Move advanced column family options to advanced_options.h

Summary:
For the sake of making our options simpler, we should keep options.h as simple as possible and move more advanced/less common options to advaned_options.h

I started with ColumnFamilyOptions and also did some re-ordering

I have moved all ColumnFamilyOptions to advanced_options.h and only left these options in options.h

```
const Comparator* comparator = BytewiseComparator();
std::shared_ptr<MergeOperator> merge_operator = nullptr;
const CompactionFilter* compaction_filter = nullptr;
std::shared_ptr<CompactionFilterFactory> compaction_filter_factory = nullptr;
size_t write_buffer_size = 64 << 20;
CompressionType compression;
int level0_file_num_compaction_trigger = 4;
bool disable_auto_compactions = false;
```
Please feel free to comment on specific options if you think they should be advanced or should not be
Closes https://github.com/facebook/rocksdb/pull/1847

Differential Revision: D4519996

Pulled By: IslamAbdelRahman

fbshipit-source-id: abebd9a
This commit is contained in:
Islam AbdelRahman 2017-02-27 17:36:06 -08:00 committed by Facebook Github Bot
parent 2ca2059f66
commit 08864df212
5 changed files with 739 additions and 692 deletions

View File

@ -0,0 +1,558 @@
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <memory>
#include "rocksdb/memtablerep.h"
#include "rocksdb/universal_compaction.h"
namespace rocksdb {
class Slice;
class SliceTransform;
enum CompressionType : unsigned char;
class TablePropertiesCollectorFactory;
class TableFactory;
struct Options;
enum CompactionStyle : char {
// level based compaction style
kCompactionStyleLevel = 0x0,
// Universal compaction style
// Not supported in ROCKSDB_LITE.
kCompactionStyleUniversal = 0x1,
// FIFO compaction style
// Not supported in ROCKSDB_LITE
kCompactionStyleFIFO = 0x2,
// Disable background compaction. Compaction jobs are submitted
// via CompactFiles().
// Not supported in ROCKSDB_LITE
kCompactionStyleNone = 0x3,
};
// In Level-based comapction, it Determines which file from a level to be
// picked to merge to the next level. We suggest people try
// kMinOverlappingRatio first when you tune your database.
enum CompactionPri : char {
// Slightly Priotize larger files by size compensated by #deletes
kByCompensatedSize = 0x0,
// First compact files whose data's latest update time is oldest.
// Try this if you only update some hot keys in small ranges.
kOldestLargestSeqFirst = 0x1,
// First compact files whose range hasn't been compacted to the next level
// for the longest. If your updates are random across the key space,
// write amplification is slightly better with this option.
kOldestSmallestSeqFirst = 0x2,
// First compact files whose ratio between overlapping size in next level
// and its size is the smallest. It in many cases can optimize write
// amplification.
kMinOverlappingRatio = 0x3,
};
struct CompactionOptionsFIFO {
// once the total sum of table files reaches this, we will delete the oldest
// table file
// Default: 1GB
uint64_t max_table_files_size;
CompactionOptionsFIFO() : max_table_files_size(1 * 1024 * 1024 * 1024) {}
};
// Compression options for different compression algorithms like Zlib
struct CompressionOptions {
int window_bits;
int level;
int strategy;
// Maximum size of dictionary used to prime the compression library. Currently
// this dictionary will be constructed by sampling the first output file in a
// subcompaction when the target level is bottommost. This dictionary will be
// loaded into the compression library before compressing/uncompressing each
// data block of subsequent files in the subcompaction. Effectively, this
// improves compression ratios when there are repetitions across data blocks.
// A value of 0 indicates the feature is disabled.
// Default: 0.
uint32_t max_dict_bytes;
CompressionOptions()
: window_bits(-14), level(-1), strategy(0), max_dict_bytes(0) {}
CompressionOptions(int wbits, int _lev, int _strategy, int _max_dict_bytes)
: window_bits(wbits),
level(_lev),
strategy(_strategy),
max_dict_bytes(_max_dict_bytes) {}
};
enum UpdateStatus { // Return status For inplace update callback
UPDATE_FAILED = 0, // Nothing to update
UPDATED_INPLACE = 1, // Value updated inplace
UPDATED = 2, // No inplace update. Merged value set
};
struct AdvancedColumnFamilyOptions {
// The maximum number of write buffers that are built up in memory.
// The default and the minimum number is 2, so that when 1 write buffer
// is being flushed to storage, new writes can continue to the other
// write buffer.
// If max_write_buffer_number > 3, writing will be slowed down to
// options.delayed_write_rate if we are writing to the last write buffer
// allowed.
//
// Default: 2
//
// Dynamically changeable through SetOptions() API
int max_write_buffer_number = 2;
// The minimum number of write buffers that will be merged together
// before writing to storage. If set to 1, then
// all write buffers are flushed to L0 as individual files and this increases
// read amplification because a get request has to check in all of these
// files. Also, an in-memory merge may result in writing lesser
// data to storage if there are duplicate records in each of these
// individual write buffers. Default: 1
int min_write_buffer_number_to_merge = 1;
// The total maximum number of write buffers to maintain in memory including
// copies of buffers that have already been flushed. Unlike
// max_write_buffer_number, this parameter does not affect flushing.
// This controls the minimum amount of write history that will be available
// in memory for conflict checking when Transactions are used.
//
// When using an OptimisticTransactionDB:
// If this value is too low, some transactions may fail at commit time due
// to not being able to determine whether there were any write conflicts.
//
// When using a TransactionDB:
// If Transaction::SetSnapshot is used, TransactionDB will read either
// in-memory write buffers or SST files to do write-conflict checking.
// Increasing this value can reduce the number of reads to SST files
// done for conflict detection.
//
// Setting this value to 0 will cause write buffers to be freed immediately
// after they are flushed.
// If this value is set to -1, 'max_write_buffer_number' will be used.
//
// Default:
// If using a TransactionDB/OptimisticTransactionDB, the default value will
// be set to the value of 'max_write_buffer_number' if it is not explicitly
// set by the user. Otherwise, the default is 0.
int max_write_buffer_number_to_maintain = 0;
// Allows thread-safe inplace updates. If this is true, there is no way to
// achieve point-in-time consistency using snapshot or iterator (assuming
// concurrent updates). Hence iterator and multi-get will return results
// which are not consistent as of any point-in-time.
// If inplace_callback function is not set,
// Put(key, new_value) will update inplace the existing_value iff
// * key exists in current memtable
// * new sizeof(new_value) <= sizeof(existing_value)
// * existing_value for that key is a put i.e. kTypeValue
// If inplace_callback function is set, check doc for inplace_callback.
// Default: false.
bool inplace_update_support = false;
// Number of locks used for inplace update
// Default: 10000, if inplace_update_support = true, else 0.
//
// Dynamically changeable through SetOptions() API
size_t inplace_update_num_locks = 10000;
// existing_value - pointer to previous value (from both memtable and sst).
// nullptr if key doesn't exist
// existing_value_size - pointer to size of existing_value).
// nullptr if key doesn't exist
// delta_value - Delta value to be merged with the existing_value.
// Stored in transaction logs.
// merged_value - Set when delta is applied on the previous value.
// Applicable only when inplace_update_support is true,
// this callback function is called at the time of updating the memtable
// as part of a Put operation, lets say Put(key, delta_value). It allows the
// 'delta_value' specified as part of the Put operation to be merged with
// an 'existing_value' of the key in the database.
// If the merged value is smaller in size that the 'existing_value',
// then this function can update the 'existing_value' buffer inplace and
// the corresponding 'existing_value'_size pointer, if it wishes to.
// The callback should return UpdateStatus::UPDATED_INPLACE.
// In this case. (In this case, the snapshot-semantics of the rocksdb
// Iterator is not atomic anymore).
// If the merged value is larger in size than the 'existing_value' or the
// application does not wish to modify the 'existing_value' buffer inplace,
// then the merged value should be returned via *merge_value. It is set by
// merging the 'existing_value' and the Put 'delta_value'. The callback should
// return UpdateStatus::UPDATED in this case. This merged value will be added
// to the memtable.
// If merging fails or the application does not wish to take any action,
// then the callback should return UpdateStatus::UPDATE_FAILED.
// Please remember that the original call from the application is Put(key,
// delta_value). So the transaction log (if enabled) will still contain (key,
// delta_value). The 'merged_value' is not stored in the transaction log.
// Hence the inplace_callback function should be consistent across db reopens.
// Default: nullptr
UpdateStatus (*inplace_callback)(char* existing_value,
uint32_t* existing_value_size,
Slice delta_value,
std::string* merged_value) = nullptr;
// if prefix_extractor is set and memtable_prefix_bloom_size_ratio is not 0,
// create prefix bloom for memtable with the size of
// write_buffer_size * memtable_prefix_bloom_size_ratio.
// If it is larger than 0.25, it is santinized to 0.25.
//
// Default: 0 (disable)
//
// Dynamically changeable through SetOptions() API
double memtable_prefix_bloom_size_ratio = 0.0;
// Page size for huge page for the arena used by the memtable. If <=0, it
// won't allocate from huge page but from malloc.
// Users are responsible to reserve huge pages for it to be allocated. For
// example:
// sysctl -w vm.nr_hugepages=20
// See linux doc Documentation/vm/hugetlbpage.txt
// If there isn't enough free huge page available, it will fall back to
// malloc.
//
// Dynamically changeable through SetOptions() API
size_t memtable_huge_page_size = 0;
// If non-nullptr, memtable will use the specified function to extract
// prefixes for keys, and for each prefix maintain a hint of insert location
// to reduce CPU usage for inserting keys with the prefix. Keys out of
// domain of the prefix extractor will be insert without using hints.
//
// Currently only the default skiplist based memtable implements the feature.
// All other memtable implementation will ignore the option. It incurs ~250
// additional bytes of memory overhead to store a hint for each prefix.
// Also concurrent writes (when allow_concurrent_memtable_write is true) will
// ignore the option.
//
// The option is best suited for workloads where keys will likely to insert
// to a location close the the last inserted key with the same prefix.
// One example could be inserting keys of the form (prefix + timestamp),
// and keys of the same prefix always comes in with time order. Another
// example would be updating the same key over and over again, in which case
// the prefix can be the key itself.
//
// Default: nullptr (disable)
std::shared_ptr<const SliceTransform>
memtable_insert_with_hint_prefix_extractor = nullptr;
// Control locality of bloom filter probes to improve cache miss rate.
// This option only applies to memtable prefix bloom and plaintable
// prefix bloom. It essentially limits every bloom checking to one cache line.
// This optimization is turned off when set to 0, and positive number to turn
// it on.
// Default: 0
uint32_t bloom_locality = 0;
// size of one block in arena memory allocation.
// If <= 0, a proper value is automatically calculated (usually 1/8 of
// writer_buffer_size, rounded up to a multiple of 4KB).
//
// There are two additional restriction of the The specified size:
// (1) size should be in the range of [4096, 2 << 30] and
// (2) be the multiple of the CPU word (which helps with the memory
// alignment).
//
// We'll automatically check and adjust the size number to make sure it
// conforms to the restrictions.
//
// Default: 0
//
// Dynamically changeable through SetOptions() API
size_t arena_block_size = 0;
// Different levels can have different compression policies. There
// are cases where most lower levels would like to use quick compression
// algorithms while the higher levels (which have more data) use
// compression algorithms that have better compression but could
// be slower. This array, if non-empty, should have an entry for
// each level of the database; these override the value specified in
// the previous field 'compression'.
//
// NOTICE if level_compaction_dynamic_level_bytes=true,
// compression_per_level[0] still determines L0, but other elements
// of the array are based on base level (the level L0 files are merged
// to), and may not match the level users see from info log for metadata.
// If L0 files are merged to level-n, then, for i>0, compression_per_level[i]
// determines compaction type for level n+i-1.
// For example, if we have three 5 levels, and we determine to merge L0
// data to L4 (which means L1..L3 will be empty), then the new files go to
// L4 uses compression type compression_per_level[1].
// If now L0 is merged to L2. Data goes to L2 will be compressed
// according to compression_per_level[1], L3 using compression_per_level[2]
// and L4 using compression_per_level[3]. Compaction for each level can
// change when data grows.
std::vector<CompressionType> compression_per_level;
// Number of levels for this database
int num_levels = 7;
// Soft limit on number of level-0 files. We start slowing down writes at this
// point. A value <0 means that no writing slow down will be triggered by
// number of files in level-0.
//
// Default: 20
//
// Dynamically changeable through SetOptions() API
int level0_slowdown_writes_trigger = 20;
// Maximum number of level-0 files. We stop writes at this point.
//
// Default: 36
//
// Dynamically changeable through SetOptions() API
int level0_stop_writes_trigger = 36;
// Target file size for compaction.
// target_file_size_base is per-file size for level-1.
// Target file size for level L can be calculated by
// target_file_size_base * (target_file_size_multiplier ^ (L-1))
// For example, if target_file_size_base is 2MB and
// target_file_size_multiplier is 10, then each file on level-1 will
// be 2MB, and each file on level 2 will be 20MB,
// and each file on level-3 will be 200MB.
//
// Default: 64MB.
//
// Dynamically changeable through SetOptions() API
uint64_t target_file_size_base = 64 * 1048576;
// By default target_file_size_multiplier is 1, which means
// by default files in different levels will have similar size.
//
// Dynamically changeable through SetOptions() API
int target_file_size_multiplier = 1;
// If true, RocksDB will pick target size of each level dynamically.
// We will pick a base level b >= 1. L0 will be directly merged into level b,
// instead of always into level 1. Level 1 to b-1 need to be empty.
// We try to pick b and its target size so that
// 1. target size is in the range of
// (max_bytes_for_level_base / max_bytes_for_level_multiplier,
// max_bytes_for_level_base]
// 2. target size of the last level (level num_levels-1) equals to extra size
// of the level.
// At the same time max_bytes_for_level_multiplier and
// max_bytes_for_level_multiplier_additional are still satisfied.
//
// With this option on, from an empty DB, we make last level the base level,
// which means merging L0 data into the last level, until it exceeds
// max_bytes_for_level_base. And then we make the second last level to be
// base level, to start to merge L0 data to second last level, with its
// target size to be 1/max_bytes_for_level_multiplier of the last level's
// extra size. After the data accumulates more so that we need to move the
// base level to the third last one, and so on.
//
// For example, assume max_bytes_for_level_multiplier=10, num_levels=6,
// and max_bytes_for_level_base=10MB.
// Target sizes of level 1 to 5 starts with:
// [- - - - 10MB]
// with base level is level. Target sizes of level 1 to 4 are not applicable
// because they will not be used.
// Until the size of Level 5 grows to more than 10MB, say 11MB, we make
// base target to level 4 and now the targets looks like:
// [- - - 1.1MB 11MB]
// While data are accumulated, size targets are tuned based on actual data
// of level 5. When level 5 has 50MB of data, the target is like:
// [- - - 5MB 50MB]
// Until level 5's actual size is more than 100MB, say 101MB. Now if we keep
// level 4 to be the base level, its target size needs to be 10.1MB, which
// doesn't satisfy the target size range. So now we make level 3 the target
// size and the target sizes of the levels look like:
// [- - 1.01MB 10.1MB 101MB]
// In the same way, while level 5 further grows, all levels' targets grow,
// like
// [- - 5MB 50MB 500MB]
// Until level 5 exceeds 1000MB and becomes 1001MB, we make level 2 the
// base level and make levels' target sizes like this:
// [- 1.001MB 10.01MB 100.1MB 1001MB]
// and go on...
//
// By doing it, we give max_bytes_for_level_multiplier a priority against
// max_bytes_for_level_base, for a more predictable LSM tree shape. It is
// useful to limit worse case space amplification.
//
// max_bytes_for_level_multiplier_additional is ignored with this flag on.
//
// Turning this feature on or off for an existing DB can cause unexpected
// LSM tree structure so it's not recommended.
//
// NOTE: this option is experimental
//
// Default: false
bool level_compaction_dynamic_level_bytes = false;
// Default: 10.
//
// Dynamically changeable through SetOptions() API
double max_bytes_for_level_multiplier = 10;
// Different max-size multipliers for different levels.
// These are multiplied by max_bytes_for_level_multiplier to arrive
// at the max-size of each level.
//
// Default: 1
//
// Dynamically changeable through SetOptions() API
std::vector<int> max_bytes_for_level_multiplier_additional =
std::vector<int>(num_levels, 1);
// We try to limit number of bytes in one compaction to be lower than this
// threshold. But it's not guaranteed.
// Value 0 will be sanitized.
//
// Default: result.target_file_size_base * 25
uint64_t max_compaction_bytes = 0;
// All writes will be slowed down to at least delayed_write_rate if estimated
// bytes needed to be compaction exceed this threshold.
//
// Default: 64GB
uint64_t soft_pending_compaction_bytes_limit = 64 * 1073741824ull;
// All writes are stopped if estimated bytes needed to be compaction exceed
// this threshold.
//
// Default: 256GB
uint64_t hard_pending_compaction_bytes_limit = 256 * 1073741824ull;
// The compaction style. Default: kCompactionStyleLevel
CompactionStyle compaction_style = kCompactionStyleLevel;
// If level compaction_style = kCompactionStyleLevel, for each level,
// which files are prioritized to be picked to compact.
// Default: kByCompensatedSize
CompactionPri compaction_pri = kByCompensatedSize;
// The options needed to support Universal Style compactions
CompactionOptionsUniversal compaction_options_universal;
// The options for FIFO compaction style
CompactionOptionsFIFO compaction_options_fifo;
// An iteration->Next() sequentially skips over keys with the same
// user-key unless this option is set. This number specifies the number
// of keys (with the same userkey) that will be sequentially
// skipped before a reseek is issued.
//
// Default: 8
//
// Dynamically changeable through SetOptions() API
uint64_t max_sequential_skip_in_iterations = 8;
// This is a factory that provides MemTableRep objects.
// Default: a factory that provides a skip-list-based implementation of
// MemTableRep.
std::shared_ptr<MemTableRepFactory> memtable_factory =
std::shared_ptr<SkipListFactory>(new SkipListFactory);
// Block-based table related options are moved to BlockBasedTableOptions.
// Related options that were originally here but now moved include:
// no_block_cache
// block_cache
// block_cache_compressed
// block_size
// block_size_deviation
// block_restart_interval
// filter_policy
// whole_key_filtering
// If you'd like to customize some of these options, you will need to
// use NewBlockBasedTableFactory() to construct a new table factory.
// This option allows user to collect their own interested statistics of
// the tables.
// Default: empty vector -- no user-defined statistics collection will be
// performed.
typedef std::vector<std::shared_ptr<TablePropertiesCollectorFactory>>
TablePropertiesCollectorFactories;
TablePropertiesCollectorFactories table_properties_collector_factories;
// Maximum number of successive merge operations on a key in the memtable.
//
// When a merge operation is added to the memtable and the maximum number of
// successive merges is reached, the value of the key will be calculated and
// inserted into the memtable instead of the merge operation. This will
// ensure that there are never more than max_successive_merges merge
// operations in the memtable.
//
// Default: 0 (disabled)
//
// Dynamically changeable through SetOptions() API
size_t max_successive_merges = 0;
// This flag specifies that the implementation should optimize the filters
// mainly for cases where keys are found rather than also optimize for keys
// missed. This would be used in cases where the application knows that
// there are very few misses or the performance in the case of misses is not
// important.
//
// For now, this flag allows us to not store filters for the last level i.e
// the largest level which contains data of the LSM store. For keys which
// are hits, the filters in this level are not useful because we will search
// for the data anyway. NOTE: the filters in other levels are still useful
// even for key hit because they tell us whether to look in that level or go
// to the higher level.
//
// Default: false
bool optimize_filters_for_hits = false;
// After writing every SST file, reopen it and read all the keys.
// Default: false
bool paranoid_file_checks = false;
// In debug mode, RocksDB run consistency checks on the LSM everytime the LSM
// change (Flush, Compaction, AddFile). These checks are disabled in release
// mode, use this option to enable them in release mode as well.
// Default: false
bool force_consistency_checks = false;
// Measure IO stats in compactions and flushes, if true.
// Default: false
bool report_bg_io_stats = false;
// Create ColumnFamilyOptions with default values for all fields
AdvancedColumnFamilyOptions();
// Create ColumnFamilyOptions from Options
explicit AdvancedColumnFamilyOptions(const Options& options);
// ---------------- DEPRECATED OPTIONS ----------------
// DEPRECATED
// This does not do anything anymore.
int max_mem_compaction_level;
// DEPRECATED -- this options is no longer used
// Puts are delayed to options.delayed_write_rate when any level has a
// compaction score that exceeds soft_rate_limit. This is ignored when == 0.0.
//
// Default: 0 (disabled)
//
// Dynamically changeable through SetOptions() API
double soft_rate_limit = 0.0;
// DEPRECATED -- this options is no longer used
double hard_rate_limit = 0.0;
// DEPRECATED -- this options is no longer used
unsigned int rate_limit_delay_max_milliseconds = 100;
// DEPREACTED
// Does not have any effect.
bool purge_redundant_kvs_while_flush = true;
};
} // namespace rocksdb

View File

@ -17,10 +17,10 @@
#include <limits>
#include <unordered_map>
#include "rocksdb/advanced_options.h"
#include "rocksdb/comparator.h"
#include "rocksdb/env.h"
#include "rocksdb/listener.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/universal_compaction.h"
#include "rocksdb/version.h"
#include "rocksdb/write_buffer_manager.h"
@ -42,12 +42,9 @@ class FilterPolicy;
class Logger;
class MergeOperator;
class Snapshot;
class TableFactory;
class MemTableRepFactory;
class TablePropertiesCollectorFactory;
class RateLimiter;
class Slice;
class SliceTransform;
class Statistics;
class InternalKeyComparator;
class WalFilter;
@ -79,113 +76,9 @@ enum CompressionType : unsigned char {
kDisableCompressionOption = 0xff,
};
enum CompactionStyle : char {
// level based compaction style
kCompactionStyleLevel = 0x0,
// Universal compaction style
// Not supported in ROCKSDB_LITE.
kCompactionStyleUniversal = 0x1,
// FIFO compaction style
// Not supported in ROCKSDB_LITE
kCompactionStyleFIFO = 0x2,
// Disable background compaction. Compaction jobs are submitted
// via CompactFiles().
// Not supported in ROCKSDB_LITE
kCompactionStyleNone = 0x3,
};
// In Level-based comapction, it Determines which file from a level to be
// picked to merge to the next level. We suggest people try
// kMinOverlappingRatio first when you tune your database.
enum CompactionPri : char {
// Slightly Priotize larger files by size compensated by #deletes
kByCompensatedSize = 0x0,
// First compact files whose data's latest update time is oldest.
// Try this if you only update some hot keys in small ranges.
kOldestLargestSeqFirst = 0x1,
// First compact files whose range hasn't been compacted to the next level
// for the longest. If your updates are random across the key space,
// write amplification is slightly better with this option.
kOldestSmallestSeqFirst = 0x2,
// First compact files whose ratio between overlapping size in next level
// and its size is the smallest. It in many cases can optimize write
// amplification.
kMinOverlappingRatio = 0x3,
};
enum class WALRecoveryMode : char {
// Original levelDB recovery
// We tolerate incomplete record in trailing data on all logs
// Use case : This is legacy behavior (default)
kTolerateCorruptedTailRecords = 0x00,
// Recover from clean shutdown
// We don't expect to find any corruption in the WAL
// Use case : This is ideal for unit tests and rare applications that
// can require high consistency guarantee
kAbsoluteConsistency = 0x01,
// Recover to point-in-time consistency
// We stop the WAL playback on discovering WAL inconsistency
// Use case : Ideal for systems that have disk controller cache like
// hard disk, SSD without super capacitor that store related data
kPointInTimeRecovery = 0x02,
// Recovery after a disaster
// We ignore any corruption in the WAL and try to salvage as much data as
// possible
// Use case : Ideal for last ditch effort to recover data or systems that
// operate with low grade unrelated data
kSkipAnyCorruptedRecords = 0x03,
};
struct CompactionOptionsFIFO {
// once the total sum of table files reaches this, we will delete the oldest
// table file
// Default: 1GB
uint64_t max_table_files_size;
CompactionOptionsFIFO() : max_table_files_size(1 * 1024 * 1024 * 1024) {}
};
// Compression options for different compression algorithms like Zlib
struct CompressionOptions {
int window_bits;
int level;
int strategy;
// Maximum size of dictionary used to prime the compression library. Currently
// this dictionary will be constructed by sampling the first output file in a
// subcompaction when the target level is bottommost. This dictionary will be
// loaded into the compression library before compressing/uncompressing each
// data block of subsequent files in the subcompaction. Effectively, this
// improves compression ratios when there are repetitions across data blocks.
// A value of 0 indicates the feature is disabled.
// Default: 0.
uint32_t max_dict_bytes;
CompressionOptions()
: window_bits(-14), level(-1), strategy(0), max_dict_bytes(0) {}
CompressionOptions(int wbits, int _lev, int _strategy, int _max_dict_bytes)
: window_bits(wbits),
level(_lev),
strategy(_strategy),
max_dict_bytes(_max_dict_bytes) {}
};
enum UpdateStatus { // Return status For inplace update callback
UPDATE_FAILED = 0, // Nothing to update
UPDATED_INPLACE = 1, // Value updated inplace
UPDATED = 2, // No inplace update. Merged value set
};
struct DbPath {
std::string path;
uint64_t target_size; // Target size of total files under the path, in byte.
DbPath() : target_size(0) {}
DbPath(const std::string& p, uint64_t t) : path(p), target_size(t) {}
};
struct Options;
struct ColumnFamilyOptions {
struct ColumnFamilyOptions : public AdvancedColumnFamilyOptions {
// The function recovers options to a previous version. Only 4.6 or later
// versions are supported.
ColumnFamilyOptions* OldDefaults(int rocksdb_major_version = 4,
@ -295,54 +188,6 @@ struct ColumnFamilyOptions {
// Dynamically changeable through SetOptions() API
size_t write_buffer_size = 64 << 20;
// The maximum number of write buffers that are built up in memory.
// The default and the minimum number is 2, so that when 1 write buffer
// is being flushed to storage, new writes can continue to the other
// write buffer.
// If max_write_buffer_number > 3, writing will be slowed down to
// options.delayed_write_rate if we are writing to the last write buffer
// allowed.
//
// Default: 2
//
// Dynamically changeable through SetOptions() API
int max_write_buffer_number = 2;
// The minimum number of write buffers that will be merged together
// before writing to storage. If set to 1, then
// all write buffers are flushed to L0 as individual files and this increases
// read amplification because a get request has to check in all of these
// files. Also, an in-memory merge may result in writing lesser
// data to storage if there are duplicate records in each of these
// individual write buffers. Default: 1
int min_write_buffer_number_to_merge = 1;
// The total maximum number of write buffers to maintain in memory including
// copies of buffers that have already been flushed. Unlike
// max_write_buffer_number, this parameter does not affect flushing.
// This controls the minimum amount of write history that will be available
// in memory for conflict checking when Transactions are used.
//
// When using an OptimisticTransactionDB:
// If this value is too low, some transactions may fail at commit time due
// to not being able to determine whether there were any write conflicts.
//
// When using a TransactionDB:
// If Transaction::SetSnapshot is used, TransactionDB will read either
// in-memory write buffers or SST files to do write-conflict checking.
// Increasing this value can reduce the number of reads to SST files
// done for conflict detection.
//
// Setting this value to 0 will cause write buffers to be freed immediately
// after they are flushed.
// If this value is set to -1, 'max_write_buffer_number' will be used.
//
// Default:
// If using a TransactionDB/OptimisticTransactionDB, the default value will
// be set to the value of 'max_write_buffer_number' if it is not explicitly
// set by the user. Otherwise, the default is 0.
int max_write_buffer_number_to_maintain = 0;
// Compress blocks using the specified compression algorithm. This
// parameter can be changed dynamically.
//
@ -359,29 +204,6 @@ struct ColumnFamilyOptions {
// efficiently detect that and will switch to uncompressed mode.
CompressionType compression;
// Different levels can have different compression policies. There
// are cases where most lower levels would like to use quick compression
// algorithms while the higher levels (which have more data) use
// compression algorithms that have better compression but could
// be slower. This array, if non-empty, should have an entry for
// each level of the database; these override the value specified in
// the previous field 'compression'.
//
// NOTICE if level_compaction_dynamic_level_bytes=true,
// compression_per_level[0] still determines L0, but other elements
// of the array are based on base level (the level L0 files are merged
// to), and may not match the level users see from info log for metadata.
// If L0 files are merged to level-n, then, for i>0, compression_per_level[i]
// determines compaction type for level n+i-1.
// For example, if we have three 5 levels, and we determine to merge L0
// data to L4 (which means L1..L3 will be empty), then the new files go to
// L4 uses compression type compression_per_level[1].
// If now L0 is merged to L2. Data goes to L2 will be compressed
// according to compression_per_level[1], L3 using compression_per_level[2]
// and L4 using compression_per_level[3]. Compaction for each level can
// change when data grows.
std::vector<CompressionType> compression_per_level;
// Compression algorithm that will be used for the bottommost level that
// contain files. If level-compaction is used, this option will only affect
// levels after base level.
@ -392,6 +214,14 @@ struct ColumnFamilyOptions {
// different options for compression algorithms
CompressionOptions compression_opts;
// Number of files to trigger level-0 compaction. A value <0 means that
// level-0 compaction will not be triggered by number of files at all.
//
// Default: 4
//
// Dynamically changeable through SetOptions() API
int level0_file_num_compaction_trigger = 4;
// If non-nullptr, use the specified function to determine the
// prefixes for keys. These prefixes will be placed in the filter.
// Depending on the workload, this can reduce the number of read-IOP
@ -408,56 +238,6 @@ struct ColumnFamilyOptions {
// Default: nullptr
std::shared_ptr<const SliceTransform> prefix_extractor = nullptr;
// Number of levels for this database
int num_levels = 7;
// Number of files to trigger level-0 compaction. A value <0 means that
// level-0 compaction will not be triggered by number of files at all.
//
// Default: 4
//
// Dynamically changeable through SetOptions() API
int level0_file_num_compaction_trigger = 4;
// Soft limit on number of level-0 files. We start slowing down writes at this
// point. A value <0 means that no writing slow down will be triggered by
// number of files in level-0.
//
// Default: 20
//
// Dynamically changeable through SetOptions() API
int level0_slowdown_writes_trigger = 20;
// Maximum number of level-0 files. We stop writes at this point.
//
// Default: 36
//
// Dynamically changeable through SetOptions() API
int level0_stop_writes_trigger = 36;
// This does not do anything anymore. Deprecated.
int max_mem_compaction_level;
// Target file size for compaction.
// target_file_size_base is per-file size for level-1.
// Target file size for level L can be calculated by
// target_file_size_base * (target_file_size_multiplier ^ (L-1))
// For example, if target_file_size_base is 2MB and
// target_file_size_multiplier is 10, then each file on level-1 will
// be 2MB, and each file on level 2 will be 20MB,
// and each file on level-3 will be 200MB.
//
// Default: 64MB.
//
// Dynamically changeable through SetOptions() API
uint64_t target_file_size_base = 64 * 1048576;
// By default target_file_size_multiplier is 1, which means
// by default files in different levels will have similar size.
//
// Dynamically changeable through SetOptions() API
int target_file_size_multiplier = 1;
// Control maximum total data size for a level.
// max_bytes_for_level_base is the max total for level-1.
// Maximum number of bytes for level L can be calculated as
@ -472,355 +252,18 @@ struct ColumnFamilyOptions {
// Dynamically changeable through SetOptions() API
uint64_t max_bytes_for_level_base = 256 * 1048576;
// If true, RocksDB will pick target size of each level dynamically.
// We will pick a base level b >= 1. L0 will be directly merged into level b,
// instead of always into level 1. Level 1 to b-1 need to be empty.
// We try to pick b and its target size so that
// 1. target size is in the range of
// (max_bytes_for_level_base / max_bytes_for_level_multiplier,
// max_bytes_for_level_base]
// 2. target size of the last level (level num_levels-1) equals to extra size
// of the level.
// At the same time max_bytes_for_level_multiplier and
// max_bytes_for_level_multiplier_additional are still satisfied.
//
// With this option on, from an empty DB, we make last level the base level,
// which means merging L0 data into the last level, until it exceeds
// max_bytes_for_level_base. And then we make the second last level to be
// base level, to start to merge L0 data to second last level, with its
// target size to be 1/max_bytes_for_level_multiplier of the last level's
// extra size. After the data accumulates more so that we need to move the
// base level to the third last one, and so on.
//
// For example, assume max_bytes_for_level_multiplier=10, num_levels=6,
// and max_bytes_for_level_base=10MB.
// Target sizes of level 1 to 5 starts with:
// [- - - - 10MB]
// with base level is level. Target sizes of level 1 to 4 are not applicable
// because they will not be used.
// Until the size of Level 5 grows to more than 10MB, say 11MB, we make
// base target to level 4 and now the targets looks like:
// [- - - 1.1MB 11MB]
// While data are accumulated, size targets are tuned based on actual data
// of level 5. When level 5 has 50MB of data, the target is like:
// [- - - 5MB 50MB]
// Until level 5's actual size is more than 100MB, say 101MB. Now if we keep
// level 4 to be the base level, its target size needs to be 10.1MB, which
// doesn't satisfy the target size range. So now we make level 3 the target
// size and the target sizes of the levels look like:
// [- - 1.01MB 10.1MB 101MB]
// In the same way, while level 5 further grows, all levels' targets grow,
// like
// [- - 5MB 50MB 500MB]
// Until level 5 exceeds 1000MB and becomes 1001MB, we make level 2 the
// base level and make levels' target sizes like this:
// [- 1.001MB 10.01MB 100.1MB 1001MB]
// and go on...
//
// By doing it, we give max_bytes_for_level_multiplier a priority against
// max_bytes_for_level_base, for a more predictable LSM tree shape. It is
// useful to limit worse case space amplification.
//
// max_bytes_for_level_multiplier_additional is ignored with this flag on.
//
// Turning this feature on or off for an existing DB can cause unexpected
// LSM tree structure so it's not recommended.
//
// NOTE: this option is experimental
//
// Default: false
bool level_compaction_dynamic_level_bytes = false;
// Default: 10.
//
// Dynamically changeable through SetOptions() API
double max_bytes_for_level_multiplier = 10;
// Different max-size multipliers for different levels.
// These are multiplied by max_bytes_for_level_multiplier to arrive
// at the max-size of each level.
//
// Default: 1
//
// Dynamically changeable through SetOptions() API
std::vector<int> max_bytes_for_level_multiplier_additional =
std::vector<int>(num_levels, 1);
// We try to limit number of bytes in one compaction to be lower than this
// threshold. But it's not guaranteed.
// Value 0 will be sanitized.
//
// Default: result.target_file_size_base * 25
uint64_t max_compaction_bytes = 0;
// DEPRECATED -- this options is no longer used
// Puts are delayed to options.delayed_write_rate when any level has a
// compaction score that exceeds soft_rate_limit. This is ignored when == 0.0.
//
// Default: 0 (disabled)
//
// Dynamically changeable through SetOptions() API
double soft_rate_limit = 0.0;
// DEPRECATED -- this options is no longer used
double hard_rate_limit = 0.0;
// All writes will be slowed down to at least delayed_write_rate if estimated
// bytes needed to be compaction exceed this threshold.
//
// Default: 64GB
uint64_t soft_pending_compaction_bytes_limit = 64 * 1073741824ull;
// All writes are stopped if estimated bytes needed to be compaction exceed
// this threshold.
//
// Default: 256GB
uint64_t hard_pending_compaction_bytes_limit = 256 * 1073741824ull;
// DEPRECATED -- this options is no longer used
unsigned int rate_limit_delay_max_milliseconds = 100;
// size of one block in arena memory allocation.
// If <= 0, a proper value is automatically calculated (usually 1/8 of
// writer_buffer_size, rounded up to a multiple of 4KB).
//
// There are two additional restriction of the The specified size:
// (1) size should be in the range of [4096, 2 << 30] and
// (2) be the multiple of the CPU word (which helps with the memory
// alignment).
//
// We'll automatically check and adjust the size number to make sure it
// conforms to the restrictions.
//
// Default: 0
//
// Dynamically changeable through SetOptions() API
size_t arena_block_size = 0;
// Disable automatic compactions. Manual compactions can still
// be issued on this column family
//
// Dynamically changeable through SetOptions() API
bool disable_auto_compactions = false;
// DEPREACTED
// Does not have any effect.
bool purge_redundant_kvs_while_flush = true;
// The compaction style. Default: kCompactionStyleLevel
CompactionStyle compaction_style = kCompactionStyleLevel;
// If level compaction_style = kCompactionStyleLevel, for each level,
// which files are prioritized to be picked to compact.
// Default: kByCompensatedSize
CompactionPri compaction_pri = kByCompensatedSize;
// The options needed to support Universal Style compactions
CompactionOptionsUniversal compaction_options_universal;
// The options for FIFO compaction style
CompactionOptionsFIFO compaction_options_fifo;
// An iteration->Next() sequentially skips over keys with the same
// user-key unless this option is set. This number specifies the number
// of keys (with the same userkey) that will be sequentially
// skipped before a reseek is issued.
//
// Default: 8
//
// Dynamically changeable through SetOptions() API
uint64_t max_sequential_skip_in_iterations = 8;
// This is a factory that provides MemTableRep objects.
// Default: a factory that provides a skip-list-based implementation of
// MemTableRep.
std::shared_ptr<MemTableRepFactory> memtable_factory =
std::shared_ptr<SkipListFactory>(new SkipListFactory);
// This is a factory that provides TableFactory objects.
// Default: a block-based table factory that provides a default
// implementation of TableBuilder and TableReader with default
// BlockBasedTableOptions.
std::shared_ptr<TableFactory> table_factory;
// Block-based table related options are moved to BlockBasedTableOptions.
// Related options that were originally here but now moved include:
// no_block_cache
// block_cache
// block_cache_compressed
// block_size
// block_size_deviation
// block_restart_interval
// filter_policy
// whole_key_filtering
// If you'd like to customize some of these options, you will need to
// use NewBlockBasedTableFactory() to construct a new table factory.
// This option allows user to collect their own interested statistics of
// the tables.
// Default: empty vector -- no user-defined statistics collection will be
// performed.
typedef std::vector<std::shared_ptr<TablePropertiesCollectorFactory>>
TablePropertiesCollectorFactories;
TablePropertiesCollectorFactories table_properties_collector_factories;
// Allows thread-safe inplace updates. If this is true, there is no way to
// achieve point-in-time consistency using snapshot or iterator (assuming
// concurrent updates). Hence iterator and multi-get will return results
// which are not consistent as of any point-in-time.
// If inplace_callback function is not set,
// Put(key, new_value) will update inplace the existing_value iff
// * key exists in current memtable
// * new sizeof(new_value) <= sizeof(existing_value)
// * existing_value for that key is a put i.e. kTypeValue
// If inplace_callback function is set, check doc for inplace_callback.
// Default: false.
bool inplace_update_support = false;
// Number of locks used for inplace update
// Default: 10000, if inplace_update_support = true, else 0.
//
// Dynamically changeable through SetOptions() API
size_t inplace_update_num_locks = 10000;
// existing_value - pointer to previous value (from both memtable and sst).
// nullptr if key doesn't exist
// existing_value_size - pointer to size of existing_value).
// nullptr if key doesn't exist
// delta_value - Delta value to be merged with the existing_value.
// Stored in transaction logs.
// merged_value - Set when delta is applied on the previous value.
// Applicable only when inplace_update_support is true,
// this callback function is called at the time of updating the memtable
// as part of a Put operation, lets say Put(key, delta_value). It allows the
// 'delta_value' specified as part of the Put operation to be merged with
// an 'existing_value' of the key in the database.
// If the merged value is smaller in size that the 'existing_value',
// then this function can update the 'existing_value' buffer inplace and
// the corresponding 'existing_value'_size pointer, if it wishes to.
// The callback should return UpdateStatus::UPDATED_INPLACE.
// In this case. (In this case, the snapshot-semantics of the rocksdb
// Iterator is not atomic anymore).
// If the merged value is larger in size than the 'existing_value' or the
// application does not wish to modify the 'existing_value' buffer inplace,
// then the merged value should be returned via *merge_value. It is set by
// merging the 'existing_value' and the Put 'delta_value'. The callback should
// return UpdateStatus::UPDATED in this case. This merged value will be added
// to the memtable.
// If merging fails or the application does not wish to take any action,
// then the callback should return UpdateStatus::UPDATE_FAILED.
// Please remember that the original call from the application is Put(key,
// delta_value). So the transaction log (if enabled) will still contain (key,
// delta_value). The 'merged_value' is not stored in the transaction log.
// Hence the inplace_callback function should be consistent across db reopens.
// Default: nullptr
UpdateStatus (*inplace_callback)(char* existing_value,
uint32_t* existing_value_size,
Slice delta_value,
std::string* merged_value) = nullptr;
// if prefix_extractor is set and memtable_prefix_bloom_size_ratio is not 0,
// create prefix bloom for memtable with the size of
// write_buffer_size * memtable_prefix_bloom_size_ratio.
// If it is larger than 0.25, it is santinized to 0.25.
//
// Default: 0 (disable)
//
// Dynamically changeable through SetOptions() API
double memtable_prefix_bloom_size_ratio = 0.0;
// Page size for huge page for the arena used by the memtable. If <=0, it
// won't allocate from huge page but from malloc.
// Users are responsible to reserve huge pages for it to be allocated. For
// example:
// sysctl -w vm.nr_hugepages=20
// See linux doc Documentation/vm/hugetlbpage.txt
// If there isn't enough free huge page available, it will fall back to
// malloc.
//
// Dynamically changeable through SetOptions() API
size_t memtable_huge_page_size = 0;
// If non-nullptr, memtable will use the specified function to extract
// prefixes for keys, and for each prefix maintain a hint of insert location
// to reduce CPU usage for inserting keys with the prefix. Keys out of
// domain of the prefix extractor will be insert without using hints.
//
// Currently only the default skiplist based memtable implements the feature.
// All other memtable implementation will ignore the option. It incurs ~250
// additional bytes of memory overhead to store a hint for each prefix.
// Also concurrent writes (when allow_concurrent_memtable_write is true) will
// ignore the option.
//
// The option is best suited for workloads where keys will likely to insert
// to a location close the the last inserted key with the same prefix.
// One example could be inserting keys of the form (prefix + timestamp),
// and keys of the same prefix always comes in with time order. Another
// example would be updating the same key over and over again, in which case
// the prefix can be the key itself.
//
// Default: nullptr (disable)
std::shared_ptr<const SliceTransform>
memtable_insert_with_hint_prefix_extractor = nullptr;
// Control locality of bloom filter probes to improve cache miss rate.
// This option only applies to memtable prefix bloom and plaintable
// prefix bloom. It essentially limits every bloom checking to one cache line.
// This optimization is turned off when set to 0, and positive number to turn
// it on.
// Default: 0
uint32_t bloom_locality = 0;
// Maximum number of successive merge operations on a key in the memtable.
//
// When a merge operation is added to the memtable and the maximum number of
// successive merges is reached, the value of the key will be calculated and
// inserted into the memtable instead of the merge operation. This will
// ensure that there are never more than max_successive_merges merge
// operations in the memtable.
//
// Default: 0 (disabled)
//
// Dynamically changeable through SetOptions() API
size_t max_successive_merges = 0;
// This flag specifies that the implementation should optimize the filters
// mainly for cases where keys are found rather than also optimize for keys
// missed. This would be used in cases where the application knows that
// there are very few misses or the performance in the case of misses is not
// important.
//
// For now, this flag allows us to not store filters for the last level i.e
// the largest level which contains data of the LSM store. For keys which
// are hits, the filters in this level are not useful because we will search
// for the data anyway. NOTE: the filters in other levels are still useful
// even for key hit because they tell us whether to look in that level or go
// to the higher level.
//
// Default: false
bool optimize_filters_for_hits = false;
// After writing every SST file, reopen it and read all the keys.
// Default: false
bool paranoid_file_checks = false;
// In debug mode, RocksDB run consistency checks on the LSM everytime the LSM
// change (Flush, Compaction, AddFile). These checks are disabled in release
// mode, use this option to enable them in release mode as well.
// Default: false
bool force_consistency_checks = false;
// Measure IO stats in compactions and flushes, if true.
// Default: false
bool report_bg_io_stats = false;
// Create ColumnFamilyOptions with default values for all fields
ColumnFamilyOptions();
// Create ColumnFamilyOptions from Options
@ -829,6 +272,38 @@ struct ColumnFamilyOptions {
void Dump(Logger* log) const;
};
enum class WALRecoveryMode : char {
// Original levelDB recovery
// We tolerate incomplete record in trailing data on all logs
// Use case : This is legacy behavior (default)
kTolerateCorruptedTailRecords = 0x00,
// Recover from clean shutdown
// We don't expect to find any corruption in the WAL
// Use case : This is ideal for unit tests and rare applications that
// can require high consistency guarantee
kAbsoluteConsistency = 0x01,
// Recover to point-in-time consistency
// We stop the WAL playback on discovering WAL inconsistency
// Use case : Ideal for systems that have disk controller cache like
// hard disk, SSD without super capacitor that store related data
kPointInTimeRecovery = 0x02,
// Recovery after a disaster
// We ignore any corruption in the WAL and try to salvage as much data as
// possible
// Use case : Ideal for last ditch effort to recover data or systems that
// operate with low grade unrelated data
kSkipAnyCorruptedRecords = 0x03,
};
struct DbPath {
std::string path;
uint64_t target_size; // Target size of total files under the path, in byte.
DbPath() : target_size(0) {}
DbPath(const std::string& p, uint64_t t) : path(p), target_size(t) {}
};
struct DBOptions {
// The function recovers options to the option as in version 4.6.
DBOptions* OldDefaults(int rocksdb_major_version = 4,

View File

@ -36,63 +36,16 @@
namespace rocksdb {
ColumnFamilyOptions::ColumnFamilyOptions()
: compression(Snappy_Supported() ? kSnappyCompression : kNoCompression),
table_factory(
std::shared_ptr<TableFactory>(new BlockBasedTableFactory())) {
AdvancedColumnFamilyOptions::AdvancedColumnFamilyOptions() {
assert(memtable_factory.get() != nullptr);
}
ColumnFamilyOptions::ColumnFamilyOptions(const Options& options)
: comparator(options.comparator),
merge_operator(options.merge_operator),
compaction_filter(options.compaction_filter),
compaction_filter_factory(options.compaction_filter_factory),
write_buffer_size(options.write_buffer_size),
max_write_buffer_number(options.max_write_buffer_number),
AdvancedColumnFamilyOptions::AdvancedColumnFamilyOptions(const Options& options)
: max_write_buffer_number(options.max_write_buffer_number),
min_write_buffer_number_to_merge(
options.min_write_buffer_number_to_merge),
max_write_buffer_number_to_maintain(
options.max_write_buffer_number_to_maintain),
compression(options.compression),
compression_per_level(options.compression_per_level),
bottommost_compression(options.bottommost_compression),
compression_opts(options.compression_opts),
prefix_extractor(options.prefix_extractor),
num_levels(options.num_levels),
level0_file_num_compaction_trigger(
options.level0_file_num_compaction_trigger),
level0_slowdown_writes_trigger(options.level0_slowdown_writes_trigger),
level0_stop_writes_trigger(options.level0_stop_writes_trigger),
target_file_size_base(options.target_file_size_base),
target_file_size_multiplier(options.target_file_size_multiplier),
max_bytes_for_level_base(options.max_bytes_for_level_base),
level_compaction_dynamic_level_bytes(
options.level_compaction_dynamic_level_bytes),
max_bytes_for_level_multiplier(options.max_bytes_for_level_multiplier),
max_bytes_for_level_multiplier_additional(
options.max_bytes_for_level_multiplier_additional),
max_compaction_bytes(options.max_compaction_bytes),
soft_rate_limit(options.soft_rate_limit),
soft_pending_compaction_bytes_limit(
options.soft_pending_compaction_bytes_limit),
hard_pending_compaction_bytes_limit(
options.hard_pending_compaction_bytes_limit),
rate_limit_delay_max_milliseconds(
options.rate_limit_delay_max_milliseconds),
arena_block_size(options.arena_block_size),
disable_auto_compactions(options.disable_auto_compactions),
purge_redundant_kvs_while_flush(options.purge_redundant_kvs_while_flush),
compaction_style(options.compaction_style),
compaction_pri(options.compaction_pri),
compaction_options_universal(options.compaction_options_universal),
compaction_options_fifo(options.compaction_options_fifo),
max_sequential_skip_in_iterations(
options.max_sequential_skip_in_iterations),
memtable_factory(options.memtable_factory),
table_factory(options.table_factory),
table_properties_collector_factories(
options.table_properties_collector_factories),
inplace_update_support(options.inplace_update_support),
inplace_update_num_locks(options.inplace_update_num_locks),
inplace_callback(options.inplace_callback),
@ -102,6 +55,32 @@ ColumnFamilyOptions::ColumnFamilyOptions(const Options& options)
memtable_insert_with_hint_prefix_extractor(
options.memtable_insert_with_hint_prefix_extractor),
bloom_locality(options.bloom_locality),
arena_block_size(options.arena_block_size),
compression_per_level(options.compression_per_level),
num_levels(options.num_levels),
level0_slowdown_writes_trigger(options.level0_slowdown_writes_trigger),
level0_stop_writes_trigger(options.level0_stop_writes_trigger),
target_file_size_base(options.target_file_size_base),
target_file_size_multiplier(options.target_file_size_multiplier),
level_compaction_dynamic_level_bytes(
options.level_compaction_dynamic_level_bytes),
max_bytes_for_level_multiplier(options.max_bytes_for_level_multiplier),
max_bytes_for_level_multiplier_additional(
options.max_bytes_for_level_multiplier_additional),
max_compaction_bytes(options.max_compaction_bytes),
soft_pending_compaction_bytes_limit(
options.soft_pending_compaction_bytes_limit),
hard_pending_compaction_bytes_limit(
options.hard_pending_compaction_bytes_limit),
compaction_style(options.compaction_style),
compaction_pri(options.compaction_pri),
compaction_options_universal(options.compaction_options_universal),
compaction_options_fifo(options.compaction_options_fifo),
max_sequential_skip_in_iterations(
options.max_sequential_skip_in_iterations),
memtable_factory(options.memtable_factory),
table_properties_collector_factories(
options.table_properties_collector_factories),
max_successive_merges(options.max_successive_merges),
optimize_filters_for_hits(options.optimize_filters_for_hits),
paranoid_file_checks(options.paranoid_file_checks),
@ -114,6 +93,28 @@ ColumnFamilyOptions::ColumnFamilyOptions(const Options& options)
}
}
ColumnFamilyOptions::ColumnFamilyOptions()
: compression(Snappy_Supported() ? kSnappyCompression : kNoCompression),
table_factory(
std::shared_ptr<TableFactory>(new BlockBasedTableFactory())) {}
ColumnFamilyOptions::ColumnFamilyOptions(const Options& options)
: AdvancedColumnFamilyOptions(options),
comparator(options.comparator),
merge_operator(options.merge_operator),
compaction_filter(options.compaction_filter),
compaction_filter_factory(options.compaction_filter_factory),
write_buffer_size(options.write_buffer_size),
compression(options.compression),
bottommost_compression(options.bottommost_compression),
compression_opts(options.compression_opts),
level0_file_num_compaction_trigger(
options.level0_file_num_compaction_trigger),
prefix_extractor(options.prefix_extractor),
max_bytes_for_level_base(options.max_bytes_for_level_base),
disable_auto_compactions(options.disable_auto_compactions),
table_factory(options.table_factory) {}
DBOptions::DBOptions() {}
DBOptions::DBOptions(const Options& options)

View File

@ -365,6 +365,21 @@ static std::unordered_map<std::string, OptionTypeInfo> db_options_type_info = {
OptionType::kBoolean, OptionVerificationType::kNormal, true,
offsetof(struct MutableDBOptions, avoid_flush_during_shutdown)}}};
// offset_of is used to get the offset of a class data member
// ex: offset_of(&ColumnFamilyOptions::num_levels)
// This call will return the offset of num_levels in ColumnFamilyOptions class
//
// This is the same as offsetof() but allow us to work with non standard-layout
// classes and structures
// refs:
// http://en.cppreference.com/w/cpp/concept/StandardLayoutType
// https://gist.github.com/graphitemaster/494f21190bb2c63c5516
template <typename T1, typename T2>
inline int offset_of(T1 T2::*member) {
static T2 obj;
return int(size_t(&(obj.*member)) - size_t(&obj));
}
static std::unordered_map<std::string, OptionTypeInfo> cf_options_type_info = {
/* not yet supported
CompactionOptionsFIFO compaction_options_fifo;
@ -379,45 +394,44 @@ static std::unordered_map<std::string, OptionTypeInfo> cf_options_type_info = {
std::string* merged_value);
*/
{"report_bg_io_stats",
{offsetof(struct ColumnFamilyOptions, report_bg_io_stats),
OptionType::kBoolean, OptionVerificationType::kNormal, true,
{offset_of(&ColumnFamilyOptions::report_bg_io_stats), OptionType::kBoolean,
OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, report_bg_io_stats)}},
{"compaction_measure_io_stats",
{0, OptionType::kBoolean, OptionVerificationType::kDeprecated, false, 0}},
{"disable_auto_compactions",
{offsetof(struct ColumnFamilyOptions, disable_auto_compactions),
{offset_of(&ColumnFamilyOptions::disable_auto_compactions),
OptionType::kBoolean, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, disable_auto_compactions)}},
{"filter_deletes",
{0, OptionType::kBoolean, OptionVerificationType::kDeprecated, true, 0}},
{"inplace_update_support",
{offsetof(struct ColumnFamilyOptions, inplace_update_support),
{offset_of(&ColumnFamilyOptions::inplace_update_support),
OptionType::kBoolean, OptionVerificationType::kNormal, false, 0}},
{"level_compaction_dynamic_level_bytes",
{offsetof(struct ColumnFamilyOptions,
level_compaction_dynamic_level_bytes),
{offset_of(&ColumnFamilyOptions::level_compaction_dynamic_level_bytes),
OptionType::kBoolean, OptionVerificationType::kNormal, false, 0}},
{"optimize_filters_for_hits",
{offsetof(struct ColumnFamilyOptions, optimize_filters_for_hits),
{offset_of(&ColumnFamilyOptions::optimize_filters_for_hits),
OptionType::kBoolean, OptionVerificationType::kNormal, false, 0}},
{"paranoid_file_checks",
{offsetof(struct ColumnFamilyOptions, paranoid_file_checks),
{offset_of(&ColumnFamilyOptions::paranoid_file_checks),
OptionType::kBoolean, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, paranoid_file_checks)}},
{"force_consistency_checks",
{offsetof(struct ColumnFamilyOptions, force_consistency_checks),
{offset_of(&ColumnFamilyOptions::force_consistency_checks),
OptionType::kBoolean, OptionVerificationType::kNormal, false, 0}},
{"purge_redundant_kvs_while_flush",
{offsetof(struct ColumnFamilyOptions, purge_redundant_kvs_while_flush),
{offset_of(&ColumnFamilyOptions::purge_redundant_kvs_while_flush),
OptionType::kBoolean, OptionVerificationType::kNormal, false, 0}},
{"verify_checksums_in_compaction",
{0, OptionType::kBoolean, OptionVerificationType::kDeprecated, true, 0}},
{"soft_pending_compaction_bytes_limit",
{offsetof(struct ColumnFamilyOptions, soft_pending_compaction_bytes_limit),
{offset_of(&ColumnFamilyOptions::soft_pending_compaction_bytes_limit),
OptionType::kUInt64T, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, soft_pending_compaction_bytes_limit)}},
{"hard_pending_compaction_bytes_limit",
{offsetof(struct ColumnFamilyOptions, hard_pending_compaction_bytes_limit),
{offset_of(&ColumnFamilyOptions::hard_pending_compaction_bytes_limit),
OptionType::kUInt64T, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, hard_pending_compaction_bytes_limit)}},
{"hard_rate_limit",
@ -425,21 +439,21 @@ static std::unordered_map<std::string, OptionTypeInfo> cf_options_type_info = {
{"soft_rate_limit",
{0, OptionType::kDouble, OptionVerificationType::kDeprecated, true, 0}},
{"max_compaction_bytes",
{offsetof(struct ColumnFamilyOptions, max_compaction_bytes),
{offset_of(&ColumnFamilyOptions::max_compaction_bytes),
OptionType::kUInt64T, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, max_compaction_bytes)}},
{"expanded_compaction_factor",
{0, OptionType::kInt, OptionVerificationType::kDeprecated, true, 0}},
{"level0_file_num_compaction_trigger",
{offsetof(struct ColumnFamilyOptions, level0_file_num_compaction_trigger),
{offset_of(&ColumnFamilyOptions::level0_file_num_compaction_trigger),
OptionType::kInt, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, level0_file_num_compaction_trigger)}},
{"level0_slowdown_writes_trigger",
{offsetof(struct ColumnFamilyOptions, level0_slowdown_writes_trigger),
{offset_of(&ColumnFamilyOptions::level0_slowdown_writes_trigger),
OptionType::kInt, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, level0_slowdown_writes_trigger)}},
{"level0_stop_writes_trigger",
{offsetof(struct ColumnFamilyOptions, level0_stop_writes_trigger),
{offset_of(&ColumnFamilyOptions::level0_stop_writes_trigger),
OptionType::kInt, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, level0_stop_writes_trigger)}},
{"max_grandparent_overlap_factor",
@ -447,53 +461,53 @@ static std::unordered_map<std::string, OptionTypeInfo> cf_options_type_info = {
{"max_mem_compaction_level",
{0, OptionType::kInt, OptionVerificationType::kDeprecated, false, 0}},
{"max_write_buffer_number",
{offsetof(struct ColumnFamilyOptions, max_write_buffer_number),
{offset_of(&ColumnFamilyOptions::max_write_buffer_number),
OptionType::kInt, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, max_write_buffer_number)}},
{"max_write_buffer_number_to_maintain",
{offsetof(struct ColumnFamilyOptions, max_write_buffer_number_to_maintain),
{offset_of(&ColumnFamilyOptions::max_write_buffer_number_to_maintain),
OptionType::kInt, OptionVerificationType::kNormal, false, 0}},
{"min_write_buffer_number_to_merge",
{offsetof(struct ColumnFamilyOptions, min_write_buffer_number_to_merge),
{offset_of(&ColumnFamilyOptions::min_write_buffer_number_to_merge),
OptionType::kInt, OptionVerificationType::kNormal, false, 0}},
{"num_levels",
{offsetof(struct ColumnFamilyOptions, num_levels), OptionType::kInt,
{offset_of(&ColumnFamilyOptions::num_levels), OptionType::kInt,
OptionVerificationType::kNormal, false, 0}},
{"source_compaction_factor",
{0, OptionType::kInt, OptionVerificationType::kDeprecated, true, 0}},
{"target_file_size_multiplier",
{offsetof(struct ColumnFamilyOptions, target_file_size_multiplier),
{offset_of(&ColumnFamilyOptions::target_file_size_multiplier),
OptionType::kInt, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, target_file_size_multiplier)}},
{"arena_block_size",
{offsetof(struct ColumnFamilyOptions, arena_block_size),
OptionType::kSizeT, OptionVerificationType::kNormal, true,
{offset_of(&ColumnFamilyOptions::arena_block_size), OptionType::kSizeT,
OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, arena_block_size)}},
{"inplace_update_num_locks",
{offsetof(struct ColumnFamilyOptions, inplace_update_num_locks),
{offset_of(&ColumnFamilyOptions::inplace_update_num_locks),
OptionType::kSizeT, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, inplace_update_num_locks)}},
{"max_successive_merges",
{offsetof(struct ColumnFamilyOptions, max_successive_merges),
{offset_of(&ColumnFamilyOptions::max_successive_merges),
OptionType::kSizeT, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, max_successive_merges)}},
{"memtable_huge_page_size",
{offsetof(struct ColumnFamilyOptions, memtable_huge_page_size),
{offset_of(&ColumnFamilyOptions::memtable_huge_page_size),
OptionType::kSizeT, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, memtable_huge_page_size)}},
{"memtable_prefix_bloom_huge_page_tlb_size",
{0, OptionType::kSizeT, OptionVerificationType::kDeprecated, true, 0}},
{"write_buffer_size",
{offsetof(struct ColumnFamilyOptions, write_buffer_size),
OptionType::kSizeT, OptionVerificationType::kNormal, true,
{offset_of(&ColumnFamilyOptions::write_buffer_size), OptionType::kSizeT,
OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, write_buffer_size)}},
{"bloom_locality",
{offsetof(struct ColumnFamilyOptions, bloom_locality),
OptionType::kUInt32T, OptionVerificationType::kNormal, false, 0}},
{offset_of(&ColumnFamilyOptions::bloom_locality), OptionType::kUInt32T,
OptionVerificationType::kNormal, false, 0}},
{"memtable_prefix_bloom_bits",
{0, OptionType::kUInt32T, OptionVerificationType::kDeprecated, true, 0}},
{"memtable_prefix_bloom_size_ratio",
{offsetof(struct ColumnFamilyOptions, memtable_prefix_bloom_size_ratio),
{offset_of(&ColumnFamilyOptions::memtable_prefix_bloom_size_ratio),
OptionType::kDouble, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, memtable_prefix_bloom_size_ratio)}},
{"memtable_prefix_bloom_probes",
@ -501,72 +515,72 @@ static std::unordered_map<std::string, OptionTypeInfo> cf_options_type_info = {
{"min_partial_merge_operands",
{0, OptionType::kUInt32T, OptionVerificationType::kDeprecated, true, 0}},
{"max_bytes_for_level_base",
{offsetof(struct ColumnFamilyOptions, max_bytes_for_level_base),
{offset_of(&ColumnFamilyOptions::max_bytes_for_level_base),
OptionType::kUInt64T, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, max_bytes_for_level_base)}},
{"max_bytes_for_level_multiplier",
{offsetof(struct ColumnFamilyOptions, max_bytes_for_level_multiplier),
{offset_of(&ColumnFamilyOptions::max_bytes_for_level_multiplier),
OptionType::kDouble, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, max_bytes_for_level_multiplier)}},
{"max_bytes_for_level_multiplier_additional",
{offsetof(struct ColumnFamilyOptions,
max_bytes_for_level_multiplier_additional),
{offset_of(
&ColumnFamilyOptions::max_bytes_for_level_multiplier_additional),
OptionType::kVectorInt, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions,
max_bytes_for_level_multiplier_additional)}},
{"max_sequential_skip_in_iterations",
{offsetof(struct ColumnFamilyOptions, max_sequential_skip_in_iterations),
{offset_of(&ColumnFamilyOptions::max_sequential_skip_in_iterations),
OptionType::kUInt64T, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, max_sequential_skip_in_iterations)}},
{"target_file_size_base",
{offsetof(struct ColumnFamilyOptions, target_file_size_base),
{offset_of(&ColumnFamilyOptions::target_file_size_base),
OptionType::kUInt64T, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, target_file_size_base)}},
{"rate_limit_delay_max_milliseconds",
{0, OptionType::kUInt, OptionVerificationType::kDeprecated, false, 0}},
{"compression",
{offsetof(struct ColumnFamilyOptions, compression),
{offset_of(&ColumnFamilyOptions::compression),
OptionType::kCompressionType, OptionVerificationType::kNormal, true,
offsetof(struct MutableCFOptions, compression)}},
{"compression_per_level",
{offsetof(struct ColumnFamilyOptions, compression_per_level),
{offset_of(&ColumnFamilyOptions::compression_per_level),
OptionType::kVectorCompressionType, OptionVerificationType::kNormal,
false, 0}},
{"bottommost_compression",
{offsetof(struct ColumnFamilyOptions, bottommost_compression),
{offset_of(&ColumnFamilyOptions::bottommost_compression),
OptionType::kCompressionType, OptionVerificationType::kNormal, false, 0}},
{"comparator",
{offsetof(struct ColumnFamilyOptions, comparator), OptionType::kComparator,
{offset_of(&ColumnFamilyOptions::comparator), OptionType::kComparator,
OptionVerificationType::kByName, false, 0}},
{"prefix_extractor",
{offsetof(struct ColumnFamilyOptions, prefix_extractor),
{offset_of(&ColumnFamilyOptions::prefix_extractor),
OptionType::kSliceTransform, OptionVerificationType::kByNameAllowNull,
false, 0}},
{"memtable_insert_with_hint_prefix_extractor",
{offsetof(struct ColumnFamilyOptions,
memtable_insert_with_hint_prefix_extractor),
{offset_of(
&ColumnFamilyOptions::memtable_insert_with_hint_prefix_extractor),
OptionType::kSliceTransform, OptionVerificationType::kByNameAllowNull,
false, 0}},
{"memtable_factory",
{offsetof(struct ColumnFamilyOptions, memtable_factory),
{offset_of(&ColumnFamilyOptions::memtable_factory),
OptionType::kMemTableRepFactory, OptionVerificationType::kByName, false,
0}},
{"table_factory",
{offsetof(struct ColumnFamilyOptions, table_factory),
OptionType::kTableFactory, OptionVerificationType::kByName, false, 0}},
{offset_of(&ColumnFamilyOptions::table_factory), OptionType::kTableFactory,
OptionVerificationType::kByName, false, 0}},
{"compaction_filter",
{offsetof(struct ColumnFamilyOptions, compaction_filter),
{offset_of(&ColumnFamilyOptions::compaction_filter),
OptionType::kCompactionFilter, OptionVerificationType::kByName, false,
0}},
{"compaction_filter_factory",
{offsetof(struct ColumnFamilyOptions, compaction_filter_factory),
{offset_of(&ColumnFamilyOptions::compaction_filter_factory),
OptionType::kCompactionFilterFactory, OptionVerificationType::kByName,
false, 0}},
{"merge_operator",
{offsetof(struct ColumnFamilyOptions, merge_operator),
{offset_of(&ColumnFamilyOptions::merge_operator),
OptionType::kMergeOperator, OptionVerificationType::kByName, false, 0}},
{"compaction_style",
{offsetof(struct ColumnFamilyOptions, compaction_style),
{offset_of(&ColumnFamilyOptions::compaction_style),
OptionType::kCompactionStyle, OptionVerificationType::kNormal, false,
0}}};

View File

@ -314,32 +314,31 @@ TEST_F(OptionsSettableTest, ColumnFamilyOptionsAllFieldsSettable) {
// options in the blacklist need to appear in the same order as in
// ColumnFamilyOptions.
const OffsetGap kColumnFamilyOptionsBlacklist = {
{offsetof(struct ColumnFamilyOptions, comparator), sizeof(Comparator*)},
{offsetof(struct ColumnFamilyOptions, merge_operator),
sizeof(std::shared_ptr<MergeOperator>)},
{offsetof(struct ColumnFamilyOptions, compaction_filter),
sizeof(const CompactionFilter*)},
{offsetof(struct ColumnFamilyOptions, compaction_filter_factory),
sizeof(std::shared_ptr<CompactionFilterFactory>)},
{offsetof(struct ColumnFamilyOptions, compression_per_level),
sizeof(std::vector<CompressionType>)},
{offsetof(struct ColumnFamilyOptions, prefix_extractor),
sizeof(std::shared_ptr<const SliceTransform>)},
{offsetof(struct ColumnFamilyOptions,
max_bytes_for_level_multiplier_additional),
sizeof(std::vector<int>)},
{offsetof(struct ColumnFamilyOptions, memtable_factory),
sizeof(std::shared_ptr<MemTableRepFactory>)},
{offsetof(struct ColumnFamilyOptions, table_factory),
sizeof(std::shared_ptr<TableFactory>)},
{offsetof(struct ColumnFamilyOptions,
table_properties_collector_factories),
sizeof(ColumnFamilyOptions::TablePropertiesCollectorFactories)},
{offsetof(struct ColumnFamilyOptions, inplace_callback),
{offset_of(&ColumnFamilyOptions::inplace_callback),
sizeof(UpdateStatus(*)(char*, uint32_t*, Slice, std::string*))},
{offsetof(struct ColumnFamilyOptions,
memtable_insert_with_hint_prefix_extractor),
{offset_of(
&ColumnFamilyOptions::memtable_insert_with_hint_prefix_extractor),
sizeof(std::shared_ptr<const SliceTransform>)},
{offset_of(&ColumnFamilyOptions::compression_per_level),
sizeof(std::vector<CompressionType>)},
{offset_of(
&ColumnFamilyOptions::max_bytes_for_level_multiplier_additional),
sizeof(std::vector<int>)},
{offset_of(&ColumnFamilyOptions::memtable_factory),
sizeof(std::shared_ptr<MemTableRepFactory>)},
{offset_of(&ColumnFamilyOptions::table_properties_collector_factories),
sizeof(ColumnFamilyOptions::TablePropertiesCollectorFactories)},
{offset_of(&ColumnFamilyOptions::comparator), sizeof(Comparator*)},
{offset_of(&ColumnFamilyOptions::merge_operator),
sizeof(std::shared_ptr<MergeOperator>)},
{offset_of(&ColumnFamilyOptions::compaction_filter),
sizeof(const CompactionFilter*)},
{offset_of(&ColumnFamilyOptions::compaction_filter_factory),
sizeof(std::shared_ptr<CompactionFilterFactory>)},
{offset_of(&ColumnFamilyOptions::prefix_extractor),
sizeof(std::shared_ptr<const SliceTransform>)},
{offset_of(&ColumnFamilyOptions::table_factory),
sizeof(std::shared_ptr<TableFactory>)},
};
char* options_ptr = new char[sizeof(ColumnFamilyOptions)];