << "Filter Details:\n"
"--------------------------------------\n";
out_stream << " " << rep_->filter->ToString() << "\n";
}
// Output Index block
s = DumpIndexBlock(out_stream);
if (!s.ok()) {
return s;
}
// Output compression dictionary
if (rep_->uncompression_dict_reader) {
CachableEntry<UncompressionDict> uncompression_dict;
s = rep_->uncompression_dict_reader->GetOrReadUncompressionDictionary(
nullptr /* prefetch_buffer */, false /* no_io */,
false, /* verify_checksums */
nullptr /* get_context */, nullptr /* lookup_context */,
&uncompression_dict);
if (!s.ok()) {
return s;
}
assert(uncompression_dict.GetValue());
const Slice& raw_dict = uncompression_dict.GetValue()->GetRawDict();
out_stream << "Compression Dictionary:\n"
"--------------------------------------\n";
out_stream << " size (bytes): " << raw_dict.size() << "\n\n";
out_stream << " HEX " << raw_dict.ToString(true) << "\n\n";
}
// Output range deletions block
auto* range_del_iter = NewRangeTombstoneIterator(ReadOptions());
if (range_del_iter != nullptr) {
range_del_iter->SeekToFirst();
if (range_del_iter->Valid()) {
out_stream << "Range deletions:\n"
"--------------------------------------\n";
for (; range_del_iter->Valid(); range_del_iter->Next()) {
DumpKeyValue(range_del_iter->key(), range_del_iter->value(),
out_stream);
}
out_stream << "\n";
}
delete range_del_iter;
}
// Output Data blocks
s = DumpDataBlocks(out_stream);
if (!s.ok()) {
return s;
}
if (!out_stream.good()) {
return Status::IOError("Failed to write to output file");
}
return Status::OK();
}
Status BlockBasedTable::DumpIndexBlock(std::ostream& out_stream) {
out_stream << "Index Details:\n"
"--------------------------------------\n";
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> blockhandles_iter(
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false,
/*input_iter=*/nullptr, /*get_context=*/nullptr,
/*lookup_contex=*/nullptr));
Status s = blockhandles_iter->status();
if (!s.ok()) {
out_stream << "Can not read Index Block \n\n";
return s;
}
out_stream << " Block key hex dump: Data block handle\n";
out_stream << " Block key ascii\n\n";
for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid();
blockhandles_iter->Next()) {
s = blockhandles_iter->status();
if (!s.ok()) {
break;
}
Slice key = blockhandles_iter->key();
Slice user_key;
InternalKey ikey;
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
if (!rep_->index_key_includes_seq) {
user_key = key;
} else {
ikey.DecodeFrom(key);
user_key = ikey.user_key();
}
out_stream << " HEX " << user_key.ToString(true) << ": "
<< blockhandles_iter->value().ToString(true,
rep_->index_has_first_key)
<< "\n";
std::string str_key = user_key.ToString();
std::string res_key("");
char cspace = ' ';
for (size_t i = 0; i < str_key.size(); i++) {
res_key.append(&str_key[i], 1);
res_key.append(1, cspace);
}
out_stream << " ASCII " << res_key << "\n";
out_stream << " ------\n";
}
out_stream << "\n";
return Status::OK();
}
Status BlockBasedTable::DumpDataBlocks(std::ostream& out_stream) {
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
std::unique_ptr<InternalIteratorBase<IndexValue>> blockhandles_iter(
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
NewIndexIterator(ReadOptions(), /*need_upper_bound_check=*/false,
/*input_iter=*/nullptr, /*get_context=*/nullptr,
/*lookup_contex=*/nullptr));
Status s = blockhandles_iter->status();
if (!s.ok()) {
out_stream << "Can not read Index Block \n\n";
return s;
}
uint64_t datablock_size_min = std::numeric_limits<uint64_t>::max();
uint64_t datablock_size_max = 0;
uint64_t datablock_size_sum = 0;
size_t block_id = 1;
for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid();
block_id++, blockhandles_iter->Next()) {
s = blockhandles_iter->status();
if (!s.ok()) {
break;
}
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
BlockHandle bh = blockhandles_iter->value().handle;
uint64_t datablock_size = bh.size();
datablock_size_min = std::min(datablock_size_min, datablock_size);
datablock_size_max = std::max(datablock_size_max, datablock_size);
datablock_size_sum += datablock_size;
out_stream << "Data Block # " << block_id << " @ "
<< blockhandles_iter->value().handle.ToString(true) << "\n";
out_stream << "--------------------------------------\n";
std::unique_ptr<InternalIterator> datablock_iter;
datablock_iter.reset(NewDataBlockIterator<DataBlockIter>(
Add an option to put first key of each sst block in the index (#5289) Summary: The first key is used to defer reading the data block until this file gets to the top of merging iterator's heap. For short range scans, most files never make it to the top of the heap, so this change can reduce read amplification by a lot sometimes. Consider the following workload. There are a few data streams (we'll be calling them "logs"), each stream consisting of a sequence of blobs (we'll be calling them "records"). Each record is identified by log ID and a sequence number within the log. RocksDB key is concatenation of log ID and sequence number (big endian). Reads are mostly relatively short range scans, each within a single log. Writes are mostly sequential for each log, but writes to different logs are randomly interleaved. Compactions are disabled; instead, when we accumulate a few tens of sst files, we create a new column family and start writing to it. So, a typical sst file consists of a few ranges of blocks, each range corresponding to one log ID (we use FlushBlockPolicy to cut blocks at log boundaries). A typical read would go like this. First, iterator Seek() reads one block from each sst file. Then a series of Next()s move through one sst file (since writes to each log are mostly sequential) until the subiterator reaches the end of this log in this sst file; then Next() switches to the next sst file and reads sequentially from that, and so on. Often a range scan will only return records from a small number of blocks in small number of sst files; in this case, the cost of initial Seek() reading one block from each file may be bigger than the cost of reading the actually useful blocks. Neither iterate_upper_bound nor bloom filters can prevent reading one block from each file in Seek(). But this PR can: if the index contains first key from each block, we don't have to read the block until this block actually makes it to the top of merging iterator's heap, so for short range scans we won't read any blocks from most of the sst files. This PR does the deferred block loading inside value() call. This is not ideal: there's no good way to report an IO error from inside value(). As discussed with siying offline, it would probably be better to change InternalIterator's interface to explicitly fetch deferred value and get status. I'll do it in a separate PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5289 Differential Revision: D15256423 Pulled By: al13n321 fbshipit-source-id: 750e4c39ce88e8d41662f701cf6275d9388ba46a
2019-06-24 20:50:35 -07:00
ReadOptions(), blockhandles_iter->value().handle,
/*input_iter=*/nullptr, /*type=*/BlockType::kData,
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
2019-06-10 15:30:05 -07:00
/*get_context=*/nullptr, /*lookup_context=*/nullptr, Status(),
/*prefetch_buffer=*/nullptr));
s = datablock_iter->status();
if (!s.ok()) {
out_stream << "Error reading the block - Skipped \n\n";
continue;
}
for (datablock_iter->SeekToFirst(); datablock_iter->Valid();
datablock_iter->Next()) {
s = datablock_iter->status();
if (!s.ok()) {
out_stream << "Error reading the block - Skipped \n";
break;
}
DumpKeyValue(datablock_iter->key(), datablock_iter->value(), out_stream);
}
out_stream << "\n";
}
uint64_t num_datablocks = block_id - 1;
if (num_datablocks) {
double datablock_size_avg =
static_cast<double>(datablock_size_sum) / num_datablocks;
out_stream << "Data Block Summary:\n";
out_stream << "--------------------------------------\n";
out_stream << " # data blocks: " << num_datablocks << "\n";
out_stream << " min data block size: " << datablock_size_min << "\n";
out_stream << " max data block size: " << datablock_size_max << "\n";
out_stream << " avg data block size: "
<< std::to_string(datablock_size_avg) << "\n";
}
return Status::OK();
}
void BlockBasedTable::DumpKeyValue(const Slice& key, const Slice& value,
std::ostream& out_stream) {
InternalKey ikey;
ikey.DecodeFrom(key);
out_stream << " HEX " << ikey.user_key().ToString(true) << ": "
<< value.ToString(true) << "\n";
std::string str_key = ikey.user_key().ToString();
std::string str_value = value.ToString();
std::string res_key(""), res_value("");
char cspace = ' ';
for (size_t i = 0; i < str_key.size(); i++) {
if (str_key[i] == '\0') {
res_key.append("\\0", 2);
} else {
res_key.append(&str_key[i], 1);
}
res_key.append(1, cspace);
}
for (size_t i = 0; i < str_value.size(); i++) {
if (str_value[i] == '\0') {
res_value.append("\\0", 2);
} else {
res_value.append(&str_value[i], 1);
}
res_value.append(1, cspace);
}
out_stream << " ASCII " << res_key << ": " << res_value << "\n";
out_stream << " ------\n";
}
} // namespace ROCKSDB_NAMESPACE